Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,225)

Search Parameters:
Keywords = SLC4A11 gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4874 KB  
Article
Genome-Wide Association Studies in Japanese Quails of the F2 Resource Population Elucidate Molecular Markers and Candidate Genes for Body Weight Parameters
by Natalia A. Volkova, Michael N. Romanov, Nadezhda Yu. German, Polina V. Larionova, Anastasia N. Vetokh, Ludmila A. Volkova, Alexander A. Sermyagin, Alexey V. Shakhin, Darren K. Griffin, Johann Sölkner, John McEwan, Rudiger Brauning and Natalia A. Zinovieva
Int. J. Mol. Sci. 2025, 26(17), 8243; https://doi.org/10.3390/ijms26178243 - 25 Aug 2025
Abstract
Molecular research for genetic variants underlying body weight (BW) provides crucial information for this important selected trait when developing productive poultry breeds, lines and crosses. We searched for molecular markers—single nucleotide polymorphisms (SNPs)—and candidate genes associated with this trait in 240 F2 [...] Read more.
Molecular research for genetic variants underlying body weight (BW) provides crucial information for this important selected trait when developing productive poultry breeds, lines and crosses. We searched for molecular markers—single nucleotide polymorphisms (SNPs)—and candidate genes associated with this trait in 240 F2 resource population Japanese quails (Coturnix japonica). This population was produced by crossing two breeds with contrasting growth phenotypes, i.e., Japanese (with lower growth) and Texas White (with higher growth). The birds were genotyped using the genotyping-by-sequencing method followed by a genome-wide association study (GWAS). Using 74,387 SNPs, GWAS resulted in 142 significant SNPs and 42 candidate genes associated with BW at the age of 1, 14, 28, 35, 42, 49 and 56 days. Hereby, 25 SNPs simultaneously associated with BW at more than one age were established that colocalized with nine prioritized candidate genes (PCGs), including ITM2B, SLC35F3, ADAM33, UNC79, LEPR, RPP14, MVK, ASTN2, and ZBTB16. Twelve PCGs were identified in the regions of two or more significant SNPs, including MARCHF6, EGFR, ADGRL3, ADAM33, NPC2, LTBP2, ZC2HC1C, SATB2, ASTN2, ZBTB16, ADAR, and LGR6. These SNPs and PCGs can serve as molecular genetic markers for the genomic selection of quails with desirable BW phenotypes to enhance growth rates and meat productivity. Full article
(This article belongs to the Special Issue Molecular Research in Avian Genetics)
Show Figures

Figure 1

17 pages, 5644 KB  
Article
Mutation Spectrum of GJB2 in Taiwanese Patients with Sensorineural Hearing Loss: Prevalence, Pathogenicity, and Clinical Implications
by Yi-Feng Lin, Che-Hong Chen, Chang-Yin Lee, Hung-Ching Lin and Yi-Chao Hsu
Int. J. Mol. Sci. 2025, 26(17), 8213; https://doi.org/10.3390/ijms26178213 - 24 Aug 2025
Viewed by 168
Abstract
Hearing loss is often caused by genetic and environmental factors, with inherited mutations responsible for 50–60% of cases. The GJB2 gene, encoding connexin 26, is a major contributor to nonsyndromic sensorineural hearing loss (NSHL) due to its role in cellular communication critical for [...] Read more.
Hearing loss is often caused by genetic and environmental factors, with inherited mutations responsible for 50–60% of cases. The GJB2 gene, encoding connexin 26, is a major contributor to nonsyndromic sensorineural hearing loss (NSHL) due to its role in cellular communication critical for auditory function. In Taiwan, common deafness-associated genes include GJB2, SLC26A4, OTOF, MYO15A, and MTRNR1, which were similar to those found in other populations. The most common pathogenic genes is GJB2 mutations and the hearing level in children with GJB2 p.V37I/p.V37I or p.V37I/c.235delC was estimated to deteriorate at approximately 1 decibel hearing level (dB HL)/year. We found another common mutation in Taiwan Biobank, GJB2 p.I203T, which were identified in our data and individuals carrying this mutation experienced more severe hearing loss, suggesting a synergistic effect of these mutations on auditory impairment. We suggest GJB2 whole genetic screening is recommended for clinical management and prevention strategies in Taiwan. This study used data from the Taiwan Biobank to analyze allele frequencies of GJB2 gene variants. Predictive software (PolyPhen-2 version 2.2, SIFT for missense variants 6.2.1, MutationTaster Ensembl 112 and Alphamissense CC BY-NC-SA 4.0) assessed the pathogenicity of specific mutations. Additionally, 82 unrelated NSHL patients were screened for mutations in these genes using PCR and DNA sequencing. The study explored the correlation between genetic mutations and the severity of hearing loss in patients. Several common GJB2 mutation sites were identified from the Taiwan Biobank, including GJB2 p.V37I (7.7%), GJB2 p.I203T (6%), GJB2 p.V27I (31%), and GJB2 p.E114G (22%). Bioinformatics analysis classified GJB2 p.I203T as pathogenic, while GJB2 p.V27I and GJB2 p.E114G were considered polymorphisms. Patients with GJB2 p.I203T mutation experienced more severe hearing loss, emphasizing the potential interaction between the gene in auditory impairment. The mutation patterns of GJB2 in the Taiwanese population are similar to other East Asian regions. Although GJB2 mutations represent the predominant genetic cause of hereditary hearing loss, the corresponding mutant proteins exhibit detectable aggregation, particularly at cell–cell junctions, suggesting at least partial trafficking to the plasma membrane. Genetic screening for these mutations—especially GJB2 p.I203T (6%), GJB2 p.V27I (31%), and GJB2 p.E114G (22%)—is essential for the effective diagnosis and management of non-syndromic hearing loss (NSHL) in Taiwan. We found GJB2 p.I203T which were identified in our data and individuals carrying this mutation experienced more severe hearing loss, suggesting a synergistic effect of these mutations on auditory impairment. We suggest whole GJB2 gene sequencing in genetic screening is recommended for clinical management and prevention strategies in Taiwan. These findings have significant clinical and public health implications for the development of preventive and therapeutic strategies. Full article
(This article belongs to the Special Issue Hearing Loss: Recent Progress in Molecular Genomics)
Show Figures

