Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = SNAIL 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9788 KB  
Article
Taxonomic Notes on Lerniana Delicado et Hauffe, 2022, Trichonia Schütt, 1980 (Truncatelloidea: Hydrobiidae: Horatiinae) and Allied Taxa
by Aleksandra Jaszczyńska, Jozef Grego, Sebastian Hofman, Artur Osikowski and Andrzej Falniowski
Taxonomy 2025, 5(3), 45; https://doi.org/10.3390/taxonomy5030045 - 26 Aug 2025
Viewed by 690
Abstract
The genera: Lerniana Delicado et Hauffe, 2022, Trichonia Schütt, 1980, and two clades (“Radomaniolaelongata Radoman, 1973, and an unnamed clade referred to as “Radomaniola” sp. 1, sp. 2) whose assignment to any genus remains unknown, form sister group [...] Read more.
The genera: Lerniana Delicado et Hauffe, 2022, Trichonia Schütt, 1980, and two clades (“Radomaniolaelongata Radoman, 1973, and an unnamed clade referred to as “Radomaniola” sp. 1, sp. 2) whose assignment to any genus remains unknown, form sister group with the genus Radomaniola Szarowska, 2007 (Hydrobiidae W. Stimpson, 1865, subfamily Horatiinae D. W. Taylor, 1966). The paper deals with all these clades sister to Radomaniola. Cytochrome c oxidase subunit I (COI) sequences have been used to infer phylogenetic relationships between the snails collected at 15 localities in southern Greece and one in Montenegro. Thirty-two haplotypes represent eight Molecular Taxonomical Units (mOTUs) of the species level, four of them within the genus Lerniana: L. seminula (Frauenfeld, 1863), L. tritonum (Bourguignat, 1852), and two other of these four species are both described as new. First of them has been found at seven localities in Peloponnese, Attica and southern Thessaly, the second only at one locality, sympatrically with the former species. “Radomaniolaelongata does not belong to Radomaniola, and its relationships remain unknown, similarly as in other unnamed clade, whose genus-level assignment cannot currently be resolved. The shells, protoconchs, radulae, female reproductive organs and penes are presented, also for Trichonia trichonica Radoman, 1973, for which the genus assignment remains undecided based on our molecular results. The study clearly illustrates how fragmentary is our knowledge is on the real biodiversity of the minute truncatelloid gastropods, whose morphology—simple and variable—makes species distinction hardly possible. Informed decisions on species and habitat protection should consider the above. Full article
Show Figures

Figure 1

14 pages, 5518 KB  
Article
NOD2 Promotes Glioblastoma Progression Through Effects on Epithelial–Mesenchymal Transition and Cancer Stemness
by Eshrat Jahan, Shubhash Chandra Chaudhary, S M Abdus Salam, Eun-Jung Ahn, Nah Ihm Kim, Tae-Young Jung, Jong-Hwan Park, Sung Sun Kim, Ji Young Lee, Kyung-Hwa Lee and Kyung-Sub Moon
Biomedicines 2025, 13(8), 2041; https://doi.org/10.3390/biomedicines13082041 - 21 Aug 2025
Viewed by 2831
Abstract
Background: Glioblastoma multiforme (GBM) represents one of the most aggressive and lethal primary brain malignancies, characterized by rapid proliferation, extensive invasiveness, and a dismal prognosis. Emerging evidence implicates nucleotide-binding oligomerization domain-containing protein 2 (NOD2), an intracellular pattern recognition receptor, as [...] Read more.
Background: Glioblastoma multiforme (GBM) represents one of the most aggressive and lethal primary brain malignancies, characterized by rapid proliferation, extensive invasiveness, and a dismal prognosis. Emerging evidence implicates nucleotide-binding oligomerization domain-containing protein 2 (NOD2), an intracellular pattern recognition receptor, as a potential driver of GBM progression. This study investigates NOD2’s role in promoting glioblastoma through its effects on the epithelial–mesenchymal transition (EMT) and cancer stem cell (CSC) markers. Methods: NOD2 expression levels and survival outcomes were assessed using TCGA data from GBM tumor samples (n = 153) and normal brain tissues (n = 5). NOD2 protein expression was validated in glioma cell lines using Western blot and immunofluorescence analyses. Functional studies employed siRNA-mediated NOD2 knockdown to evaluate effects on cellular proliferation, migration, invasion, and colony formation, while correlations between NOD2 and EMT/CSC markers were assessed. Results: The analysis of TCGA data revealed a significantly elevated NOD2 expression in GBM tumors compared to normal brain tissue, with a high NOD2 expression correlating with a reduced disease-free survival in GBM patients. All tested glioma cell lines demonstrated robust NOD2 expression. Functional analyses demonstrated that NOD2 depletion substantially impaired cellular proliferation, migration, invasion, and the colony-forming capacity. Mechanistically, siRNA-mediated NOD2 knockdown significantly decreased the expression of EMT (Snail, SLUG, Vimentin) and CSC markers (CD44, CD133) at both protein and mRNA levels. Conclusions: Our results indicate that NOD2 contributes to GBM progression by influencing EMT and CSC pathways. These findings suggest NOD2’s potential as a therapeutic target in glioblastoma, highlighting the need for further mechanistic studies and therapeutic exploration. Full article
(This article belongs to the Special Issue Mechanisms and Novel Therapeutic Approaches for Gliomas)
Show Figures

