Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = SRC shear wall

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8316 KB  
Article
Experiments and FE Modeling on the Seismic Behavior of Partially Precast Steel-Reinforced Concrete Squat Walls
by Yunlong Yu, Yuntao Liu, Bin Tan, Yaping Liu and Yicong Xue
Buildings 2024, 14(11), 3441; https://doi.org/10.3390/buildings14113441 - 29 Oct 2024
Viewed by 1047
Abstract
This paper proposed an innovative precast steel-reinforced concrete (PPSRC) squat wall to simplify on-site construction. In PPSRC squat shear walls, the hollowly precast RC wall panel can be assembled on-site through the pre-erected steel shapes, and the boundary cores will be filled using [...] Read more.
This paper proposed an innovative precast steel-reinforced concrete (PPSRC) squat wall to simplify on-site construction. In PPSRC squat shear walls, the hollowly precast RC wall panel can be assembled on-site through the pre-erected steel shapes, and the boundary cores will be filled using fresh concrete together with the slab system. The seismic performance of PPSRC squat walls, influenced by different construction techniques (cast-in-place vs. precast) and steel ratios, was examined through pseudo-static experiments on three specimens. Some key performance indicators, including hysteretic behavior, skeleton curves, stiffness degradation, energy dissipation, and load-carrying capacity, were analyzed in detail. The test results indicated that all the PPSRC squat walls failed in typical shear failure, and no significant slippage between the precast and fresh concrete sections was observed during the loading process, indicating that the composite action could be fully achieved via the novel throat connectors. In addition, the PPSRC squat walls could achieve comparable seismic performance compared with that of cast-in-place SRC shear walls (the peak load of the PPSRC squat wall only increased by 0.26% compared with the control specimen), and the load-carrying capacity and deformability could be enhanced by increasing the steel ratio in the boundary elements. Finally, an elaborate finite element model was developed and validated using ABAQUS software. The parametric analysis of the concrete strengths of precast and cast-in-place parts and the axial load was conducted further to investigate the seismic performance of PPSRC squat walls. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 6012 KB  
Article
Cyclic Behavior of Partially Prefabricated Steel Shape-Reinforced Concrete Composite Shear Walls: Experiments and Finite Element Analysis
by Yunlong Yu, Qiang Xie, Yaping Liu and Yicong Xue
Buildings 2024, 14(7), 2208; https://doi.org/10.3390/buildings14072208 - 17 Jul 2024
Cited by 3 | Viewed by 1852
Abstract
Due to the higher lateral stiffness, load-carrying, and energy dissipation capacities compared with traditional reinforced concrete (R.C.) shear walls, steel shape-reinforced concrete (SRC) shear walls, in which steel profiles are encased in the boundary elements, have been widely applied in high-rise buildings. In [...] Read more.
Due to the higher lateral stiffness, load-carrying, and energy dissipation capacities compared with traditional reinforced concrete (R.C.) shear walls, steel shape-reinforced concrete (SRC) shear walls, in which steel profiles are encased in the boundary elements, have been widely applied in high-rise buildings. In order to simplify the on-site construction procedure, this paper proposes a novel partially prefabricated steel shape-reinforced concrete (PPSRC) shear wall using throat connectors. Based on the pseudo-static tests of two large-scale specimens, the effect of construction methods (prefabricated or cast in place) on the cyclic behavior of PPSRC shear walls was investigated by the hysteretic loops, skeleton curves, stiffness degradation, energy dissipation, and deformation decomposition. The test results indicated that PPSRC shear walls could exhibit a comparative cyclic response with the cast-in-place SRC shear walls, and the proposed throat connectors could effectively transfer the stress of the longitudinal reinforcements. Finally, a macro-modeling of PPSRC shear walls based on the multi-layer shell elements in OpenSees 3.3.0 was established and validated by the test results, and the parametric analysis of the axial compression, steel ratio, and concrete strength of prefabricated and cast-in-place parts was then conducted. Full article
(This article belongs to the Special Issue High-Performance Composite Construction: Materials and Components)
Show Figures