Figure 1

14 pages, 1431 KB  
Article
LvSlc12A2 Is a Negative Growth Regulator in Whiteleg Shrimp, Litopenaeus vannamei
by Panpan Niu, Shanshan Jiang, Mianyu Liu, Siyu Chen, Jie Kong, Sheng Luan, Xianhong Meng, Qun Xing, Qifan Zeng, Kun Luo and Huan Gao
Animals 2025, 15(17), 2467; https://doi.org/10.3390/ani15172467 - 22 Aug 2025
Viewed by 165
Abstract
Litopenaeus vannamei, commonly known as the Pacific white shrimp, is one of the most economically significant species in global aquaculture, valued for its rapid growth and adaptability. However, the mechanisms regulating its growth, especially under high-density farming and environmental stress, remain poorly [...] Read more.
Litopenaeus vannamei, commonly known as the Pacific white shrimp, is one of the most economically significant species in global aquaculture, valued for its rapid growth and adaptability. However, the mechanisms regulating its growth, especially under high-density farming and environmental stress, remain poorly understood. Previous study predicted that LvSlc12A2 was involved in growth regulation. To further reveal the function of this gene in the growth regulation of the whiteleg shrimp, in this study, we explore its function using RT-qPCR, RNA interference, overexpression, and tissue in situ hybridization. RT-qPCR results showed that LvSlc12A2 was highly expressed in gills (about 62%), followed by the hepatopancreas, with the lowest expression in muscle (0.08%, compared to the gills). Myostatin (LvMstn) was mainly expressed in the heart, and molt-inhibiting hormone (LvMIH) in the ventral nerve. In situ hybridization of gill tissues using the mRNA of the gene as a probe revealed strong LvSlc12A2 signals in the gill stratum and epithelial cells. Overexpression of LvSlc12A2, significantly decreased the osmotic gene aquaporin (LvAqp), while knockdown increased its expression. Additionally, levels of growth-related inhibitory genes LvMstn and LvMIH increased significantly after LvSlc12A2 overexpression and were downregulated after its knockdown, suggesting LvSlc12A2 negatively regulates growth, possibly in synergy with LvMstn and LvMIH. These findings indicate LvSlc12A2 influences growth both by negative regulation and by modulating osmotic balance in gill tissues. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