Figure 1

28 pages, 16355 KB  
Article
Renicola spp. (Digenea, Renicolidae) of the ‘Duck Clade’ with Description of the Renicola mollissima Kulachkova, 1957 Life Cycle
by Kirill V. Galaktionov, Anna I. Solovyeva, Aleksei A. Miroliubov, Kira V. Regel and Anna E. Romanovich
Diversity 2025, 17(8), 512; https://doi.org/10.3390/d17080512 - 25 Jul 2025
Viewed by 2587
Abstract
Renicolid digeneans parasitise aquatic birds. In molecular trees, they are divided into three clades, one of which, the ‘duck clade’, parasitises anatids. Renicola mollissima, a member of this clade, parasitises sea ducks, mainly eiders. Its life cycle remains unknown. We verified the [...] Read more.
Renicolid digeneans parasitise aquatic birds. In molecular trees, they are divided into three clades, one of which, the ‘duck clade’, parasitises anatids. Renicola mollissima, a member of this clade, parasitises sea ducks, mainly eiders. Its life cycle remains unknown. We verified the diagnosis of R. mollissima using integrated morphological and molecular data and provided the first information on its life cycle in northern Palaearctic. We proved that intramolluscan stages of R. mollissima, previously known as Cercaria pacifica 2, develop in intertidal snails Littorina squalida and L. saxatilis. We provided a detailed morphological description of cercariae and adults of R. mollissima and a discriminative analysis with closely related species. Molecular data demonstrated an amphiboreal distribution of R. mollissima and the existence of a single population in Europe and the North Pacific. Using molecular methods, we also found metacercariae of an unknown renicolid species from the ‘duck clade’, designated as Cercaria cf. nordica I, in subtidal mussels of the Barents Sea. All individuals of C. cf. nordica I examined in our study were represented by the same haplotype. We discuss possible ways of formation of this phylogeographic structure, the composition of the ‘duck clade’ and the evolutionary pathways of the family Renicolidae. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

15 pages, 4104 KB  
Article
Metabolic and Biochemical Responses of Juvenile Babylonia areolata to Hypoxia Stress
by Baojun Tang, Xiaoyao Ren, Zhiguo Dong, Hanfeng Zheng, Yujia Liu and Tao Wei
Biology 2025, 14(6), 727; https://doi.org/10.3390/biology14060727 - 19 Jun 2025
Viewed by 542
Abstract
As an important aquaculture species, the marine snail Babylonia areolata is frequently subjected to fluctuation in dissolved oxygen concentration during farming and transportation processes. In the present study, we investigated the metabolic rates, transcription, and enzyme level responses of juvenile B. areolata exposed [...] Read more.
As an important aquaculture species, the marine snail Babylonia areolata is frequently subjected to fluctuation in dissolved oxygen concentration during farming and transportation processes. In the present study, we investigated the metabolic rates, transcription, and enzyme level responses of juvenile B. areolata exposed to long-term stress (144 h). The results showed that the mortality rate of juvenile B. areolata was higher in the 0.5 mg O2/L group compared to the 2 mg O2/L group. During the hypoxic stress period, both oxygen consumption and ammonia excretion rates were observed to be lower in juvenile B. areolata than those in the control group. As hypoxic stress duration prolonged, juvenile B. areolata demonstrated significantly elevated activities of pyruvate kinase (PK) and alkaline phosphatase (AKP), alongside reduced activities of lactic dehydrogenase (LDH), acid phosphatase (ACP), and superoxide dismutase (SOD). Significant changes in the expression levels of PK and LDH genes were observed during the hypoxic stress. The expression levels of ACP and SOD genes were significantly downregulated, while juvenile B. areolata exhibited elevated AKP gene expression levels under 0.5 mg O2/L. Our findings suggest that under long-term exposure to hypoxia, B. areolata failed to maintain energy homeostasis and suffered biochemical disruptions, leading to a reduction in survival. The mortality rate of B. areolata can be substantially decreased by ensuring that transportation time does not exceed 48 h. Full article
(This article belongs to the Special Issue Global Fisheries Resources, Fisheries, and Carbon-Sink Fisheries)
Show Figures