Figure 1

24 pages, 13722 KB  
Article
Experimental Study on the Seismic Behavior of Squat SRC Shear Walls with High Axial Load Ratio
by Lei Zhang, Xiaolei Han, Xijun Chen and Jing Ji
Buildings 2022, 12(8), 1238; https://doi.org/10.3390/buildings12081238 - 14 Aug 2022
Cited by 12 | Viewed by 3129
Abstract
This paper aims to study the seismic behavior of squat steel-reinforced concrete (SRC) shear walls with a high axial load ratio. Nine squat SRC shear walls with varying axial load ratios, steel ratios, and horizontal distributed reinforcement ratios were tested under lateral cyclic [...] Read more.
This paper aims to study the seismic behavior of squat steel-reinforced concrete (SRC) shear walls with a high axial load ratio. Nine squat SRC shear walls with varying axial load ratios, steel ratios, and horizontal distributed reinforcement ratios were tested under lateral cyclic reversed loading and an axial load. The failure process, load-deformation hysteretic response, shear strength, ductility, and the strain of the specimens are reported. The results show that all the specimens failed in shear with the crushing of the web concrete. No axial failure occurred after the web concrete was crushed since the boundary elements encased with structural steel sections maintained the axial load. Larger steel ratios reduced the buckling degree of the structural steel. A larger horizontal distributed reinforcement ratio was clearly beneficial for the ductility and energy dissipation capacity of the specimen, while it had a negligible effect on the shear strength. The Chinese code provided an extremely conservative prediction of the shear strength of the tested squat SRC shear walls with a mean calculated-experimental strength ratio of 0.42. An improved formula was established mainly by the modification of the shear resistance contributed by the concrete and the structural steel, leading to a mean calculated-experimental strength ratio of 0.74. More experimental data are still needed to establish more accurate deformation acceptance criteria for SRC shear walls and to promote the performance-based seismic evaluation of SRC structures. Full article
(This article belongs to the Special Issue Steel-Concrete Composite Structures: Design and Construction)
Show Figures

Figure 1

20 pages, 7524 KB  
Article
Progressive Collapse Analysis of SRC Frame-RC Core Tube Hybrid Structure
by Xingxing Chen, Wei Xie, Yunfeng Xiao, Yiguang Chen and Xianjie Li
Appl. Sci. 2018, 8(11), 2316; https://doi.org/10.3390/app8112316 - 20 Nov 2018
Cited by 12 | Viewed by 4752
Abstract
Steel reinforced concrete (SRC) frame-reinforced concrete (RC) core tube hybrid structures are widely used in high-rise buildings. Focusing on the progressive collapse behavior of this structural system, this paper presents an experiment and analysis on a 1/5 scaled, 10-story SRC frame-RC core tube [...] Read more.
Steel reinforced concrete (SRC) frame-reinforced concrete (RC) core tube hybrid structures are widely used in high-rise buildings. Focusing on the progressive collapse behavior of this structural system, this paper presents an experiment and analysis on a 1/5 scaled, 10-story SRC frame-RC core tube structural model. The finite element (FE) model developed for the purpose of progressive collapse analysis was validated by comparing the test results and simulation results. The alternate load path method (APM) was applied in conducting nonlinear static and dynamic analyses, in which key components including columns and shear walls were removed. The stress state of the beams adjacent to the removed component, the structural behavior including inter-story drift ratio and shear distribution between frame and tube were investigated. The demand capacity ratio (DCR) was applied to evaluate the progressive collapse resistance under loss of key components scenarios. The results indicate that the frame and the tube cooperate in a certain way to resist progressive collapse. The core tube plays a role as the first line of defense against progressive collapse, and the frame plays a role as the second line of defense against progressive collapse. It is also found that the shear distribution is related to the location of the component removed, especially the corner column and shear walls. Full article
(This article belongs to the Special Issue Computational Methods for Fracture)
Show Figures

Graphical abstract

Back to TopTop