19 pages, 974 KB  
Systematic Review
Paroxysmal Dyskinesias in Paediatric Age: A Systematic Review
by Giulia Pisanò, Martina Gnazzo, Giulia Sigona, Carlo Alberto Cesaroni, Agnese Pantani, Anna Cavalli, Susanna Rizzi, Daniele Frattini and Carlo Fusco
J. Clin. Med. 2025, 14(17), 5925; https://doi.org/10.3390/jcm14175925 - 22 Aug 2025
Viewed by 130
Abstract
Background: Paroxysmal dyskinesias (PDs) are rare, episodic movement disorders characterized by sudden and involuntary hyperkinetic motor events. In paediatric populations, their diagnosis is often complicated by clinical overlap with epilepsy and other neurological conditions. Genetic underpinnings have increasingly been recognized as key to [...] Read more.
Background: Paroxysmal dyskinesias (PDs) are rare, episodic movement disorders characterized by sudden and involuntary hyperkinetic motor events. In paediatric populations, their diagnosis is often complicated by clinical overlap with epilepsy and other neurological conditions. Genetic underpinnings have increasingly been recognized as key to understanding phenotypic heterogeneity and guiding treatment. Objectives: This systematic review aims to provide a comprehensive overview of paediatric PD, with a focus on genetic aetiologies, clinical features, subtype classification, and therapeutic approaches, including genotype–treatment correlations. Methods: We systematically reviewed the literature from 2014 to 2025 using PubMed. Inclusion criteria targeted paediatric patients (aged 0–18 years) with documented paroxysmal hyperkinetic movements and genetically confirmed or clinically suggestive PD. Data were extracted regarding demographics, dyskinesia subtypes, age at onset, genetic findings, and treatment efficacy. Gene categories were classified as PD-specific or pleiotropic based on functional and clinical features. Results: We included 112 studies encompassing 605 paediatric patients. The most common subtype was Paroxistic Kinesigenic Dyskinesia (PKD). Male sex was more frequently reported. The mean onset age was 5.99 years. A genetic diagnosis was confirmed in 505 patients (83.5%), involving 38 different genes. Among these, PRRT2 was the most frequently implicated gene, followed by SLC2A1 and ADCY5. Chromosomal abnormalities affecting the 16p11.2 region were identified in ten patients, including deletions and duplications. Among the 504 patients with confirmed monogenic variants, 390 (77.4%) had mutations in PD-specific genes, while 122 (24.2%) carried pleiotropic variants. Antiseizure drugs—particularly sodium channel blockers such as carbamazepine and oxcarbazepine—were the most frequently reported treatment, with complete efficacy documented in 59.7% of the studies describing their use. Conclusions: Paediatric PDs exhibit significant clinical and genetic heterogeneity. While PRRT2 remains the most common genetic aetiology, emerging pleiotropic genes highlight the need for comprehensive diagnostic strategies. Sodium channel blockers are effective in a subset of genetically defined PD, particularly PRRT2-positive cases. Patients with pathogenic variants in other genes, such as ADCY5 and SLC2A1, may benefit from specific therapies that can potentially change their clinical course and prognosis. These findings support genotype-driven management approaches and underscore the importance of genetic testing in paediatric movement disorders. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

19 pages, 2674 KB  
Review
Zinc Transporters of the LIV-1 Subfamily in Various Cancers: Molecular Insights and Research Priorities for Saudi Arabia
by Ahmed M. Alzahrani and Kathryn M. Taylor
Int. J. Mol. Sci. 2025, 26(16), 8080; https://doi.org/10.3390/ijms26168080 - 21 Aug 2025
Viewed by 218
Abstract
Zinc is an essential trace element involved in critical physiological functions such as gene expression, immune regulation, and cellular proliferation. This review explores the link between zinc homeostasis and cancer, with a specific focus on LIV-1 zinc transporters and their potential relevance to [...] Read more.
Zinc is an essential trace element involved in critical physiological functions such as gene expression, immune regulation, and cellular proliferation. This review explores the link between zinc homeostasis and cancer, with a specific focus on LIV-1 zinc transporters and their potential relevance to cancer research and treatment priorities in Saudi Arabia, as informed by global data. Zinc homeostasis is maintained by two major transporter families: ZIP (SLC39A) and ZnT (SLC30A). The dysregulation of specific ZIP transporters, particularly ZIP4, ZIP7, ZIP6, and ZIP10, has been implicated in cancer progression. Bioinformatic analyses revealed the significant overexpression of ZIP4, ZIP7, and ZIP6 in breast cancer and ZIP4 in colorectal cancer, which are the most common cancers among Saudi women and men, respectively. Notably, ZIP4 and ZIP7 upregulation correlated with poorer clinical outcomes, whereas ZIP6 was positively associated with survival in breast cancer. These findings underscore the potential of zinc transporters as prognostic biomarkers and therapeutic targets. Despite the substantial global evidence, research on zinc transporters in the Saudi population remains limited. Considering the Kingdom’s rising cancer burden and unique genetic, environmental, and dietary factors, understanding zinc metabolism in this context is important. Targeted research may support precision medicine strategies and improve outcomes in line with Saudi Arabia’s healthcare transformation goals. Full article
(This article belongs to the Special Issue Molecular Linkage Between Trace Elements and Cancer)
Show Figures

Figure 1

8 pages, 279 KB  
Case Report
MCT8 Deficiency in Infancy: Opportunities for Early Diagnosis and Screening
by Ilja Dubinski, Belana Debor, Sofia Petrova, Katharina A. Schiergens, Heike Weigand and Heinrich Schmidt
Int. J. Neonatal Screen. 2025, 11(3), 66; https://doi.org/10.3390/ijns11030066 - 21 Aug 2025
Viewed by 226
Abstract
Background: Monocarboxylate-transporter-8-(MCT8) deficiency, or Allan–Herndon–Dudley syndrome (AHDS), is a rare X-linked disorder caused by pathogenic variants in the SLC16A2 gene, leading to impaired transport of thyroid hormones, primarily T3 and T4, across cell membranes. The resulting central hypothyroidism and peripheral hyperthyroidism cause neurodevelopmental [...] Read more.
Background: Monocarboxylate-transporter-8-(MCT8) deficiency, or Allan–Herndon–Dudley syndrome (AHDS), is a rare X-linked disorder caused by pathogenic variants in the SLC16A2 gene, leading to impaired transport of thyroid hormones, primarily T3 and T4, across cell membranes. The resulting central hypothyroidism and peripheral hyperthyroidism cause neurodevelopmental impairment and thyrotoxicosis. Despite the availability of therapy options, e.g., with triiodothyroacetic acid (TRIAC), diagnosis is often delayed, partly due to normal TSH levels or incomplete genetic panels. MCT8 deficiency is not yet included in newborn-screening programs worldwide. Case Description: We present a case of an infant genetically diagnosed with MCT8 deficiency at 5 months of age after presenting with muscular hypotonia, lack of head control, and developmental delay. Thyroid function testing revealed a normal TSH, low free T4, and significantly elevated free T3 and free T3/T4 ratio. Treatment with TRIAC (Emcitate®) was initiated promptly, with close drug monitoring. Despite persistent motor deficits and dystonia, some developmental progress was observed, as well as reduction in hyperthyroidism. Discussion/Conclusions: This case underscores the importance of early free T3 and fT3/fT4 ratio testing in infants with unexplained developmental delay. Broader inclusion of SLC16A2 in genetic panels and consideration of newborn screening could improve early diagnosis and outcomes in this rare but treatable condition. Full article
Show Figures