Figure 1

23 pages, 6740 KB  
Article
Stabilization of Clay Soils Using a Lime Derived from Seashell
by Luis Carlos Suárez López, Juan Carlos López Ramos, Yamid E. Nuñez de la Rosa, Giovani Jordi Bruschi and Jair de Jesús Arrieta Baldovino
Materials 2025, 18(12), 2723; https://doi.org/10.3390/ma18122723 - 10 Jun 2025
Cited by 2 | Viewed by 1117
Abstract
The valorization of mollusk shell waste offers a promising alternative to conventional binders in soil stabilization, contributing to circular economy strategies and improved solid waste management. This study aimed to evaluate the mechanical and microstructural behavior of clayey soil stabilized with Waste Seashell [...] Read more.
The valorization of mollusk shell waste offers a promising alternative to conventional binders in soil stabilization, contributing to circular economy strategies and improved solid waste management. This study aimed to evaluate the mechanical and microstructural behavior of clayey soil stabilized with Waste Seashell Lime (WSL), a binder produced by calcining crushed snail and mussel shells at different temperatures (700–900 °C) and durations (2–4 h). A recommended calcination condition (800 °C for 2 h) was selected based on thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) results. WSL was incorporated at 3%, 7%, and 11% by dry soil weight and activated using NaOH at molarities ranging from 0.5 to 2.0 mol/L. A total of 122 specimens were prepared and tested for unconfined compressive strength (UCS) after 7 and 28 days. The highest UCS (4605 kPa) was recorded for the mix with 11% WSL and 1.0 mol/L NaOH at 28 days. At lower contents (3% and 7%), WSL-treated soils outperformed those stabilized with Type III Portland cement (Type III PC) under the same curing conditions. SEM-EDS analysis revealed the formation of cementitious phases, such as C–S–H and C–A–S–H, and factorial ANOVA confirmed the statistical significance of the WSL content, curing time, and alkali concentration. These results confirm the research hypothesis and demonstrate that alkali-activated WSL, derived from marine shell waste, can serve as a technically viable binder while supporting circular economy principles and waste reuse practices. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

30 pages, 6442 KB  
Article
Impact of Carrageenan-Based Encapsulation on the Physicochemical, Structural, and Antioxidant Properties of Freshwater Snail (Bellamya bengalensis) Protein Hydrolysates
by Anand Vaishnav, Naresh Kumar Mehta, Mocherla Bhargavi Priyadarshini, Soibam Khogen Singh, Pratap Chandra Acharya, Satyajeet Biswal, Harjeet Nath, Syed Arshad Hussain, Prasenjit Pal, Jham Lal, Nongthongbam Sureshchandra Singh and Bikash Kumar Pati
Colloids Interfaces 2025, 9(3), 29; https://doi.org/10.3390/colloids9030029 - 13 May 2025
Cited by 1 | Viewed by 1871
Abstract
This study investigated the encapsulation of snail protein hydrolysates (SPHs) using carrageenan as a microencapsulating agent at concentrations of 1%, 2%, and 3%. SPHs were prepared from the soft tissue of freshwater snails (Bellamya bengalensis) through enzymatic hydrolysis using bromelain, resulting [...] Read more.
This study investigated the encapsulation of snail protein hydrolysates (SPHs) using carrageenan as a microencapsulating agent at concentrations of 1%, 2%, and 3%. SPHs were prepared from the soft tissue of freshwater snails (Bellamya bengalensis) through enzymatic hydrolysis using bromelain, resulting in a degree of hydrolysis of 48.05%. The encapsulation process was carried out using the spray-drying technique. Encapsulation with 3% carrageenan enhanced the yield, encapsulation efficiency (up to 84.96%), colloidal stability (up to −33.8 mV), and thermal stability (up to 75 °C). The particle size increased as the carrageenan concentration increased, reaching 206.9 nm at 3%, and the uniform polydispersity index (0.26) indicated stable encapsulation. While encapsulation reduces solubility and antioxidant activity (DPPH, FRAP, ABTS, and HRSA), it effectively protects SPH from environmental factors such as hygroscopicity and storage stability, thus maintaining high scavenging activity. Fourier transform infrared spectroscopy confirmed that carrageenan and SPH strongly interact. Scanning electron microscopy revealed that the particles had better shapes and smooth, cohesive surfaces. This study demonstrates the effectiveness of carrageenan as an encapsulating agent for SPH, enhancing its stability and bioactivity for potential applications in the food and nutraceutical industries as a bioactive additive and offering an alternative to conventional coating materials. Full article
(This article belongs to the Special Issue Food Colloids: 3rd Edition)
Show Figures

