Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = SOD mimetic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5104 KB  
Article
Synthesis, Structure, DNA/BSA Binding, DNA Cleaving, Cytotoxic and SOD Mimetic Activities of Copper(II) Complexes Derived from Methoxybenzylamine Schiff Base Ligands
by Lucia Lintnerová, Peter Herich, Jana Korcová, Barbora Svitková, Flóra Jozefíková and Jindra Valentová
Molecules 2025, 30(17), 3461; https://doi.org/10.3390/molecules30173461 - 22 Aug 2025
Viewed by 979
Abstract
Schiff base ligands prepared from salicylaldehyde and 2-, 3- and 4-methoxybenzylamine were used to prepare copper(II) complexes, characterized by spectral methods, elemental analysis and X-ray crystallography in the case of complex 4a derived from 2-methoxybenzylamine. The DNA cleavage activity of the prepared complexes [...] Read more.
Schiff base ligands prepared from salicylaldehyde and 2-, 3- and 4-methoxybenzylamine were used to prepare copper(II) complexes, characterized by spectral methods, elemental analysis and X-ray crystallography in the case of complex 4a derived from 2-methoxybenzylamine. The DNA cleavage activity of the prepared complexes was exceptional, with best activities of over 95% one-strand cleavage for 4c at 3 mM and full double-strand cleavage for complex 4a at 5 mM. Absorption titration studies with ct-DNA revealed good binding constants (at 105 M−1) with a decrease of up to 56% light absorption. Meanwhile, the EB–DNA displacement method and viscosity studies revealed groove binding as a possible binding mode. For BSA binding studies, all three complexes showed KBSA values in the optimal range for reversible BSA binding (104 M−1). The copper(II) complexes showed significant cytotoxic effects (67–96% at 1 mM) in mitochondrial activity monitoring assays. Cytotoxicity was confirmed against cancer cell lines (A549 and HepG2) and HEL cells. The complexes 4a and 4c exhibited high activity against HepG2 cancer cells (IC50 < 22 μM), comparable to cisplatin. The radical scavenging activity was determined by the INT method with the best IC50 for 4c (189 ± 11 μM). Overall, complexes 4a and 4c with a methoxy group in the ortho and para positions show high potential in most determined activities, but mainly as DNA cleavers and as cytotoxic agents with selectivity against HepG2 cells. Full article
Show Figures

Graphical abstract

30 pages, 48472 KB  
Article
Polyurethane@CeO2 Nanozyme Core–Shell Fibrous Membranes for Enhanced Wound Healing via Balanced Redox Modulation
by Yuping Li, Jinzheng Zhang, Xiaoyu Lei, Li Li, Bo Mu, Qingda Du, Yubao Li and Yi Zuo
Catalysts 2025, 15(7), 617; https://doi.org/10.3390/catal15070617 - 22 Jun 2025
Viewed by 804
Abstract
This study designed a polyurethane core–shell fiber (PU CSF) wound dressing, which achieved unique redox catalytic function by loading nanoceria (n-CeO2) nanozyme and effectively reduced potential side effects. The stability of ceria nanoparticles with superoxide dismutase (SOD) mimetic activity was optimized. [...] Read more.
This study designed a polyurethane core–shell fiber (PU CSF) wound dressing, which achieved unique redox catalytic function by loading nanoceria (n-CeO2) nanozyme and effectively reduced potential side effects. The stability of ceria nanoparticles with superoxide dismutase (SOD) mimetic activity was optimized. Engineered PU CSFs with different doses of citrate-modified nanospheres (CeO2@PU CSFs) were successfully fabricated via electrospinning and showed excellent SOD-mimetic activity in reducing oxidative stress both in vitro and in vivo. Notably, low-dose nanoceria PU CSFs demonstrated advantages in promoting wound healing and reducing scar formation compared to high-dose and SOD-loaded groups (p < 0.05), despite lower reactive oxygen species (ROS) scavenging capacity (p < 0.001). Transcriptome analysis revealed distinct mechanisms in rat skin studies: the CeO2-loaded dressing systemically downregulated cell activation- and innate immunity-related genes (Fos, Trpm2, Cybb, and Nlrc4), while the SOD-loaded group specifically regulated inflammation mediated by oxidative stress (IL17a and Ccl20). The optimized core–shell structure and low-dose nanoceria provided balanced redox modulation, effectively protecting cells from oxidative damage while providing a multifunctional therapeutic platform for damaged wound healing. Full article
(This article belongs to the Special Issue Advances in Enzymes for Industrial Biocatalysis)
Show Figures