Figure 1

20 pages, 7041 KB  
Article
The Metabolome in Different Sites of Gut Tract Regulates the Meat Quality of Longissimus Dorsi Muscle
by Binlong Chen, Tingting Zheng, Xue Bai, Weihua Chang, Yi Zhang, Shizhong Yang, Hao Li, Diyan Li and Tao Wang
Animals 2025, 15(16), 2399; https://doi.org/10.3390/ani15162399 - 15 Aug 2025
Viewed by 184
Abstract
Meat quality is influenced by genetic, nutritional, and microbial factors, with increasing attention on the role of gut-derived metabolites. In this study, we conducted untargeted metabolomics of 10 gut tract sites and RNA sequencing (RNA-seq) of longissimus dorsi muscles in Meigu goats and [...] Read more.
Meat quality is influenced by genetic, nutritional, and microbial factors, with increasing attention on the role of gut-derived metabolites. In this study, we conducted untargeted metabolomics of 10 gut tract sites and RNA sequencing (RNA-seq) of longissimus dorsi muscles in Meigu goats and Liangshan black sheep raised under standardized conditions. Results showed that goat muscle contained significantly higher levels of essential amino acids (e.g., methionine) and specific fatty acids (e.g., C18:3_N6, C20:4_N6), suggesting improved nutritional quality. Transcriptomic analysis identified 3133 differentially expressed genes (DEGs), among which ADCY1 and SLC38A4 were upregulated in goats and strongly associated with meat traits. Using integrative correlation analysis, we uncovered 17 genes and 19 gut metabolites that were significantly correlated with more than eight meat quality parameters across multiple gut sites. Notably, these metabolites included bioactive compounds such as L-tyrosine ethyl ester and pelargonidin 3-O-glucoside, while genes were enriched in pathways related to amino acid transport, cAMP signaling, and muscle development. Together, these findings highlight a potential gut–muscle axis involving metabolite-mediated modulation of muscle gene expression, contributing to breed-specific differences in meat composition and quality. This study provides a valuable framework for improving ruminant meat quality through integrative multi-omics analysis. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

15 pages, 1953 KB  
Article
MicroRNAs and Their Inhibition in Modulating SLC5A8 Expression in the Context of Papillary Thyroid Carcinoma
by Wojciech Gierlikowski, Jowita Grzędzicka, Katarzyna Konieczek and Marta Kotlarek-Łysakowska
Int. J. Mol. Sci. 2025, 26(16), 7889; https://doi.org/10.3390/ijms26167889 - 15 Aug 2025
Viewed by 259
Abstract
SLC5A8 is a protein coded by the SLC5A8 gene, and has been proposed as a tumor suppressor and iodide transporter. Its expression is reduced in papillary thyroid carcinoma (PTC), yet the mechanisms underlying this phenomenon are largely unknown. We hypothesized that SLC5A8 expression [...] Read more.
SLC5A8 is a protein coded by the SLC5A8 gene, and has been proposed as a tumor suppressor and iodide transporter. Its expression is reduced in papillary thyroid carcinoma (PTC), yet the mechanisms underlying this phenomenon are largely unknown. We hypothesized that SLC5A8 expression in PTC is reduced by microRNAs and can be modulated by their inhibition. We used real-time PCR to analyze the expression of SLC5A8 and the microRNAs of interest in a set of 49 PTC/normal tissue pairs. We used an in silico approach to identify microRNAs upregulated in PTC and putatively binding to the SLC5A8 transcript. Luciferase assays were performed to confirm the direct binding of synthetic microRNAs to the 3′UTR of SLC5A8. Subsequently, using mir-expressing plasmids and microRNA sponges, including a microRNA sponge designed to simultaneously inhibit three selected microRNAs, we checked the impact of the modulation of microRNAs on endogenous SLC5A8. Finally, we investigated if modulation of SLC5A8 induces changes in transcriptomes. We confirmed the downregulation of SLC5A8 in PTC. In silico analysis revealed microRNAs potentially targeting SLC5A8. Luciferase assay confirmed direct binding between the 3′UTR of SLC5A8 and miR-181a-5p, miR-182-5p, and miR-494-3p. MiR-181a-5p and miR-182-5p were upregulated in PTC. In HEK293 cell lines, transfection with mir-181a- and mir-182-expressing plasmids decreased endogenous SLC5A8 mRNA, while silencing of miR-181a-5p, miR-182-5p, miR-494-3p, and all three microRNAs simultaneously increased SLC5A8 expression; however, only simultaneous inhibition was able to induce changes visible for SLC5A8 protein. Changes in SLC5A8 expression did not alter the whole transcriptome significantly. This study shows microRNA-dependent regulation of SLC5A8 expression and underlines the potential effectiveness of simultaneous inhibition of a few microRNAs to derepress their common target. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