Graphical abstract

19 pages, 2153 KB  
Review
Molecular Mechanisms Regulating Epithelial Mesenchymal Transition (EMT) to Promote Cancer Progression
by Saima Ghafoor, Elizabeth Garcia, Daniel J. Jay and Sujata Persad
Int. J. Mol. Sci. 2025, 26(9), 4364; https://doi.org/10.3390/ijms26094364 - 3 May 2025
Cited by 8 | Viewed by 3556
Abstract
The process of epithelial–mesenchymal transition (EMT) is crucial in various physiological/pathological circumstances such as development, wound healing, stem cell behavior, and cancer progression. It involves the conversion of epithelial cells into a mesenchymal phenotype, which causes the cells to become highly motile. This [...] Read more.
The process of epithelial–mesenchymal transition (EMT) is crucial in various physiological/pathological circumstances such as development, wound healing, stem cell behavior, and cancer progression. It involves the conversion of epithelial cells into a mesenchymal phenotype, which causes the cells to become highly motile. This reprogramming is initiated and controlled by various signaling pathways and governed by several key transcription factors, including Snail 1, Snail 2 (Slug), TWIST 1, TWIST2, ZEB1, ZEB2, PRRX1, GOOSECOID, E47, FOXC2, SOX4, SOX9, HAND1, and HAND2. The intracellular signaling pathways are activated/inactivated by signals received from the extracellular environment and the transcription factors are carefully regulated at the transcriptional, translational, and post-translational levels to maintain tight regulatory control of EMT. One of the most important pathways involved in this process is the transforming growth factor-β (TGFβ) family signaling pathway. This review will discuss the role of EMT in promoting epithelial cancer progression and the convergence/interplay of multiple signaling pathways and transcription factors that regulate this phenomenon. Full article
(This article belongs to the Special Issue Cellular Plasticity and EMT in Cancer and Fibrotic Diseases)
Show Figures

Figure 1

18 pages, 5016 KB  
Article
Characterization of the Complete Mitochondrial Genome of Angulyagra polyzonata and Its Phylogenetic Status in Viviparidae
by Shengjie Zhang, Kangqi Zhou, Xianhui Pan, Yong Lin, Jinxia Peng, Junqi Qin, Zhenlin Ke, Yaoquan Han, Zhong Chen, Xuesong Du, Wenhong Li, Pinyuan Wei and Dapeng Wang
Animals 2025, 15(9), 1284; https://doi.org/10.3390/ani15091284 - 30 Apr 2025
Viewed by 509
Abstract
Angulyagra polyzonata is an economically important mollusk in China, but detailed insights into its mitochondrial genome remain scarce. In this study, we sequenced and comprehensively analyzed the structural features and selection pressures of the A. polyzonata mitochondrial genome. The maximum likelihood method and [...] Read more.
Angulyagra polyzonata is an economically important mollusk in China, but detailed insights into its mitochondrial genome remain scarce. In this study, we sequenced and comprehensively analyzed the structural features and selection pressures of the A. polyzonata mitochondrial genome. The maximum likelihood method and Bayesian phylogenetic inference method were used to construct a phylogenetic tree of A. polyzonata with 21 other species, including gastropods and bivalves. The full-length mitochondrial genome of 17,379 bp was found to include 22 transfer RNA genes, 2 ribosomal RNA genes, and 13 protein-coding genes, exhibiting similarity to the composition and arrangement of mitochondrial genes in other gastropod species. Notably, the Ka/Ks ratios of mitochondrial protein-coding genes (nad5, cox3, nad3, nad2, cox1, cox2, atp8, atp6, nadl, nad6, cob, nad4l, and nad4) were <1, which indicates that the snail genes of the three genera of the family may have been subjected to strong natural selection pressure during the evolutionary process, so that the number of synonymous mutations (ks) in genes was much more than that of nonsynonymous mutations (ka). Comparative genomic analysis indicated that, apart from the absence of trnW and trnQ, the gene composition of A. polyzonata shares a high degree of homology with other members of the conical snail family. Phylogenetic analysis demonstrated that the selected species could be classified into two primary clades in which A. polyzonata clustered with the Viviparidae family. This study bridges the knowledge gap regarding the mitochondrial genome of A. polyzonata and offers valuable insights into the systematic relationships within the Viviparidae family. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