Graphical abstract

20 pages, 3241 KB  
Review
Superoxide Dismutase Glycation: A Contributor to Disease and Target for Prevention
by Masood Alam Khan and Hina Younus
Catalysts 2025, 15(3), 247; https://doi.org/10.3390/catal15030247 - 5 Mar 2025
Cited by 2 | Viewed by 1900
Abstract
Superoxide dismutase (SOD), a key antioxidant enzyme, plays a crucial role in neutralizing reactive oxygen species (ROS) and maintaining redox balance. However, SOD is highly susceptible to glycation, a non-enzymatic modification induced by reducing sugars and reactive carbonyl species such as methylglyoxal. This [...] Read more.
Superoxide dismutase (SOD), a key antioxidant enzyme, plays a crucial role in neutralizing reactive oxygen species (ROS) and maintaining redox balance. However, SOD is highly susceptible to glycation, a non-enzymatic modification induced by reducing sugars and reactive carbonyl species such as methylglyoxal. This review aims to provide a comprehensive analysis of SOD glycation, examining its biochemical mechanisms, its impact on enzymatic function, and its role in the progression of oxidative stress-related diseases. Additionally, it explores potential therapeutic strategies to prevent SOD glycation and restore its activity, highlighting translational applications for disease management. The review examines research on SOD glycation and its pathological consequences in diabetes complications, neurodegenerative disorders, and cardiovascular diseases. Key therapeutic interventions, including advanced glycation end-product (AGE) inhibitors (aminoguanidine, pyridoxamine), antioxidants (N-acetylcysteine, alpha-lipoic acid), SOD mimetics (MnTBAP, Tempol), enzyme stabilizers (thymoquinone, alliin), and receptor for advanced glycation end-products (RAGE) blockade, are analyzed for their efficacy in mitigating oxidative stress. SOD glycation reduces enzymatic activity, leading to elevated ROS levels and inflammation. Glycated SOD interacts with RAGE, increasing oxidative stress biomarkers. AGE inhibitors reduce carbonyl stress, whereas antioxidants lower ROS levels. SOD mimetics restore up to 85% of enzymatic activity, and enzyme stabilizers protect SOD from structural degradation. Additionally, monoclonal antibodies targeting RAGE have been shown to reduce inflammatory cytokines and improve mitochondrial function. SOD glycation is a major contributor to oxidative stress-related diseases. Preventing glycation and restoring SOD function through a multifaceted therapeutic approach is crucial for mitigating disease progression. By elucidating the role of SOD in disease pathogenesis, this review contributes to the advancement of targeted therapies for oxidative stress-related conditions, including diabetes, neurodegeneration, and cardiovascular diseases. Full article
Show Figures

Figure 1

23 pages, 975 KB  
Review
MnSOD Mimetics in Therapy: Exploring Their Role in Combating Oxidative Stress-Related Diseases
by Jovan Grujicic and Antiño R. Allen
Antioxidants 2024, 13(12), 1444; https://doi.org/10.3390/antiox13121444 - 23 Nov 2024
Cited by 11 | Viewed by 3107
Abstract
Reactive oxygen species (ROS) are double-edged swords in biological systems—they are essential for normal cellular functions but can cause damage when accumulated due to oxidative stress. Manganese superoxide dismutase (MnSOD), located in the mitochondrial matrix, is a key enzyme that neutralizes superoxide radicals [...] Read more.
Reactive oxygen species (ROS) are double-edged swords in biological systems—they are essential for normal cellular functions but can cause damage when accumulated due to oxidative stress. Manganese superoxide dismutase (MnSOD), located in the mitochondrial matrix, is a key enzyme that neutralizes superoxide radicals (O2•−), maintaining cellular redox balance and integrity. This review examines the development and therapeutic potential of MnSOD mimetics—synthetic compounds designed to replicate MnSOD’s antioxidant activity. We focus on five main types: Mn porphyrins, Mn salens, MitoQ10, nitroxides, and mangafodipir. These mimetics have shown promise in treating a range of oxidative stress-related conditions, including cardiovascular diseases, neurodegenerative disorders, cancer, and metabolic syndromes. By emulating natural antioxidant defenses, MnSOD mimetics offer innovative strategies to combat diseases linked to mitochondrial dysfunction and ROS accumulation. Future research should aim to optimize these compounds for better stability, bioavailability, and safety, paving the way for their translation into effective clinical therapies. Full article
(This article belongs to the Special Issue Oxidative-Stress in Human Diseases—3rd Edition)
Show Figures

