Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (162)

Search Parameters:
Keywords = STAR-CCM+®

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8174 KB  
Article
Calculation and Analysis of Rolling Hydrodynamic Coefficients of Free-Flooding Ship Based on STAR-CCM+
by Chaofan Li, Yuehu Teng, Min Xu and Renchuan Zhu
J. Mar. Sci. Eng. 2025, 13(10), 1857; https://doi.org/10.3390/jmse13101857 (registering DOI) - 25 Sep 2025
Abstract
As free-flooding ships are a type of vessel with openings on their hull surfaces, accurately calculating and analyzing their roll hydrodynamic coefficients is of great significance for ship motion prediction. Based on the STAR CCM+ platform that employs the computational fluid dynamics (CFD) [...] Read more.
As free-flooding ships are a type of vessel with openings on their hull surfaces, accurately calculating and analyzing their roll hydrodynamic coefficients is of great significance for ship motion prediction. Based on the STAR CCM+ platform that employs the computational fluid dynamics (CFD) method, this paper first conducts numerical simulations of the forced roll motion of a damaged DTMB-5415 ship model. The applicability of this method to side-opening ship types is verified by comparing with experimental results. Subsequently, this numerical method is applied to simulate the forced roll of a free-flooding aquaculture ship under different working conditions, and the roll hydrodynamic coefficients of its hull and internal compartments are calculated and analyzed. The roll hydrodynamic coefficients of the intact ship and the free-flooding ship are compared. The results indicate the characteristics of roll hydrodynamic coefficients of free-flooding ships, and this research will facilitate the prediction of roll motion for this ship type. Full article
(This article belongs to the Special Issue Advancements in Marine Hydrodynamics and Structural Optimization)
Show Figures

Figure 1

27 pages, 5991 KB  
Article
Development of a Systematic Method for Tuning PID Control Gains in Free-Running Ship Simulations
by Jae-Hyeon An, Hwi-Su Kim and Kwang-Jun Paik
J. Mar. Sci. Eng. 2025, 13(9), 1813; https://doi.org/10.3390/jmse13091813 - 19 Sep 2025
Viewed by 119
Abstract
In free-running ship simulations, PID control gains for rudder and propeller revolution are often selected based on empirical experience without a standardized procedure, leading to inconsistent results under varying operational conditions. This study examined PID control gains by implementing a simulation framework using [...] Read more.
In free-running ship simulations, PID control gains for rudder and propeller revolution are often selected based on empirical experience without a standardized procedure, leading to inconsistent results under varying operational conditions. This study examined PID control gains by implementing a simulation framework using STAR-CCM+. The Ziegler–Nichols tuning method was applied to derive control gains, and their behavior was analyzed across different wave conditions (calm, short, medium, and long waves), PID period condition, ship speeds (low and design speeds), and scale ratios. The simulations showed that the PID gains derived under moderate wave conditions provided stable and reliable control performance across various sea states. Furthermore, the influence of scale ratio changes on the control performance was evaluated, and a non-dimensional scaling formula for PID coefficients was proposed to enhance applicability across different model sizes. Validation against experimental data confirmed the reliability of the simulation setup. These findings offer a systematic guideline for selecting the PID control gains for free-running simulations, promoting improved accuracy and stability under diverse environmental and operational conditions. This research contributes to developing standardized practices for maneuvering performance evaluations in realistic maritime environments. Full article
(This article belongs to the Special Issue Marine CFD: From Resistance Prediction to Environmental Innovation)
Show Figures