10 pages, 306 KB  
Article
Investigation of rs11568476 Polymorphism in the SLC13A2 Gene in Turkish Patients with Hypocitraturia and Calcium-Containing Kidney Stones
by Ekrem Başaran, Dursun Baba, Yusuf Şenoğlu, Alpaslan Yüksel, Muhammet Ali Kayıkçı, Selma Düzenli and Ali Tekin
Biomedicines 2025, 13(8), 1985; https://doi.org/10.3390/biomedicines13081985 - 15 Aug 2025
Viewed by 292
Abstract
Background and Objectives: Hypocitraturia is a major risk factor for calcium-containing kidney stone disease. Citrate inhibits stone formation by binding calcium in the urine. The SLC13A2 gene encodes the sodium-dependent dicarboxylate cotransporter 1 (NaDC1), a membrane transport protein that facilitates citrate reabsorption [...] Read more.
Background and Objectives: Hypocitraturia is a major risk factor for calcium-containing kidney stone disease. Citrate inhibits stone formation by binding calcium in the urine. The SLC13A2 gene encodes the sodium-dependent dicarboxylate cotransporter 1 (NaDC1), a membrane transport protein that facilitates citrate reabsorption in the proximal renal tubules. Variants in this gene, such as rs11568476 (V477M), have been shown to significantly impair transporter activity. This study aimed to investigate the presence of the rs11568476 polymorphism in SLC13A2 and its association with hypocitraturia in Turkish patients with calcium-containing kidney stones. To our knowledge, this is the first genetic study evaluating this polymorphism in a Turkish cohort. Materials and Methods: This prospective cross-sectional study included 90 patients diagnosed with calcium-containing kidney stones at Düzce University Faculty of Medicine, Department of Urology. Based on 24 h urinary citrate levels, patients were divided into two groups: normocitraturic (n = 38) and hypocitraturic (n = 52). Blood and 24 h urine samples were analyzed for biochemical parameters. The rs11568476 polymorphism in SLC13A2 was analyzed using Real-Time PCR. Results: There were no significant differences between the two groups in terms of age, gender, and most biochemical parameters. Serum uric acid levels were significantly higher in the hypocitraturic group (p = 0.002), whereas family history of stone disease was more prevalent in the normocitraturic group (p = 0.024). Genetic analysis revealed no polymorphism in the rs11568476 region; all patients exhibited the homozygous wild-type genotype (GG). Conclusions: No association was observed between the rs11568476 polymorphism and hypocitraturia in this cohort. The absence of the polymorphism suggests that this variant may be rare or absent in the Turkish population. These findings highlight the importance of investigating additional genetic and environmental contributors to hypocitraturia and nephrolithiasis through larger, multicenter studies. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

20 pages, 6751 KB  
Article
Multi-Omics Reveals Molecular and Genetic Mechanisms Underlying Egg Albumen Quality Decline in Aging Laying Hens
by Mingyue Gao, Junnan Zhang, Ning Yang and Congjiao Sun
Int. J. Mol. Sci. 2025, 26(16), 7876; https://doi.org/10.3390/ijms26167876 - 15 Aug 2025
Viewed by 224
Abstract
As the laying cycle is prolonged, the egg albumen quality exhibits a declining trend. A Haugh unit (HU) is a standard measure of the albumen quality, which reflects viscosity and freshness. During the late laying period, the HU not only decreased significantly, but [...] Read more.
As the laying cycle is prolonged, the egg albumen quality exhibits a declining trend. A Haugh unit (HU) is a standard measure of the albumen quality, which reflects viscosity and freshness. During the late laying period, the HU not only decreased significantly, but also exhibited greater variability among individuals. The magnum, as the primary site of albumen synthesis, plays a central role in this process; however, the mechanisms by which it regulates the albumen quality remain unclear. To address this, we obtained genomic and transcriptomic data from 254 individuals, along with single-cell RNA sequencing (scRNA-seq) data of the magnum tissue. Genome-wide association studies (GWAS) across five laying stages (66, 72, 80, 90, and 100 weeks of age) identified 77 HU-associated single-nucleotide polymorphisms (SNPs). Expression quantitative trait locus (eQTL) mapping linked these variants to the expression of 12 genes in magnum tissue. In addition, transcriptomic analysis using linear regression and random forest models identified 259 genes that significantly correlated with the HU. Single-cell RNA sequencing further revealed two key cell types, plasma cells and a subset of epithelial cells, marked by ADAMTSL1 and OVAL, which are functionally relevant to the HU. Through integrated Transcriptome-Wide Association Study (TWAS) and Summary-data-based Mendelian Randomization (SMR) analyses, we identified four robust regulators of the albumen quality: CISD1, NQO2, SLC22A23, and CMTM6. These genes are functionally involved in mitochondrial function, antioxidant defense, and membrane transport. Overall, our findings uncovered the genetic and cellular mechanisms underlying age-related decline in the albumen quality and identified potential targets for improving the egg quality in aging flocks. Full article
(This article belongs to the Special Issue Molecular Progression of Genetics in Breeding of Farm Animals)
Show Figures