Figure 1

12 pages, 2219 KB  
Review
Manganese- and Platinum-Driven Oxidative and Nitrosative Stress in Oxaliplatin-Associated CIPN with Special Reference to Ca4Mn(DPDP)5, MnDPDP and DPDP
by Jan Olof G. Karlsson and Per Jynge
Int. J. Mol. Sci. 2024, 25(8), 4347; https://doi.org/10.3390/ijms25084347 - 15 Apr 2024
Cited by 3 | Viewed by 2563
Abstract
Platinum-containing chemotherapeutic drugs are efficacious in many forms of cancer but are dose-restricted by serious side effects, of which peripheral neuropathy induced by oxidative–nitrosative-stress-mediated chain reactions is most disturbing. Recently, hope has been raised regarding the catalytic antioxidants mangafodipir (MnDPDP) and calmangafodipir [Ca [...] Read more.
Platinum-containing chemotherapeutic drugs are efficacious in many forms of cancer but are dose-restricted by serious side effects, of which peripheral neuropathy induced by oxidative–nitrosative-stress-mediated chain reactions is most disturbing. Recently, hope has been raised regarding the catalytic antioxidants mangafodipir (MnDPDP) and calmangafodipir [Ca4Mn(DPDP)5; PledOx®], which by mimicking mitochondrial manganese superoxide dismutase (MnSOD) may be expected to overcome oxaliplatin-associated chemotherapy-induced peripheral neuropathy (CIPN). Unfortunately, two recent phase III studies (POLAR A and M trials) applying Ca4Mn(DPDP)5 in colorectal cancer (CRC) patients receiving multiple cycles of FOLFOX6 (5-FU + oxaliplatin) failed to demonstrate efficacy. Instead of an anticipated 50% reduction in the incidence of CIPN in patients co-treated with Ca4Mn(DPDP)5, a statistically significant increase of about 50% was seen. The current article deals with confusing differences between early and positive findings with MnDPDP in comparison to the recent findings with Ca4Mn(DPDP)5. The POLAR failure may also reveal important mechanisms behind oxaliplatin-associated CIPN itself. Thus, exacerbated neurotoxicity in patients receiving Ca4Mn(DPDP)5 may be explained by redox interactions between Pt2+ and Mn2+ and subtle oxidative–nitrosative chain reactions. In peripheral sensory nerves, Pt2+ presumably leads to oxidation of the Mn2+ from Ca4Mn(DPDP)5 as well as from Mn2+ in MnSOD and other endogenous sources. Thereafter, Mn3+ may be oxidized by peroxynitrite (ONOO) into Mn4+, which drives site-specific nitration of tyrosine (Tyr) 34 in the MnSOD enzyme. Conformational changes of MnSOD then lead to the closure of the superoxide (O2•−) access channel. A similar metal-driven nitration of Tyr74 in cytochrome c will cause an irreversible disruption of electron transport. Altogether, these events may uncover important steps in the mechanism behind Pt2+-associated CIPN. There is little doubt that the efficacy of MnDPDP and its therapeutic improved counterpart Ca4Mn(DPDP)5 mainly depends on their MnSOD-mimetic activity when it comes to their potential use as rescue medicines during, e.g., acute myocardial infarction. However, pharmacokinetic considerations suggest that the efficacy of MnDPDP on Pt2+-associated neurotoxicity depends on another action of this drug. Electron paramagnetic resonance (EPR) studies have demonstrated that Pt2+ outcompetes Mn2+ and endogenous Zn2+ in binding to fodipir (DPDP), hence suggesting that the previously reported protective efficacy of MnDPDP against CIPN is a result of chelation and elimination of Pt2+ by DPDP, which in turn suggests that Mn2+ is unnecessary for efficacy when it comes to oxaliplatin-associated CIPN. Full article
Show Figures