Figure 1

16 pages, 7159 KB  
Article
Comparison of Numerical Simulations of Propeller Open-Water Performance with Cavitation for High-Speed Planing Hulls
by Sungtek Park, Zhaoyuan Wang, Frederick Stern, Andrew Gunderson and John Scherer
J. Mar. Sci. Eng. 2025, 13(9), 1804; https://doi.org/10.3390/jmse13091804 - 18 Sep 2025
Viewed by 209
Abstract
Numerical simulations of an open-water propeller are performed using CFDShip-Iowa. The propeller, originally designed by Mercury Marine for a 21 feet high-speed planing hull, is scaled to match a 42 feet hull configuration. Three advance ratios (J = 0.8, 1.1, and 1.4) [...] Read more.
Numerical simulations of an open-water propeller are performed using CFDShip-Iowa. The propeller, originally designed by Mercury Marine for a 21 feet high-speed planing hull, is scaled to match a 42 feet hull configuration. Three advance ratios (J = 0.8, 1.1, and 1.4) and two cavitation numbers (σ = 0.274 and 1.095) are considered in the computations, and the results are compared with those obtained from the commercial CFD solver STAR-CCM+. For the fully wetted conditions without cavitation, the overall trends of the computed thrust (Kt), torque (Kq), and propeller efficiency (η) with respect to the advance ratios are similar. The computed Kt, Kq, and η with cavitations generally agree with the STAR-CCM+ results except for η at σ = 0.274, where the latter shows a much higher value for J = 1.4. For σ = 1.095, the cavitation patterns and overall pressure distributions are similar for both codes. For σ = 0.274, the cavitation is more violent for CFDShip-Iowa than STAR-CCM+. CFDShip-Iowa shows better preservation of the cavities and blade-to-blade interactions, which are not captured in the simulations using STAR-CCM+, since a single blade with periodic boundary conditions are used. Full article
(This article belongs to the Special Issue Novelties in Marine Propulsion)
Show Figures

Figure 1

19 pages, 4623 KB  
Article
Effect of the Pore Distribution of Fishing Tanks on Hydrodynamic Characteristics Under the Wave Action
by Xiaojian Ma, Xiao Yu, Jian Yang and Fali Huo
J. Mar. Sci. Eng. 2025, 13(9), 1619; https://doi.org/10.3390/jmse13091619 - 25 Aug 2025
Viewed by 401
Abstract
A perforated aquaculture vessel represents an environmentally sustainable approach to fish farming, leveraging seawater circulation to optimize water quality and enhance fish health and growth. The perforations on the side of the fish tank significantly influence its hydrodynamic characteristics. This study investigated the [...] Read more.
A perforated aquaculture vessel represents an environmentally sustainable approach to fish farming, leveraging seawater circulation to optimize water quality and enhance fish health and growth. The perforations on the side of the fish tank significantly influence its hydrodynamic characteristics. This study investigated the influence of pore parameters on the perforated fishing tank with various pore designs, such as the asymmetric distribution of the opening in depth, windward, and leeward directions. A numerical study was conducted using STAR-CCM+ to analyze the perforated tank under beam wave conditions. This study aimed to analyze the effects of pore location, opening ratio, and asymmetric distribution on the hydrodynamic performance and flow characteristics within aquaculture tanks. The results demonstrated that an asymmetric pore distribution on the windward and leeward sides of the vessel had a notable impact on the roll motion and the flow velocity in the vicinity of the pores. The findings also indicated that the effects of pore distribution were more significant than those of opening ratio, especially regarding asymmetry. The results revealed that higher flow velocities occurred under a smaller opening ratio. Modifying pore structure parameters on the windward and leeward sides can alter the local flow field. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 2982 KB  
Article
CFD-Based Lagrangian Multiphase Analysis of Particulate Matter Transport in an Operating Room Environment
by Ahmet Çoşgun and Onur Gündüztepe
Processes 2025, 13(8), 2507; https://doi.org/10.3390/pr13082507 - 8 Aug 2025
Viewed by 491
Abstract
Maintaining air quality in operating rooms is critical for infection control and patient safety. Particulate matter, originating from surgical instruments, personnel, and external sources, is influenced by airflow patterns and ventilation efficiency. This study employs Computational Fluid Dynamics (CFD) simulations using Simcenter STAR-CCM+ [...] Read more.
Maintaining air quality in operating rooms is critical for infection control and patient safety. Particulate matter, originating from surgical instruments, personnel, and external sources, is influenced by airflow patterns and ventilation efficiency. This study employs Computational Fluid Dynamics (CFD) simulations using Simcenter STAR-CCM+ 2410 to analyze airflow and particulate behavior in a surgical-grade operating room. A steady-state solver with the kε turbulence model was used to replicate airflow, while the Lagrangian multiphase method simulated particle trajectories (0.5 µm, 1 µm, and 5 µm). The simulation results demonstrated close agreement with the experimental data, with average errors of 17.3%, 17.7%, and 39.7% for 0.5 µm, 1 µm, and 5 µm particles, respectively. These error margins are considered acceptable given the device’s 10% measurement sensitivity and the observed experimental asymmetry—attributable to equipment placement—which resulted in variations of 17.2%, 18.0%, and 26.5% at corresponding symmetric points. Collectively, these findings support the validity of the simulation model in accurately predicting particulate transport and deposition within the operating room environment. Findings confirm that optimizing airflow can achieve ISO Class 7 cleanroom standards and highlight the potential for future studies incorporating dynamic elements, such as personnel movement and equipment placement, to further improve contamination control in critical environments. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