Figure 1

20 pages, 3954 KB  
Article
Interpretation of the Transcriptome-Based Signature of Tumor-Initiating Cells, the Core of Cancer Development, and the Construction of a Machine Learning-Based Classifier
by Seung-Hyun Jeong, Jong-Jin Kim, Ji-Hun Jang and Young-Tae Chang
Cells 2025, 14(16), 1255; https://doi.org/10.3390/cells14161255 - 14 Aug 2025
Viewed by 330
Abstract
Tumor-initiating cells (TICs) constitute a subpopulation of cancer cells with stem-like properties contributing to tumorigenesis, progression, recurrence, and therapeutic resistance. Despite their biological importance, their molecular signatures that distinguish them from non-TICs remain incompletely characterized. This study aimed to comprehensively analyze transcriptomic differences [...] Read more.
Tumor-initiating cells (TICs) constitute a subpopulation of cancer cells with stem-like properties contributing to tumorigenesis, progression, recurrence, and therapeutic resistance. Despite their biological importance, their molecular signatures that distinguish them from non-TICs remain incompletely characterized. This study aimed to comprehensively analyze transcriptomic differences between TICs and non-TICs, identify TIC-specific gene expression patterns, and construct a machine learning-based classifier that could accurately predict TIC status. RNA sequencing data were obtained from four human cell lines representing TIC (TS10 and TS32) and non-TIC (32A and Epi). Transcriptomic profiles were analyzed via principal component, hierarchical clustering, and differential expression analysis. Gene-Ontology and Kyoto-Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted for functional interpretation. A logistic-regression model was trained on differentially expressed genes to predict TIC status. Model performance was validated using synthetic data and external projection. TICs exhibited distinct transcriptomic signatures, including enrichment of non-coding RNAs (e.g., MIR4737 and SNORD19) and selective upregulation of metabolic transporters (e.g., SLC25A1, SLC16A1, and FASN). Functional pathway analysis revealed TIC-specific activation of oxidative phosphorylation, PI3K-Akt signaling, and ribosome-related processes. The logistic-regression model achieved perfect classification (area under the curve of 1.00), and its key features indicated metabolic and translational reprogramming unique to TICs. Transcriptomic state-space embedding analysis suggested reversible transitions between TIC and non-TIC states driven by transcriptional and epigenetic regulators. This study reveals a unique transcriptomic landscape defining TICs and establishes a highly accurate machine learning-based TIC classifier. These findings enhance our understanding of TIC biology and show promising strategies for TIC-targeted diagnostics and therapeutic interventions. Full article
Show Figures

Graphical abstract

19 pages, 1873 KB  
Article
A Genome-Wide Association Study of Circulating Serum Choline, Betaine, Dimethylglycine, and Their Ratios
by Lauren E. Louck, Kevin C. Klatt, Taylor C. Wallace, Jiantao Ma and Mei Chung
Nutrients 2025, 17(16), 2630; https://doi.org/10.3390/nu17162630 - 14 Aug 2025
Viewed by 305
Abstract
Background/Objectives: Genetic variation has been thought to alter the human dietary requirement for choline and subsequent circulating levels of its metabolites betaine and dimethylglycine (DMG). The aim of this genome-wide association study (GWAS) was to identify single nucleotide polymorphisms (SNPs) associated with serum [...] Read more.
Background/Objectives: Genetic variation has been thought to alter the human dietary requirement for choline and subsequent circulating levels of its metabolites betaine and dimethylglycine (DMG). The aim of this genome-wide association study (GWAS) was to identify single nucleotide polymorphisms (SNPs) associated with serum choline, betaine, and dimethylglycine (DMG) as well as choline-to-betaine and betaine-to-DMG ratios. Methods: Data from the Collaborative Study of Genes, Nutrients and Metabolites (CSGNM; n = 2402) were used to model individual associations of choline, betaine, and DMG circulating metabolites and their ratios with 680,975 SNPs, using linear regression. Models were unadjusted (model 1), adjusted for age and sex (model 2), and further adjusted for selected principal components (model 3) and B12, B9, B6, and holotranscobalamin (model 4). Statistical significance was set at p < 5.0 × 10−5. Affected SNPs in the dbSNP (database of Single Nucleotide Polymorphisms) were then identified. Results: GWAS revealed both intuitive and novel results, including the recently described SLC25A48, several intronic variants in the gene encoding LYPLAL1, and a pair of SNPs present in the intronic region of PID1 related to serum choline. SNPs related to betaine and DMG included SLCA12, BHMT, DMGDH, and additional SLC family transporters that require further validation. While exploratory, GWAS of the choline-to-betaine and betaine-to-DMG ratios revealed common targets with direct links to choline and one-carbon metabolism. Conclusions: These results suggest that metabolic handling of choline has genetic determinants not formerly recognized in the scientific literature. Replication is needed in larger cohorts due to low statistical power. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Figure 1