Figure 1

13 pages, 7631 KB  
Article
A Novel Dual-Function Nitric Oxide Donor Therapy for Preeclampsia—A Proof-of-Principle Study in a Murine Model
by Diana Pintye, Réka E. Sziva, Lauren A. Biwer, Esilida Sula Karreci, Sonako Jacas, Maxim Mastyugin, Marianna Török, Brett C. Young, Prakash Jagtap, Garry J. Southan, Iris Z. Jaffe and Zsuzsanna K. Zsengellér
Antioxidants 2023, 12(12), 2036; https://doi.org/10.3390/antiox12122036 - 23 Nov 2023
Cited by 4 | Viewed by 3341
Abstract
Background: Preeclampsia (PE) is a hypertensive disorder of pregnancy that is associated with substantial morbidity and mortality for the mother and fetus. Reduced nitric oxide bioavailability and oxidative stress contribute to the maternal and fetal pathophysiology of PE. In this study, we [...] Read more.
Background: Preeclampsia (PE) is a hypertensive disorder of pregnancy that is associated with substantial morbidity and mortality for the mother and fetus. Reduced nitric oxide bioavailability and oxidative stress contribute to the maternal and fetal pathophysiology of PE. In this study, we evaluated the efficacy of a novel dual-function nitric oxide donor/redox modulator, AKT-1005, in reducing PE symptoms in a mouse model of PE. Method: The potential therapeutic effect of AKT-1005 was tested in an animal model of Ad.sFlt-1-induced hypertension, proteinuria and glomerular endotheliosis, a model of PE. Pregnant Ad.sFlt-1-overexpressing CD1 mice were randomized into groups administered AKT-1005 (20 mg/kg) or a vehicle using a minipump on gd11 of pregnancy, and the impact on blood pressure and renal and placental damage were assessed. Results: In healthy female mice, ex vivo treatment of resistance vessels with AKT-1005 induced vasorelaxation, and 6 days of treatment in vivo did not significantly alter blood pressure with or without pregnancy. When given for 6 days during pregnancy along with Ad.sFlt-1-induced PE, AKT-1005 significantly increased plasma nitrate levels and reduced hypertension, renal endotheliosis and plasma cystatin C. In the placenta, AKT-1005 improved placental function, with reduced oxidative stress and increased endothelial angiogenesis, as measured by CD31 staining. As such, AKT-1005 treatment attenuated the Ad.sFlt-1-induced increase in placental and free plasma soluble endoglin expression. Conclusions: These data suggest that AKT-1005 significantly attenuates the sFlt-1-induced PE phenotypes by inhibiting oxidative stress, the anti-angiogenic response, and increasing NO bioavailability. Additional research is warranted to investigate the role of AKT-1005 as a novel therapeutic agent for vascular disorders such as preeclampsia. Full article
Show Figures

Figure 1

12 pages, 1364 KB  
Article
New Glycosalen–Manganese(III) Complexes and RCA120 Hybrid Systems as Superoxide Dismutase/Catalase Mimetics
by Valeria Lanza and Graziella Vecchio
Biomimetics 2023, 8(5), 447; https://doi.org/10.3390/biomimetics8050447 - 21 Sep 2023
Cited by 7 | Viewed by 2089
Abstract
Reactive oxygen species are implicated in several human diseases, including neurodegenerative disorders, cardiovascular dysfunction, inflammation, hereditary diseases, and ageing. MnIII–salen complexes are superoxide dismutase (SOD) and catalase (CAT) mimetics, which have shown beneficial effects in various models for oxidative stress. These [...] Read more.
Reactive oxygen species are implicated in several human diseases, including neurodegenerative disorders, cardiovascular dysfunction, inflammation, hereditary diseases, and ageing. MnIII–salen complexes are superoxide dismutase (SOD) and catalase (CAT) mimetics, which have shown beneficial effects in various models for oxidative stress. These properties make them well-suited as potential therapeutic agents for oxidative stress diseases. Here, we report the synthesis of the novel glycoconjugates of salen complex, EUK-108, with glucose and galactose. We found that the complexes showed a SOD-like activity higher than EUK-108, as well as peroxidase and catalase activities. We also investigated the conjugate activities in the presence of Ricinus communis agglutinin (RCA120) lectin. The hybrid protein–galactose–EUK-108 system showed an increased SOD-like activity similar to the native SOD1. Full article
(This article belongs to the Section Biomimetic Processing and Molecular Biomimetics)
Show Figures

Figure 1

12 pages, 3698 KB  
Article
A Novel Dual-Function Redox Modulator Relieves Oxidative Stress and Anti-Angiogenic Response in Placental Villus Explant Exposed to Hypoxia—Relevance for Preeclampsia Therapy
by Diana Pintye, Réka E. Sziva, Maxim Mastyugin, Brett C. Young, Sonako Jacas, Marianna Török, Saira Salahuddin, Prakash Jagtap, Garry J. Southan and Zsuzsanna K. Zsengellér
Biology 2023, 12(9), 1229; https://doi.org/10.3390/biology12091229 - 12 Sep 2023
Cited by 5 | Viewed by 1974
Abstract
Background: Preeclampsia (PE) is a severe, life-threatening complication during pregnancy (~5–7%), and no causative treatment is available. Early aberrant spiral artery remodeling is associated with placental stress and the release of oxygen radicals and other reactive oxygen species (ROS) in the placenta. This [...] Read more.
Background: Preeclampsia (PE) is a severe, life-threatening complication during pregnancy (~5–7%), and no causative treatment is available. Early aberrant spiral artery remodeling is associated with placental stress and the release of oxygen radicals and other reactive oxygen species (ROS) in the placenta. This precedes the production of anti-angiogenic factors, which ultimately leads to endothelial and trophoblast damage and the key features of PE. We tested whether a novel dual-function redox modulator—AKT-1005—can effectively reduce placental oxidative stress and alleviate PE symptoms in vitro. Method: Isolated human villous explants were exposed to hypoxia and assessed to determine whether improving cell-redox function with AKT-1005 diminished ROS production, mitochondrial stress, production of the transcription factor HIF1A, and downstream anti-angiogenic responses (i.e., sFLT1, sEng production). MitoTEMPO was used as a reference antioxidant. Results: In our villous explant assays, pretreatment with AKT-1005 reduced mitochondrial-derived ROS production, reduced HIF-1A, sFLT1, and sEng protein expression, while increasing VEGF in hypoxia-exposed villous trophoblast cells, with better efficiency than MitoTEMPO. In addition, AKT-1005 improved mitochondrial electron chain enzyme activity in the stressed explant culture. Conclusions: The redox modulator AKT-1005 has the potential to intervene with oxidative stress and can be efficacious for PE therapy. Future studies are underway to assess the in vivo efficacy of HMP. Full article
(This article belongs to the Special Issue Maternal Adaptation in Physiological and Pathological Pregnancy)
Show Figures