9 pages, 1098 KB  
Communication
Physella acuta Confirmed as Intermediate Host of Posthodiplostomum sp. from Lake Alqueva, Portugal
by Maria Teresa Bispo, Isabel Larguinho Maurício, Pedro Manuel Ferreira, Silvana Belo and Manuela Calado
Pathogens 2025, 14(4), 304; https://doi.org/10.3390/pathogens14040304 - 23 Mar 2025
Viewed by 1305
Abstract
Physella acuta is an invasive freshwater snail with a global distribution and a recognized role as an intermediate host for various trematodes, including Echinostoma spp. and Trichobilharzia physellae. In Portugal, P. acuta is commonly found in freshwater bodies such as Lake Alqueva, [...] Read more.
Physella acuta is an invasive freshwater snail with a global distribution and a recognized role as an intermediate host for various trematodes, including Echinostoma spp. and Trichobilharzia physellae. In Portugal, P. acuta is commonly found in freshwater bodies such as Lake Alqueva, the largest artificial reservoir in Europe. The lake’s creation has altered local ecosystems, influencing freshwater snail populations and migratory bird activity, which may contribute to the dispersal of trematode parasites. While P. acuta is present in the region, its role in trematode transmission remains unclear. This study investigated P. acuta as a potential intermediate host for trematodes in Lake Alqueva. Freshwater snails were collected from 18 sites, with cercarial shedding induced under artificial light. Infected snails were found in 2 of the 18 snail populations surveyed. A sequence analysis of the amplified ITS2 rDNA region confirmed the presence of Posthodiplostomum sp., implicating, for the first time, P. acuta as an intermediate host for this parasite in Portugal. This study highlights the need for further research on P. acuta’s role in trematode transmission and potential impact on local ecosystems to assess parasitic risks to veterinary and public health. Full article
Show Figures

Figure 1

14 pages, 1013 KB  
Article
Integrating Indoor Hibernation into the Italian Outdoor Snail Farming System: A Potential Solution for Colder Climates
by Ramona Ștef, Dan Manea, Anișoara Aurelia Ienciu, Emilian Onișan, Dragoș Vasile Nica and Alin Cărăbeț
Animals 2025, 15(7), 914; https://doi.org/10.3390/ani15070914 - 22 Mar 2025
Viewed by 789
Abstract
(1) Background: Hibernation in Lutrasil-covered enclosures led to elevated mortality rates for Cornu aspersum on Romanian farms. This two-year study evaluated the feasibility of adapting indoor hibernation technology to the Italian outdoor snail farming (IOSF) system as a solution for overwintering mature C. [...] Read more.
(1) Background: Hibernation in Lutrasil-covered enclosures led to elevated mortality rates for Cornu aspersum on Romanian farms. This two-year study evaluated the feasibility of adapting indoor hibernation technology to the Italian outdoor snail farming (IOSF) system as a solution for overwintering mature C. aspersum snails. (2) Methods: Body weight, survival rates, and mortality factors during key hibernation phases (purging and overwintering) were monitored in three commercial snail farms using different hibernation scenarios. Labor efficiency was evaluated, comparing the use of micro shelters vs. hand-picking for snail collection. We analyzed post-purging/post-hibernation weight loss and mortality in hibernation spaces with and without proper thermal insulation. Mortality causes were also investigated. (3) Results: Using micro shelters significantly reduced labor time for snail collection. Weight loss during purging, but not during overwintering, were similar between groups. Post-hibernation survival ranged from 69% to 79% for comparable hibernation durations. Significantly lower survival was associated with significantly higher weight loss and using hibernation spaces with minimal thermal insulation. Predators exerted a very limited effect on post-hibernation survival, with most death appearing to be related to environmental causes. (4) Integrating indoor hibernation into the IOSF system is a promising strategy for the successful rearing of C. aspersum in colder climates. Full article
(This article belongs to the Special Issue Environmental Enrichment in Farm Animals)
Show Figures