20 pages, 1516 KB  
Review
Ferroptosis and Nrf2 Signaling in Head and Neck Cancer: Resistance Mechanisms and Therapeutic Prospects
by Jaewang Lee, Youngin Seo and Jong-Lyel Roh
Antioxidants 2025, 14(8), 993; https://doi.org/10.3390/antiox14080993 - 13 Aug 2025
Viewed by 399
Abstract
Ferroptosis is an iron-dependent form of regulated cell death marked by lipid peroxidation in polyunsaturated phospholipids. In head and neck cancer (HNC), where resistance to chemotherapy and immunotherapy is common, ferroptosis offers a mechanistically distinct strategy to overcome therapeutic failure. However, cancer cells [...] Read more.
Ferroptosis is an iron-dependent form of regulated cell death marked by lipid peroxidation in polyunsaturated phospholipids. In head and neck cancer (HNC), where resistance to chemotherapy and immunotherapy is common, ferroptosis offers a mechanistically distinct strategy to overcome therapeutic failure. However, cancer cells often evade ferroptosis via activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant and iron-regulatory genes. HNC remains therapeutically challenging due to therapy resistance driven by redox adaptation. This review highlights the ferroptosis pathway—a form of regulated necrosis driven by iron and lipid peroxidation—and its regulation by Nrf2, a master antioxidant transcription factor. We detail how Nrf2 contributes to ferroptosis evasion in HNC and summarize emerging preclinical studies targeting this axis. The review aims to synthesize molecular insights and propose therapeutic perspectives for overcoming resistance in HNC by modulating Nrf2–ferroptosis signaling. We conducted a structured narrative review of the literature using PubMed databases. Relevant studies from 2015 to 2025 focusing on ferroptosis, Nrf2 signaling, and head and neck cancer were selected based on their experimental design, novelty, and relevance to clinical resistance mechanisms. In HNC, Nrf2 mediates resistance through transcriptional upregulation of GPX4 and SLC7A11, epigenetic stabilization by PRMT4 and ALKBH5, and activation by FGF5 and platelet-derived extracellular vesicles. Epstein–Barr virus (EBV) infection also enhances Nrf2 signaling in nasopharyngeal carcinoma. More recently, loss-of-function KEAP1 mutations have been linked to persistent Nrf2 activation and upregulation of NQO1, which confer resistance to both ferroptosis and immune checkpoint therapy. Targeting NQO1 in KEAP1-deficient models restores ferroptosis and reactivates antitumor immunity. Additionally, the natural alkaloid trigonelline has shown promise in reversing Nrf2-mediated ferroptosis resistance in cisplatin-refractory tumors. Pharmacologic agents such as auranofin, fucoxanthin, carnosic acid, and disulfiram/copper complexes have demonstrated efficacy in sensitizing HNC to ferroptosis by disrupting the Nrf2 axis. This review summarizes emerging mechanisms of ferroptosis evasion and highlights therapeutic strategies targeting the Nrf2–ferroptosis network. Integrating ferroptosis inducers with immune and chemotherapeutic approaches may provide new opportunities for overcoming resistance in head and neck malignancies. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease—2nd Edition)
Show Figures