Figure 1

20 pages, 2380 KB  
Review
The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics
by Mengli Zheng, Yating Liu, Guanfeng Zhang, Zhikang Yang, Weiwei Xu and Qinghua Chen
Antioxidants 2023, 12(9), 1675; https://doi.org/10.3390/antiox12091675 - 27 Aug 2023
Cited by 179 | Viewed by 28698
Abstract
Superoxide dismutase (SOD) is a class of enzymes that restrict the biological oxidant cluster enzyme system in the body, which can effectively respond to cellular oxidative stress, lipid metabolism, inflammation, and oxidation. Published studies have shown that SOD enzymes (SODs) could maintain a [...] Read more.
Superoxide dismutase (SOD) is a class of enzymes that restrict the biological oxidant cluster enzyme system in the body, which can effectively respond to cellular oxidative stress, lipid metabolism, inflammation, and oxidation. Published studies have shown that SOD enzymes (SODs) could maintain a dynamic balance between the production and scavenging of biological oxidants in the body and prevent the toxic effects of free radicals, and have been shown to be effective in anti-tumor, anti-radiation, and anti-aging studies. This research summarizes the types, biological functions, and regulatory mechanisms of SODs, as well as their applications in medicine, food production, and cosmetic production. SODs have proven to be a useful tool in fighting disease, and mimetics and conjugates that report SODs have been developed successively to improve the effectiveness of SODs. There are still obstacles to solving the membrane permeability of SODs and the persistence of enzyme action, which is still a hot spot and difficulty in mining the effect of SODs and promoting their application in the future. Full article
(This article belongs to the Special Issue Antioxidant Enzymes and Human Health)
Show Figures

Figure 1

16 pages, 16304 KB  
Article
Safe-Shields: Basal and Anti-UV Protection of Human Keratinocytes by Redox-Active Cerium Oxide Nanoparticles Prevents UVB-Induced Mutagenesis
by Francesca Corsi, Erika Di Meo, Daniela Lulli, Greta Deidda Tarquini, Francesco Capradossi, Emanuele Bruni, Andrea Pelliccia, Enrico Traversa, Elena Dellambra, Cristina Maria Failla and Lina Ghibelli
Antioxidants 2023, 12(3), 757; https://doi.org/10.3390/antiox12030757 - 20 Mar 2023
Cited by 5 | Viewed by 3093
Abstract
Cerium oxide nanoparticles (nanoceria), biocompatible multifunctional nanozymes exerting unique biomimetic activities, mimic superoxide-dismutase and catalase through a self-regenerating, energy-free redox cycle driven by Ce3+/4+ valence switch. Additional redox-independent UV-filter properties render nanoceria ideal multitask solar screens, shielding from UV exposure, simultaneously protecting [...] Read more.
Cerium oxide nanoparticles (nanoceria), biocompatible multifunctional nanozymes exerting unique biomimetic activities, mimic superoxide-dismutase and catalase through a self-regenerating, energy-free redox cycle driven by Ce3+/4+ valence switch. Additional redox-independent UV-filter properties render nanoceria ideal multitask solar screens, shielding from UV exposure, simultaneously protecting tissues from UV-oxidative damage. Here, we report that nanoceria favour basal proliferation of primary normal keratinocytes, and protects them from UVB-induced DNA damage, mutagenesis, and apoptosis, minimizing cell loss and accelerating recovery with flawless cells. Similar cell-protective effects were found on irradiated noncancerous, but immortalized, p53-null HaCaT keratinocytes, with the notable exception that here, nanoceria do not accelerate basal HaCaT proliferation. Notably, nanoceria protect HaCaT from oxidative stress induced by irradiated titanium dioxide nanoparticles, a major active principle of commercial UV-shielding lotions, thus neutralizing their most critical side effects. The intriguing combination of nanoceria multiple beneficial properties opens the way for smart and safer containment measures of UV-induced skin damage and carcinogenesis. Full article
(This article belongs to the Special Issue Nanoantioxidants Volume II)
Show Figures