Figure 1

13 pages, 2492 KB  
Article
Molluscicidal and Schistosomicidal Activities of 2-(1H-Pyrazol-1-yl)-1,3,4-thiadiazole Derivatives
by Leonardo da Silva Rangel, Daniel Tadeu Gomes Gonzaga, Ana Cláudia Rodrigues da Silva, Natalia Lindmar von Ranke, Carlos Rangel Rodrigues, José Augusto Albuquerque dos Santos, Nubia Boechat, Keyla Nunes Farias Gomes, Guilherme Pegas Teixeira and Robson Xavier Faria
Pharmaceuticals 2025, 18(3), 429; https://doi.org/10.3390/ph18030429 - 18 Mar 2025
Cited by 1 | Viewed by 779
Abstract
Background/objectives: Schistosomiasis is caused by flatworms of the genus Schistosoma, for which mollusks of the genus Biomphalaria are intermediate hosts. Niclosamide (NCL) is a molluscicide recommended by the World Health Organization (WHO) for control of Biomphalaria. Although effective, it is expensive [...] Read more.
Background/objectives: Schistosomiasis is caused by flatworms of the genus Schistosoma, for which mollusks of the genus Biomphalaria are intermediate hosts. Niclosamide (NCL) is a molluscicide recommended by the World Health Organization (WHO) for control of Biomphalaria. Although effective, it is expensive and environmentally toxic, which raises concerns regarding its widespread use. As a result, we explored new synthetic substances as alternative strategies for controlling Biomphalaria glabrata. We evaluated the molluscicidal activity of 2-(1H-py-razol-1-yl)-1,3,4-thiadiazole and 2-(4,5-dihydro-1H-pyrazol-1-yl)-1,3,4-thiadiazole derivatives against B. glabrata snails and embryos, as well as Schistosoma cercariae (infective larvae). Methods: Adult and young snails were added to 24-well plates containing 20 synthetic compounds from the PDAN series for initial screening over 96 h at a concentration of 100 ppm. Water and NCL (2 ppm) were used as the negative and positive controls, respectively. Active compounds in the adult B. glabrata assay were selected for the tests vs. embryos and cercariae. Results: In the initial screen, only PDAN 52 (63 ± 4%) and 79 (12 ± 3%) showed molluscicidal activity at a concentration of 100 ppm up to 48 h. Consequently, we selected only PDAN 52. The LC50 value found in the tests on embryos after 24 h of treatment was 20 ± 2 ppm and, after 48 h, it was 4 ± 0.5 ppm. Against cercariae, we measured an LC50 value of 68 ± 5 ppm after 4 h of treatment. PDAN 52 did not induce marked toxicity against a second mollusk, Physella acuta, after 48 h of exposure. Conclusions: We highlight the promising molluscicidal activity of PDAN 52 against different developmental stages of the mollusk, B. glabrata, as well the infective larvae of Schistosoma mansoni. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

15 pages, 3149 KB  
Article
The Role of Beta-Defensin 2 in Preventing Preterm Birth with Chorioamnionitis: Insights into Inflammatory Responses and Epithelial Barrier Protection
by Sangho Yun, Shin-Hae Kang, Jiwon Ryu, Kyoungseon Kim, Keun-Young Lee, Jae Jun Lee, Ji Young Hong and Ga-Hyun Son
Int. J. Mol. Sci. 2025, 26(5), 2127; https://doi.org/10.3390/ijms26052127 - 27 Feb 2025
Viewed by 1188
Abstract
Antimicrobial peptides, such as beta-defensin 2 (BD2), are vital in controlling infections and immune responses. In this study, we investigated the expression and role of BD2 in the amniotic membrane and human amniotic epithelial cells (hAECs) from patients with preterm birth and chorioamnionitis, [...] Read more.
Antimicrobial peptides, such as beta-defensin 2 (BD2), are vital in controlling infections and immune responses. In this study, we investigated the expression and role of BD2 in the amniotic membrane and human amniotic epithelial cells (hAECs) from patients with preterm birth and chorioamnionitis, focusing on its regulation of inflammatory cytokines and its protective effect on the epithelial barrier. Our results show increased BD2 expression in chorioamnionitis, and Lipopolysaccharide (LPS)-induced inflammation increased BD2 release from hAECs in a dose- and time-dependent manner. BD2 treatment effectively modulated the inflammatory response by reducing pro-inflammatory cytokines (IL-6, IL-1β) and enhancing the release of the anti-inflammatory cytokine IL-10. Additionally, BD2 helps preserve epithelial barrier integrity by restoring E-cadherin expression and reducing Snail expression in inflamed hAECs. In an LPS-induced preterm birth mouse model, BD2 treatment delayed preterm delivery and reduced inflammatory cytokine levels. These results suggest that BD2 plays a protective role in preventing preterm birth by regulating inflammation and maintaining epithelial barrier function, highlighting its therapeutic potential for inflammation-related preterm birth. Full article
(This article belongs to the Special Issue Antimicrobial Peptides in Reproductive Health and Disease)
Show Figures