22 pages, 6288 KB  
Article
The Pontoon Design Optimization of a SWATH Vessel for Resistance Reduction
by Chun-Liang Tan, Chi-Min Wu, Chia-Hao Hsu and Shiu-Wu Chau
J. Mar. Sci. Eng. 2025, 13(8), 1504; https://doi.org/10.3390/jmse13081504 - 5 Aug 2025
Viewed by 417
Abstract
This study applies a deep neural network (DNN) to optimize the 22.5 m pontoon hull form of a small waterplane area twin hull (SWATH) vessel with fin stabilizers, aiming to reduce calm water resistance at a Froude number of 0.8 under even keel [...] Read more.
This study applies a deep neural network (DNN) to optimize the 22.5 m pontoon hull form of a small waterplane area twin hull (SWATH) vessel with fin stabilizers, aiming to reduce calm water resistance at a Froude number of 0.8 under even keel conditions. The vessel’s resistance is simplified into three components: pontoon, strut, and fin stabilizer. Four design parameters define the pontoon geometry: fore-body length, aft-body length, fore-body angle, and aft-body angle. Computational fluid dynamics (CFD) simulations using STAR-CCM+ 2302 provide 1400 resistance data points, including fin stabilizer lift and drag forces at varying angles of attack. These are used to train a DNN in MATLAB 2018a with five hidden layers containing six, eight, nine, eight, and seven neurons. K-fold cross-validation ensures model stability and aids in identifying optimal design parameters. The optimized hull has a 7.8 m fore-body, 6.8 m aft-body, 10° fore-body angle, and 35° aft-body angle. It achieves a 2.2% resistance reduction compared to the baseline. The improvement is mainly due to a reduced Munk moment, which lowers the angle of attack needed by the fin stabilizer, thereby reducing drag. The optimized design provides cost-efficient construction and enhanced payload capacity. This study demonstrates the effectiveness of combining CFD and deep learning for hull form optimization. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 17002 KB  
Article
Study on Hydrodynamic and Cavitation Characteristics of Two-Element Hydrofoil Systems for Fully Submerged Hydrofoil Craft: Influence Analysis of Key Geometric Parameters
by Meishen Yu, Hongyu Li, Yu Zhang, Qunhong Tian, Shaobo Yang, Zongsheng Wang and Weizhuang Ma
J. Mar. Sci. Eng. 2025, 13(7), 1378; https://doi.org/10.3390/jmse13071378 - 20 Jul 2025
Viewed by 550
Abstract
This study investigates the effects of key geometric parameters on the hydrodynamic and cavitation characteristics of two-element hydrofoil systems for fully submerged unmanned hydrofoil craft, aiming to solve their active stabilization problems. Using STARCCM+ software, the RANS method, and the SST k-ω turbulence [...] Read more.
This study investigates the effects of key geometric parameters on the hydrodynamic and cavitation characteristics of two-element hydrofoil systems for fully submerged unmanned hydrofoil craft, aiming to solve their active stabilization problems. Using STARCCM+ software, the RANS method, and the SST k-ω turbulence model, the research analyzes the impacts of flap deflection angle (α), main wing-to-flap chord ratio (c1/c2), and spacing (g). Results show that when the spacing is fixed, increasing the chord ratio reduces the lift and drag coefficients. When the chord ratio is fixed, increasing the spacing causes the lift and drag coefficients to first rise and then fall. With increasing flap deflection angle (α), cavitation intensifies, but it can be suppressed by increasing the chord ratio, reaching a minimum at g = 2.4%c1. The optimal configuration is c1/c2 = 1.5 and g = 2.4%c1, which can balance the lift–drag performance and anti-cavitation capability. This study provides a scientific basis for solving the active stabilization problems of fully submerged unmanned hydrofoil craft and insights for enhancing their seakeeping performance. Full article
(This article belongs to the Special Issue CFD Applications in Ship and Offshore Hydrodynamics (2nd Edition))
Show Figures