Figure 1

29 pages, 8462 KB  
Article
Structural and Biological Properties of Heteroligand Copper Complexes with Diethylnicotinamide and Various Fenamates: Preparation, Structure, Spectral Properties and Hirshfeld Surface Analysis
by Milan Piroš, Martin Schoeller, Katarína Koňariková, Jindra Valentová, Ľubomír Švorc, Ján Moncoľ, Marian Valko and Jozef Švorec
Inorganics 2023, 11(3), 108; https://doi.org/10.3390/inorganics11030108 - 6 Mar 2023
Cited by 13 | Viewed by 3571
Abstract
Herein, we discuss the synthesis, structural and spectroscopic characterization, and biological activity of five heteroligand copper(II) complexes with diethylnicotinamide and various fenamates, as follows: flufenamate (fluf), niflumate (nifl), tolfenamate (tolf), clonixinate (clon), mefenamate (mef) and N, N-diethylnicotinamide (dena). The complexes of [...] Read more.
Herein, we discuss the synthesis, structural and spectroscopic characterization, and biological activity of five heteroligand copper(II) complexes with diethylnicotinamide and various fenamates, as follows: flufenamate (fluf), niflumate (nifl), tolfenamate (tolf), clonixinate (clon), mefenamate (mef) and N, N-diethylnicotinamide (dena). The complexes of composition: [Cu(fluf)2(dena)2(H2O)2] (1), [Cu(nifl)2(dena)2] (2), [Cu(tolf)2(dena)2(H2O)2] (3), [Cu(clon)2(dena)2] (4) and [Cu(mef)2(dena)2(H2O)2] (5), were synthesized, structurally (single-crystal X-ray diffraction) and spectroscopically characterized (IR, EA, UV-Vis and EPR). The studied complexes are monomeric, forming a distorted tetragonal bipyramidal stereochemistry around the central copper ion. The crystal structures of all five complexes were determined and refined with an aspheric model using the Hirshfeld atom refinement method. Hirshfeld surface analysis and fingerprint plots were used to investigate the intermolecular interactions in the crystalline state. The redox properties of the complexes were studied and evaluated via cyclic voltammetry. The complexes exhibited good superoxide scavenging activity as determined by an NBT assay along with a copper-based redox-cycling mechanism, resulting in the formation of ROS, which, in turn, predisposed the studied complexes for their anticancer activity. The ability of complexes 1–4 to interact with calf thymus DNA was investigated using absorption titrations, viscosity measurements and an ethidium-bromide-displacement-fluorescence-based method, suggesting mainly the intercalative binding of the complexes to DNA. The affinity of complexes 1–4 for bovine serum albumin was determined via fluorescence emission spectroscopy and was quantitatively characterized with the corresponding binding constants. The cytotoxic properties of complexes 1–4 were studied using the cancer cell lines A549, MCF-7 and U-118MG, as well as healthy MRC-5 cells. Complex 4 exhibited moderate anticancer activity on the MCF-7 cancer cells with IC50 = 57 μM. Full article
(This article belongs to the Special Issue Recent Progress in Coordination Chemistry)
Show Figures

Figure 1

26 pages, 5849 KB  
Review
Insights into Manganese Superoxide Dismutase and Human Diseases
by Mengfan Liu, Xueyang Sun, Boya Chen, Rongchen Dai, Zhichao Xi and Hongxi Xu
Int. J. Mol. Sci. 2022, 23(24), 15893; https://doi.org/10.3390/ijms232415893 - 14 Dec 2022
Cited by 93 | Viewed by 9239
Abstract
Redox equilibria and the modulation of redox signalling play crucial roles in physiological processes. Overproduction of reactive oxygen species (ROS) disrupts the body’s antioxidant defence, compromising redox homeostasis and increasing oxidative stress, leading to the development of several diseases. Manganese superoxide dismutase (MnSOD) [...] Read more.
Redox equilibria and the modulation of redox signalling play crucial roles in physiological processes. Overproduction of reactive oxygen species (ROS) disrupts the body’s antioxidant defence, compromising redox homeostasis and increasing oxidative stress, leading to the development of several diseases. Manganese superoxide dismutase (MnSOD) is a principal antioxidant enzyme that protects cells from oxidative damage by converting superoxide anion radicals to hydrogen peroxide and oxygen in mitochondria. Systematic studies have demonstrated that MnSOD plays an indispensable role in multiple diseases. This review focuses on preclinical evidence that describes the mechanisms of MnSOD in diseases accompanied with an imbalanced redox status, including fibrotic diseases, inflammation, diabetes, vascular diseases, neurodegenerative diseases, and cancer. The potential therapeutic effects of MnSOD activators and MnSOD mimetics are also discussed. Targeting this specific superoxide anion radical scavenger may be a clinically beneficial strategy, and understanding the therapeutic role of MnSOD may provide a positive insight into preventing and treating related diseases. Full article
Show Figures