Graphical abstract

17 pages, 680 KB  
Article
Exploring the Potential Roles of SLC39A8 and POC5 Missense Variants in the Association Between Body Composition, Beverage Consumption, and Chronic Lung Diseases: A Two-Sample Mendelian Randomization Study
by Oladayo E. Apalowo, Hunter K. Walt, Tolu E. Alaba, Joel J. Komakech and Mark W. Schilling
Int. J. Mol. Sci. 2025, 26(16), 7799; https://doi.org/10.3390/ijms26167799 - 12 Aug 2025
Viewed by 312
Abstract
The study examined the association between body composition and beverage consumption and the risk of asthma and chronic obstructive pulmonary disease (COPD) and explored the single nucleotide polymorphisms (SNPs) involved in these associations by leveraging summary statistics from genome-wide association studies (GWAS) in [...] Read more.
The study examined the association between body composition and beverage consumption and the risk of asthma and chronic obstructive pulmonary disease (COPD) and explored the single nucleotide polymorphisms (SNPs) involved in these associations by leveraging summary statistics from genome-wide association studies (GWAS) in nonoverlapping populations. The IEU OpenGWAS project was sourced for exposure datasets: body mass index, body fat percentage, fat-free mass, total body water mass, alcohol intake frequency, and coffee intake, and selected health outcome datasets: asthma and chronic obstructive pulmonary disease. Datasets were assessed and filtered using R, followed by a two-sample Mendelian randomization analysis. The MR Egger, weighted median, inverse variance weighted, simple mode, and weighted mode methods were used to examine the association between exposures and outcomes. Heterogeneity and pleiotropy analyses were used to evaluate the reliability of results. Additionally, SNPnexus was used to ascertain SNPs linked to established phenotypes, while SNP annotation was obtained from the Ensembl BioMart database via the biomaRt package. Genes belonging to overlapping groups were visualized using ComplexHeatmap. Higher body fat percentage (OR = 1.72, 95% CI: 1.23–2.41, p = 0.002), increased BMI (OR = 1.56, CI: 1.23–1.20, p = 2.53 × 10−4), and more frequent alcohol intake (OR = 1.34, CI: 1.08–1.68, p = 0.009) were associated with elevated COPD risk. Asthma risk was similarly increased with higher body fat percentage (OR = 1.60, CI: 1.23–2.21, p = 0.001), BMI (OR = 1.54, CI: 1.29–1.84, p = 2.23 × 10−6), fat-free mass (OR = 1.21, CI: 1.02–1.44, p = 0.032), and alcohol intake frequency (OR = 1.19, CI: 1.01–1.40, p = 0.039). Total body water mass and coffee intake were not associated with asthma and COPD. SNP annotation revealed that some genetic variants that influenced the association of the exposure variables with asthma and COPD were missense variants in several genes, including the evolutionarily highly conserved gene, SLC39A8 (rs13107325; C/A/T allele), and POC5 (rs2307111; T/A/C allele), as well as intronic variants in FTO (rs56094641; A/G/T allele) and NRXN3 (rs10146997; A/G allele). The discovery of the missense variants rs13107325 and rs2307111 in SLC39A8 and POC5, respectively, in addition to other intronic and synonymous SNPs suggests that these SNPs may have some roles in the development or progression of asthma and COPD. This may contribute to the identification of molecular signatures or biomarkers that forecast the risk, development, or therapeutic response of chronic lung diseases in persons with metabolic dysregulation, including obesity. Full article
(This article belongs to the Special Issue Molecular Pathophysiology of Lung Diseases)
Show Figures

Figure 1

17 pages, 14969 KB  
Article
HO-1 Suppression by Co-Culture-Derived IL-6 Alleviates Ferritinophagy-Dependent Oxidative Stress to Potentiate Myogenic Differentiation
by Mengyuan Zhang, Siyu Liu, Yongheng Wang, Shan Shan and Ming Cang
Cells 2025, 14(16), 1234; https://doi.org/10.3390/cells14161234 - 10 Aug 2025
Viewed by 343
Abstract
Fibro-adipogenic progenitor cells (FAPs) support muscle tissue homeostasis, regulate muscle growth, injury repair, and fibrosis, and activate muscle progenitor cell differentiation to promote regeneration. We aimed to investigate the effects of co-culturing FAPs with muscle satellite cells (MuSCs) on myogenic differentiation. Proteomic profiling [...] Read more.
Fibro-adipogenic progenitor cells (FAPs) support muscle tissue homeostasis, regulate muscle growth, injury repair, and fibrosis, and activate muscle progenitor cell differentiation to promote regeneration. We aimed to investigate the effects of co-culturing FAPs with muscle satellite cells (MuSCs) on myogenic differentiation. Proteomic profiling of co-culture supernatants identified significant DCX, IMP2A, NUDT16L1, SLC38A2, and IL-6 upregulation. Comparative transcriptomics of mono-cultured versus co-cultured MuSCs revealed differential expression of oxidative stress-related genes (HMOX1, ALOX5, GSTM3, TRPM2, PADI1, and CTSL). Pathway enrichment analyses highlighted cell cycle regulation, TNF signaling, and ferroptosis. Gene ontology analysis of MuSCs indicated significant gene enrichment in myosin-related components. Combined transcriptomic and proteomic analyses demonstrated HO-1 downregulation at the transcriptional and translational levels, with altered pathways being predominantly related to myosin filament, muscle system process, and muscle contraction cellular components. HO-1 knockdown reduced intracellular iron accumulation in MuSCs, suppressing iron-dependent autophagy. This alleviated oxidative stress and promoted myogenic differentiation. Exogenous IL-6 (0.1 ng/mL) downregulated HO-1 expression, initiating an identical regulatory cascade, while HO-1 overexpression reversed the IL-6-mediated reduction in the expression of the autophagy markers LC3 and ATG5, suppressing myogenic enhancement. This establishes the co-culture-induced IL-6/HO-1 axis as a core regulator of iron-dependent oxidative stress and autophagy during myogenic differentiation. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Graphical abstract

Back to TopTop