Figure 1

20 pages, 20152 KB  
Article
Characterization of the Internal and External Flow Field of a Semi-Submersible Aquaculture Platform with Multiple Net Cage Configuration
by Bo Hu, Jiawen Li, Juncheng Ruan, Jiawei Hao and Ji Huang
J. Mar. Sci. Eng. 2025, 13(7), 1373; https://doi.org/10.3390/jmse13071373 - 18 Jul 2025
Viewed by 313
Abstract
To achieve efficient and sustainable marine aquaculture, STAR-CCM+ was used to simulate the internal and external field characteristics of a semi-submersible aquaculture platform based on a porous media model, focusing on the influence of incoming flow velocity and net solidity ratio. The results [...] Read more.
To achieve efficient and sustainable marine aquaculture, STAR-CCM+ was used to simulate the internal and external field characteristics of a semi-submersible aquaculture platform based on a porous media model, focusing on the influence of incoming flow velocity and net solidity ratio. The results indicate that the flow field distribution around the platform exhibits no significant regularity and that low-velocity vortex regions are primarily concentrated near the pillars and nets. After velocity attenuation, the velocity reduction coefficients at the centers of the three cages are 90.26%, 63.65%, and 52.56%, respectively. Furthermore, the velocity attenuation inside the cages is minimally influenced by incoming flow velocity, with a maximum difference of 3.10%. In contrast, differences in net solidity ratio significantly affect velocity attenuation, particularly in downstream regions. The velocity reduction coefficient in the third cage varies by up to 43.25% depending on the net solidity ratio. These findings provide practical insights for the engineering design and application of aquaculture platforms. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

21 pages, 5135 KB  
Article
Assessing the Heat Transfer Modeling Capabilities of CFD Software for Involute-Shaped Plate Research Reactors
by Cezary Bojanowski, Ronja Schönecker, Katarzyna Borowiec, Kaltrina Shehu, Julius Mercz, Frederic Thomas, Yoann Calzavara, Aurelien Bergeron, Prashant Jain, Christian Reiter and Jeremy Licht
Energies 2025, 18(14), 3692; https://doi.org/10.3390/en18143692 - 12 Jul 2025
Viewed by 455
Abstract
The ongoing efforts to convert High-Performance Research Reactors (HPRRs) using Highly Enriched Uranium (HEU) to Low-Enriched Uranium (LEU) fuel require reliable thermal–hydraulic assessments of modified core designs. The involute-shaped fuel plates used in several major HPRRs present unique modeling challenges due to their [...] Read more.
The ongoing efforts to convert High-Performance Research Reactors (HPRRs) using Highly Enriched Uranium (HEU) to Low-Enriched Uranium (LEU) fuel require reliable thermal–hydraulic assessments of modified core designs. The involute-shaped fuel plates used in several major HPRRs present unique modeling challenges due to their compact core geometries and high heat flux conditions. This study evaluates the capability of three commercial CFD tools, STAR-CCM+, COMSOL, and ANSYS CFX, to predict cladding-to-coolant heat transfer using Reynolds-Averaged Navier–Stokes (RANS) methods within the thermal–hydraulic regimes of involute-shaped plate reactors. Broad sensitivity analysis was conducted across a range of reactor-relevant parameters using two turbulence models (kϵ and kω SST) and different near-wall treatment strategies. The results were benchmarked against the Sieder–Tate correlation and experimental data from historic studies. The codes produced consistent results, showing good agreement with the empirical correlation of Sieder–Tate and the experimental measurements. The findings support the use of these commercial CFD codes as effective tools for assessing the thermal–hydraulic performance of involute-shaped plate HPRRs and guide future LEU core development. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

22 pages, 3154 KB  
Article
Impact of Blade Ice Coverage on Wind Turbine Power Generation Efficiency: A Combined CFD and Wind Tunnel Study
by Yang Ji, Jinxiao Wang, Haiming Wen, Chenyang Liu, Yang Liu and Dayong Zhang
Energies 2025, 18(13), 3448; https://doi.org/10.3390/en18133448 - 30 Jun 2025
Viewed by 414
Abstract
This study investigates aerodynamic degradation and power loss mechanisms in iced wind turbine blades using a hybrid methodology integrating high-fidelity CFD simulations (ANSYS Fluent, FENSAP-ICE, STAR-CCM+ with SST k-ω turbulence model and shallow-water icing theory) with controlled wind tunnel experiments (10–15 m/s). Three [...] Read more.
This study investigates aerodynamic degradation and power loss mechanisms in iced wind turbine blades using a hybrid methodology integrating high-fidelity CFD simulations (ANSYS Fluent, FENSAP-ICE, STAR-CCM+ with SST k-ω turbulence model and shallow-water icing theory) with controlled wind tunnel experiments (10–15 m/s). Three ice accretion types, glaze, mixed, and rime, on NACA0012 airfoils are quantified. Glaze ice at the leading edge induces the most severe degradation, reducing lift by 34.9% and increasing drag by 97.2% at 10 m/s. STAR-CCM+ analyses reveal critical pressure anomalies and ice morphology-dependent flow separation patterns. These findings inform the optimization of anti-icing strategies for cold-climate wind farms. Full article
(This article belongs to the Special Issue Advances in Wind Turbine Optimization and Control)
Show Figures