Figure 1

15 pages, 2640 KB  
Article
Tempol Inhibits the Growth of Lung Cancer and Normal Cells through Apoptosis Accompanied by Increased O2•− Levels and Glutathione Depletion
by Woo Hyun Park
Molecules 2022, 27(21), 7341; https://doi.org/10.3390/molecules27217341 - 28 Oct 2022
Cited by 8 | Viewed by 2112
Abstract
Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) is a stable, cell-permeable redox-cycling nitroxide water-soluble superoxide dismutase (SOD) mimetic agent. However, little is known about its cytotoxic effects on lung-related cells. Thus, the present study investigated the effects of Tempol on cell growth and death as well as changes [...] Read more.
Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) is a stable, cell-permeable redox-cycling nitroxide water-soluble superoxide dismutase (SOD) mimetic agent. However, little is known about its cytotoxic effects on lung-related cells. Thus, the present study investigated the effects of Tempol on cell growth and death as well as changes in reactive oxygen species (ROS) and glutathione (GSH) levels in Calu-6 and A549 lung cancer cells, normal lung WI-38 VA-13 cells, and primary pulmonary fibroblast cells. Results showed that Tempol (0.5~4 mM) dose-dependently inhibited the growth of lung cancer and normal cells with an IC50 of approximately 1~2 mM at 48 h. Tempol induced apoptosis in lung cells with loss of mitochondrial membrane potential (MMP; ∆Ψm) and activation of caspase-3. There was no significant difference in susceptibility to Tempol between lung cancer and normal cells. Z-VAD, a pan-caspase inhibitor, significantly decreased the number of annexin V-positive cells in Tempol-treated Calu-6, A549, and WI-38 VA-13 cells. A 2 mM concentration of Tempol increased ROS levels, including O2•− in A549 and WI-38 VA-13 cells after 48 h, and specifically increased O2•− levels in Calu-6 cells. In addition, Tempol increased the number of GSH-depleted cells in Calu-6, A549, and WI-38 VA-13 cells at 48 h. Z-VAD partially downregulated O2•− levels and GSH depletion in Tempol-treated these cells. In conclusion, treatment with Tempol inhibited the growth of both lung cancer and normal cells via apoptosis and/or necrosis, which was correlated with increased O2•− levels and GSH depletion. Full article
Show Figures