Figure 1

16 pages, 1686 KB  
Article
Winter Activity and Dormancy of Snails: Freezing and Food Shortage Avoidance Strategy Facing Snow-Cover Shortage
by Anna M. Lipińska, Zofia Książkiewicz, Adam M. Ćmiel, Oksana Hnatyna, Paulina Laskowska and Dariusz Halabowski
Animals 2025, 15(3), 348; https://doi.org/10.3390/ani15030348 - 25 Jan 2025
Viewed by 1523
Abstract
Cold tolerance is a key factor shaping the survival and geographic distribution of terrestrial snails, especially in regions with harsh winters. Understanding how these organisms cope with freezing temperatures is crucial for predicting their responses to changing climates. This study focused on two [...] Read more.
Cold tolerance is a key factor shaping the survival and geographic distribution of terrestrial snails, especially in regions with harsh winters. Understanding how these organisms cope with freezing temperatures is crucial for predicting their responses to changing climates. This study focused on two microsnail species, Vertigo antivertigo and V. moulinsiana, to assess their winter activity, cold tolerance strategies, and whether their body size varies with latitude. Activity patterns were observed under controlled temperatures (0 °C, 2 °C, and 5 °C), while supercooling points (SCP) were measured to evaluate freezing avoidance. Shell morphology was analyzed across populations from various sites in Poland to explore local adaptations. The results showed that snail activity decreases as temperatures drop, with the lowest activity observed at 0 °C. Both species displayed a freezing-avoidant strategy, with V. moulinsiana having slightly higher SCP values, reflecting its adaptation to milder climates. Morphological differences in shell dimensions across sites suggest potential local adaptations to environmental conditions. These findings highlight temperature as a critical driver of activity, survival, and morphological variation in terrestrial snails. Limited winter activity may allow foraging or shelter-seeking but poses risks for overwintering. As climate change leads to snow-free winters, these species may face significant challenges in maintaining their populations and distributions. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

16 pages, 6877 KB  
Article
Accumulation of Nanoplastics in Biomphalaria glabrata Embryos and Transgenerational Developmental Effects
by Leisha Martin, Carly Armendarez, Mackenzie Merrill, Chi Huang and Wei Xu
Environments 2025, 12(1), 28; https://doi.org/10.3390/environments12010028 - 17 Jan 2025
Viewed by 1315
Abstract
(1) Background: Nanoplastics are emerging environmental pollutants with potential toxic effects on aquatic organisms. This study investigates the toxicity of NPs in Biomphalaria glabrata, a freshwater snail species widely used as a bioindicator species in ecotoxicology studies.; (2) Methods: We exposed three [...] Read more.
(1) Background: Nanoplastics are emerging environmental pollutants with potential toxic effects on aquatic organisms. This study investigates the toxicity of NPs in Biomphalaria glabrata, a freshwater snail species widely used as a bioindicator species in ecotoxicology studies.; (2) Methods: We exposed three generations (F0–F2) of B. glabrata snail embryos to different sizes of polystyrene nanoparticles and assessed responses.; (3) Results: We observed severe effects on F0 to F2 B. glabrata embryos, including size-dependent (30 to 500 nm) increases in mortality rates, size and dosage-dependent (1 to 100 ppm) effects on hatching rates with concentration-dependent toxicity in the 30 nm exposure group. The F2 generation embryos appear to be most responsive to detoxification (CYP450) and pollutant metabolism (HSP70) at 48-h-post-treatment (HPT), while our developmental marker (MATN1) was highly upregulated at 96-HPT. We also report a particle-size-dependent correlation in HSP70 and CYP450 mRNA expression, as well as enhanced upregulation in the offspring of exposed snails. We also observed significant reductions in hatching rates for F2.; (4) Conclusions: These findings indicate that F2 generation embryos appear to exhibit increased stress from toxic substances inherited from their parents and grandparents (F1 and F0). This study provides valuable insights into the impact of plastic particulate pollution on multiple generations and highlights the importance of monitoring and mitigating plastic waste. Full article
Show Figures