Figure 1

25 pages, 7356 KB  
Article
Adaptive Damping PTO Control of Wave Energy Converter for Irregular Waves Supported by Wavelet Transformation
by Runhua He, Guanghua He, Penglin Jing, Zhengxiao Luan and Chaogang Liu
Energies 2025, 18(13), 3328; https://doi.org/10.3390/en18133328 - 25 Jun 2025
Viewed by 866
Abstract
The power take-off (PTO) control strategy plays a crucial role in the heave response and power absorption of wave energy converters (WECs). This paper presents an adaptive damping PTO system to increase the power absorption of an oscillating-float WEC considering irregular wave conditions. [...] Read more.
The power take-off (PTO) control strategy plays a crucial role in the heave response and power absorption of wave energy converters (WECs). This paper presents an adaptive damping PTO system to increase the power absorption of an oscillating-float WEC considering irregular wave conditions. A mathematical model of the WEC is established based on linear wave theory and validated by the Co-simulation of AMESIM and STAR-CCM+. The heave response and the power absorption of the WEC are calculated by the mathematical model, and an optimal damping database for the PTO system is constructed. The wavelet transformation is applied to analyze the frequencies distribution versus time history of irregular waves. The proposed optimal damping control (ODC) is employed to optimize the power absorption of the adaptive damping PTO system under two types of irregular waves. The results show that ODC can improve power absorption by allowing the WEC to adapt to different sea states. Compared to constant damping control (CDC), optimal damping control (ODC) increases the power absorption of the float by 62.5% in combined waves and up to 30 W in irregular waves. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

14 pages, 3850 KB  
Article
CFD Simulations of Basic Stepped-Hull Configurations in Planing Regime Using Star-CCM+ Software
by Konstantin I. Matveev
J. Mar. Sci. Eng. 2025, 13(7), 1217; https://doi.org/10.3390/jmse13071217 - 24 Jun 2025
Viewed by 647
Abstract
High-speed marine vehicles often employ stepped hulls with the purpose of ventilating bottom surfaces with air, thus reducing the hull’s water resistance. Due to the large number of possible geometrical variations for stepped hulls, numerical simulations can potentially make the process of designing [...] Read more.
High-speed marine vehicles often employ stepped hulls with the purpose of ventilating bottom surfaces with air, thus reducing the hull’s water resistance. Due to the large number of possible geometrical variations for stepped hulls, numerical simulations can potentially make the process of designing such hulls more effective. In this study, the computational fluid dynamics software Star-CCM+ (version 15.04.008) is applied to comparing the numerical results with the experimental hydrodynamic data available for prismatic hulls with one and two steps. Additionally, simulations are carried out for steps with different sweep angles, for three- and four-step hulls, and for a stepped hull in shallow water. Reasonable agreement with the test data was obtained, although some underestimation of drag and overprediction of air-ventilated zones were noted. In the studied conditions, increasing the forward sweep angle of a step, employing multi-step configurations, and operating in shallow water demonstrated further reductions in the wetted areas and the attainment of higher lift–drag ratios. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