Figure 1

21 pages, 4111 KB  
Article
A New Manganese Superoxide Dismutase Mimetic Improves Oxaliplatin-Induced Neuropathy and Global Tolerance in Mice
by Caroline Prieux-Klotz, Henri Chédotal, Martha Zoumpoulaki, Sandrine Chouzenoux, Charlotte Chêne, Alvaro Lopez-Sanchez, Marine Thomas, Priya Ranjan Sahoo, Clotilde Policar, Frédéric Batteux, Hélène C. Bertrand, Carole Nicco and Romain Coriat
Int. J. Mol. Sci. 2022, 23(21), 12938; https://doi.org/10.3390/ijms232112938 - 26 Oct 2022
Cited by 8 | Viewed by 4077
Abstract
Reactive oxygen species (ROS) are produced by every aerobic cell during mitochondrial oxidative metabolism as well as in cellular response to xenobiotics, cytokines, and bacterial invasion. Superoxide Dismutases (SOD) are antioxidant proteins that convert superoxide anions (O2•−) to hydrogen peroxide [...] Read more.
Reactive oxygen species (ROS) are produced by every aerobic cell during mitochondrial oxidative metabolism as well as in cellular response to xenobiotics, cytokines, and bacterial invasion. Superoxide Dismutases (SOD) are antioxidant proteins that convert superoxide anions (O2•−) to hydrogen peroxide (H2O2) and dioxygen. Using the differential in the level of oxidative stress between normal and cancer cells, SOD mimetics can show an antitumoral effect and prevent oxaliplatin-induced peripheral neuropathy. New Pt(IV) conjugate prodrugs (OxPt-x-Mn1C1A (x = 1, 1-OH, 2)), combining oxaliplatin and a Mn SOD mimic (MnSODm Mn1C1A) with a covalent link, were designed. Their stability in buffer and in the presence of sodium ascorbate was studied. In vitro, their antitumoral activity was assessed by the viability and ROS production of tumor cell lines (CT16, HCT 116, KC) and fibroblasts (primary culture and NIH 3T3). In vivo, a murine model of colorectal cancer was created with subcutaneous injection of CT26 cells in Balb/c mice. Tumor size and volume were measured weekly in four groups: vehicle, oxaliplatin, and oxaliplatin associated with MnSODm Mn1C1A and the bis-conjugate OxPt-2-Mn1C1A. Oxaliplatin-induced peripheral neuropathy (OIPN) was assessed using a Von Frey test reflecting chronic hypoalgesia. Tolerance to treatment was assessed with a clinical score including four items: weight loss, weariness, alopecia, and diarrhea. In vitro, Mn1C1A associated with oxaliplatin and Pt(IV) conjugates treatment induced significantly higher production of H2O2 in all cell lines and showed a significant improvement of the antitumoral efficacy compared to oxaliplatin alone. In vivo, the association of Mn1C1A to oxaliplatin did not decrease its antitumoral activity, while OxPt-2-Mn1C1A had lower antitumoral activity than oxaliplatin alone. Mn1C1A associated with oxaliplatin significantly decreased OIPN and also improved global clinical tolerance of oxaliplatin. A neuroprotective effect was observed, associated with a significantly improved tolerance to oxaliplatin without impairing its antitumoral activity. Full article
(This article belongs to the Collection Anticancer Drug Discovery and Development)
Show Figures

Figure 1

20 pages, 3807 KB  
Article
Combined Transcriptomic and Proteomic Profiling to Unravel Osimertinib, CARP-1 Functional Mimetic (CFM 4.17) Formulation and Telmisartan Combo Treatment in NSCLC Tumor Xenografts
by Ramesh Nimma, Anil Kumar Kalvala, Nilkumar Patel, Sunil Kumar Surapaneni, Li Sun, Rakesh Singh, Ebony Nottingham, Arvind Bagde, Nagavendra Kommineni, Peggy Arthur, Aakash Nathani, David G. Meckes and Mandip Singh
Pharmaceutics 2022, 14(6), 1156; https://doi.org/10.3390/pharmaceutics14061156 - 28 May 2022
Cited by 8 | Viewed by 4051
Abstract
The epidermal growth factor receptor (EGFR) is highly expressed in many non-small cell lung cancers (NSCLC), necessitating the use of EGFR-tyrosine kinase inhibitors (TKIs) as first-line treatments. Osimertinib (OSM), a third-generation TKI, is routinely used in clinics, but T790M mutations in exon 20 [...] Read more.
The epidermal growth factor receptor (EGFR) is highly expressed in many non-small cell lung cancers (NSCLC), necessitating the use of EGFR-tyrosine kinase inhibitors (TKIs) as first-line treatments. Osimertinib (OSM), a third-generation TKI, is routinely used in clinics, but T790M mutations in exon 20 of the EGFR receptor lead to resistance against OSM, necessitating the development of more effective therapeutics. Telmisartan (TLM), OSM, and cell cycle and apoptosis regulatory protein 1 (CARP-1) functional mimetic treatments (CFM4.17) were evaluated in this study against experimental H1975 tumor xenografts to ascertain their anti-cancer effects. Briefly, tumor growth was studied in H1975 xenografts in athymic nude mice, gene and protein expressions were analyzed using next-generation RNA sequencing, proteomics, RT-PCR, and Western blotting. TLM pre-treatment significantly reduced the tumor burden when combined with CFM-4.17 nanoformulation and OSM combination (TLM_CFM-F_OSM) than their respective single treatments or combination of OSM and TLM with CFM 4.17. Data from RNA sequencing and proteomics revealed that TLM_CFM-F_OSM decreased the expression of Lamin B2, STAT3, SOD, NFKB, MMP-1, TGF beta, Sox-2, and PD-L1 proteins while increasing the expression of AMPK proteins, which was also confirmed by RT-PCR, proteomics, and Western blotting. According to our findings, the TLM_CFM-F_OSM combination has a superior anti-cancer effect in the treatment of NSCLC by affecting multiple resistant markers that regulate mitochondrial homeostasis, inflammation, oxidative stress, and apoptosis. Full article
(This article belongs to the Special Issue Novel Approaches for Overcoming Biological Barriers)
Show Figures

Figure 1

Back to TopTop