Graphical abstract

22 pages, 3450 KB  
Article
Characterization of Epithelial–Mesenchymal and Neuroendocrine Differentiation States in Pancreatic and Small Cell Ovarian Tumor Cells and Their Modulation by TGF-β1 and BMP-7
by Hendrik Ungefroren, Juliane von der Ohe, Rüdiger Braun, Yola Gätje, Olha Lapshyna, Jörg Schrader, Hendrik Lehnert, Jens-Uwe Marquardt, Björn Konukiewitz and Ralf Hass
Cells 2024, 13(23), 2010; https://doi.org/10.3390/cells13232010 - 5 Dec 2024
Cited by 1 | Viewed by 2017
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, due in part to early invasion and metastasis, which in turn involves epithelial–mesenchymal transition (EMT) of the cancer cells. Prompted by the discovery that two PDAC cell lines of the quasi-mesenchymal subtype (PANC-1, MIA [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, due in part to early invasion and metastasis, which in turn involves epithelial–mesenchymal transition (EMT) of the cancer cells. Prompted by the discovery that two PDAC cell lines of the quasi-mesenchymal subtype (PANC-1, MIA PaCa-2) exhibit neuroendocrine differentiation (NED), we asked whether NED is associated with EMT. Using real-time PCR and immunoblotting, we initially verified endogenous expressions of various NED markers, i.e., chromogranin A (CHGA), synaptophysin (SYP), somatostatin receptor 2 (SSTR2), and SSTR5 in PANC-1 and MIA PaCa-2 cells. By means of immunohistochemistry, the expressions of CHGA, SYP, SSTR2, and the EMT markers cytokeratin 7 (CK7) and vimentin could be allocated to the neoplastic ductal epithelial cells of pancreatic ducts in surgically resected tissues from patients with PDAC. In HPDE6c7 normal pancreatic duct epithelial cells and in epithelial subtype BxPC-3 PDAC cells, the expression of CHGA, SYP, and neuron-specific enolase 2 (NSE) was either undetectable or much lower than in PANC-1 and MIA PaCa-2 cells. Parental cultures of PANC-1 cells exhibit EM plasticity (EMP) and harbor clonal subpopulations with both M- and E-phenotypes. Of note, M-type clones were found to display more pronounced NED than E-type clones. Inducing EMT in parental cultures of PANC-1 cells by treatment with transforming growth factor-β1 (TGF-β1) repressed epithelial genes and co-induced mesenchymal and NED genes, except for SSTR5. Surprisingly, treatment with bone morphogenetic protein (BMP)-7 differentially affected gene expressions in PANC-1, MIA PaCa-2, BxPC-3, and HPDE cells. It synergized with TGF-β1 in the induction of vimentin, SNAIL, SSTR2, and NSE but antagonized it in the regulation of CHGA and SSTR5. Phospho-immunoblotting in M- and E-type PANC-1 clones revealed that both TGF-β1 and, surprisingly, also BMP-7 activated SMAD2 and SMAD3 and that in M- but not E-type clones BMP-7 was able to dramatically enhance the activation of SMAD3. From these data, we conclude that in EMT of PDAC cells mesenchymal and NED markers are co-regulated, and that mesenchymal–epithelial transition (MET) is associated with a loss of both the mesenchymal and NED phenotypes. Analyzing NED in another tumor type, small cell carcinoma of the ovary hypercalcemic type (SCCOHT), revealed that two model cell lines of this disease (SCCOHT-1, BIN-67) do express CDH1, SNAI1, VIM, CHGA, SYP, ENO2, and SSTR2, but that in contrast to BMP-7, none of these genes was transcriptionally regulated by TGF-β1. Likewise, in BIN-67 cells, BMP-7 was able to reduce proliferation, while in SCCOHT-1 cells this occurred only upon combined treatment with TGF-β and BMP-7. We conclude that in PDAC-derived tumor cells, NED is closely linked to EMT and TGF-β signaling, which may have implications for the therapeutic use of TGF-β inhibitors in PDAC management. Full article
(This article belongs to the Special Issue New Insights of TGF-Beta Signaling in Cancer)
Show Figures

Figure 1

Back to TopTop