35 pages, 12895 KB  
Article
Performance Analysis and Design of a Robotic Fish for In-Water Monitoring
by Wenwen Yuan, Shaonan Hao, Zhiqiang Liu, Feng Zhou and Youchao Wu
J. Mar. Sci. Eng. 2025, 13(6), 1116; https://doi.org/10.3390/jmse13061116 - 3 Jun 2025
Cited by 1 | Viewed by 1022
Abstract
Compared with real fish, bionic fish have significant gaps in terms of swimming speed and efficiency, turning performance, and agility. The complicated underwater working environment necessitates monitoring equipment that can deal with the dynamic interference of dense fish schools and aquatic vegetation. An [...] Read more.
Compared with real fish, bionic fish have significant gaps in terms of swimming speed and efficiency, turning performance, and agility. The complicated underwater working environment necessitates monitoring equipment that can deal with the dynamic interference of dense fish schools and aquatic vegetation. An agile and flexible bionic fish with a fast swimming speed would be better suited to underwater monitoring tasks. In this study, a bionic greenfin fish robot is designed in detail, and a hydrodynamic simulation analysis of the designed bionic greenfin fish robot is carried out using STAR CCM+ and Fluent software to analyze the effects of different parameters on the propulsion performance of the pectoral fins, the steering of the caudal fins, and the emergency stop function. The swimming efficiency was found to be highest when the angle of attack was changed sinusoidally by 10° and the frequency was the same as that of the pectoral fin flutter. The feasibility of an emergency stop of the tail fin with negative-phase swinging and the adjustment of the pectoral fin uneven flutter monitoring position were also confirmed. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 3596 KB  
Article
Boundary Layer Separation from a Curved Backward-Facing Step Using Improved Delayed Detached-Eddy Simulation
by Matthew R. McConnell, Jason Knight and James M. Buick
Fluids 2025, 10(6), 145; https://doi.org/10.3390/fluids10060145 - 31 May 2025
Viewed by 1259
Abstract
Curved surfaces are a feature of many engineering applications, and as such, the accurate prediction of separation and reattachment from a curved surface is of great engineering importance. In this study, improved delayed detached eddy simulation (IDDES) is used, in conjunction with synthetic [...] Read more.
Curved surfaces are a feature of many engineering applications, and as such, the accurate prediction of separation and reattachment from a curved surface is of great engineering importance. In this study, improved delayed detached eddy simulation (IDDES) is used, in conjunction with synthetic turbulence injection using the synthetic eddy method (SEM), to investigate the boundary layer separation from a curved backward-facing step for which large eddy simulation (LES) results are available. The commercial code Star CCM+ was used with the k-ω shear stress transport (SST) variation of the IDDES model to assess the accuracy of the code for this class of problem. The IDDES model predicted the separation length within 10.4% of the LES value for the finest mesh and 25.5% for the coarsest mesh, compared to 36.2% for the RANS simulation. Good agreement between the IDDES and LES was also found in terms of the distribution of skin friction, velocity, and Reynolds stress, demonstrating an acceptable level of accuracy, as has the prediction of the separation and reattachment location. The model has, however, found it difficult to capture the pressure coefficient accurately in the region of separation and reattachment. Overall, the IDDES model has performed well against a type of geometry that is typically a challenge to the hybrid RANS-LES method (HRLM). Full article
(This article belongs to the Special Issue Industrial CFD and Fluid Modelling in Engineering, 3rd Edition)
Show Figures

Figure 1

20 pages, 6060 KB  
Article
FEA-Based Thermo-Structural Modeling of Cryogenic Storage Tanks in Liquid Propulsion Systems
by Salvador Orozco, Cynthia L. Ramirez Zamora, Md Amzad Hossain and Ahsan Choudhuri
Aerospace 2025, 12(6), 479; https://doi.org/10.3390/aerospace12060479 - 28 May 2025
Cited by 1 | Viewed by 657
Abstract
This investigation presents the comprehensive thermo-structural analysis of the propellant tanks utilized in the CROME propulsion system, focused on examining the structural effects caused by the storage of liquid nitrogen, liquid oxygen, and liquid methane. These fluids operate at extremely low temperatures and [...] Read more.
This investigation presents the comprehensive thermo-structural analysis of the propellant tanks utilized in the CROME propulsion system, focused on examining the structural effects caused by the storage of liquid nitrogen, liquid oxygen, and liquid methane. These fluids operate at extremely low temperatures and generate large thermal stress gradients in the tanks, significantly influencing their structural properties. For this reason, it is of vital importance to inspect the generation of mechanical and thermal stresses in the tanks to assess the risk of structural failure. To accomplish this effort, this analysis evaluates the tanks containing liquid nitrogen, liquid oxygen, and liquid methane at pressures of 200.0 psi and 400.0 psi. A coupled finite element analysis was performed in Star-CCM+ to compute the resulting Von Mises stresses under steady-state conditions. These stress results were used to determine the factor of safety in each case, enabling a quantitative assessment of structural integrity in the tanks while operating with cryogenic fluids under different pressure loadings. Full article
Show Figures

Figure 1

Back to TopTop