Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,078)

Search Parameters:
Keywords = Si/Al ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5184 KB  
Article
Mechanical Characteristics of Clay-Based Masonry Walls
by Houssam Affan, Wahib Arairo, Firas Barraj, Milad Khatib, Marianne Saba and Yassine El Mendili
Eng 2025, 6(10), 260; https://doi.org/10.3390/eng6100260 - 2 Oct 2025
Abstract
The building sector is under increasing pressure to lower its environmental impact, prompting renewed interest in raw soil as a low-carbon and locally available material. This study investigates the mechanical and thermal properties of clay-based masonry walls through a comprehensive experimental program on [...] Read more.
The building sector is under increasing pressure to lower its environmental impact, prompting renewed interest in raw soil as a low-carbon and locally available material. This study investigates the mechanical and thermal properties of clay-based masonry walls through a comprehensive experimental program on earthen mortars, bricks, and their interfaces, considering both stabilized and non-stabilized formulations. Compressive, bending, and shear tests reveal that strength is strongly influenced by mortar composition, hydration time, and the soil-to-sand ratio. The addition of 5–7.5% cement yields modest gains in compressive strength but increases the carbon footprint, whereas extended pre-hydration achieves similar improvements with lower environmental costs. Thermal characterization of the studied samples (SiO2 ≈ 61.2 wt%, Al2O3 ≈ 11.7 wt%, MgO ≈ 5.1 wt%) revealed that SiO2-enriched compositions significantly enhance thermal conductivity, whereas the presence of Al2O3 and MgO contributes to increased heat capacity and improved moisture regulation. These findings suggest that well-optimized clay-based mortars can satisfy the structural and thermal requirements of non-load-bearing applications, offering a practical and sustainable alternative to conventional construction materials. By reducing embodied carbon, enhancing hygrothermal comfort, and relying on locally available resources, such mortars contribute to the advancement of green building practices and the transition towards low-carbon construction. Full article
(This article belongs to the Special Issue Emerging Trends in Inorganic Composites for Structural Enhancement)
Show Figures

Figure 1

20 pages, 9190 KB  
Article
Nanostructured K- and Na-Substituted Aluminosilicates for Ni(II) Ions Removal from Liquid Media: Assessment of Sorption Performance and Mechanism
by Ekaterina Nekhludova, Nikita Ivanov, Sofia Yarusova, Oleg Shichalin, Yulia Parotkina, Alexander Karabtsov, Vitaly Mayorov, Natalya Ivanenko, Kirill Barkhudarov, Viktoriya Provatorova, Viktoriya Rinchinova, Vladimir Afonchenko, Sergei Savin, Vasilii Ivanovich Nemtinov, Anton Shurygin, Pavel Gordienko and Eugeniy Papynov
J. Compos. Sci. 2025, 9(10), 530; https://doi.org/10.3390/jcs9100530 - 1 Oct 2025
Abstract
The removal of nickel from industrial wastewater necessitates efficient sorbent materials. This study investigates nanostructured potassium- and sodium-substituted aluminosilicate-based nanocomposites for this application. Materials were synthesized and characterized using SEM-EDS, XPS, XRD, FTIR, low temperature N2 adsorption–desorption and Ni2+ adsorption experiments. [...] Read more.
The removal of nickel from industrial wastewater necessitates efficient sorbent materials. This study investigates nanostructured potassium- and sodium-substituted aluminosilicate-based nanocomposites for this application. Materials were synthesized and characterized using SEM-EDS, XPS, XRD, FTIR, low temperature N2 adsorption–desorption and Ni2+ adsorption experiments. SEM and XRD confirmed an X-ray amorphous structure attributable to fine crystallite size. The sodium-substituted material Na2Al2Si2O8 exhibited the lowest specific surface area (48.3 m2/g) among the tested composites. However, it demonstrated the highest Ni(II) sorption capacity (64.6 mg/g, 1.1 mmol/g) and the most favorable sorption kinetics, as indicated by a Morris-Weber coefficient of 0.067 ± 0.008 mmol/(g·min1/2). Potassium-substituted analogs with higher Si/Al ratios showed increased surface area but reduced capacity. Analysis by XPS and SEM-EDS established that Ni(II) uptake occurs through a complex mechanism, involving ion exchange, surface complexation, and chemisorption resulting in the formation of new nickel-containing composite surface phases. The results indicate that optimal sorption performance for Ni(II) is achieved with sodium-based aluminosilicates at a low Si/Al ratio (Si/Al = 1). The functional characteristics of Na2Al2Si2O8 compare favorably with other silicate-based sorbents, suggesting its potential utility for wastewater treatment. Further investigation is needed to elucidate the precise local coordination environment of the adsorbed nickel. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

16 pages, 4969 KB  
Article
Application of Thermodynamic Calculations in the Study of Slag Melting Characteristics and Aluminum Loss Control
by Ting Liu, Qingxia Zhang, Shenglan Zheng and Fangqin Dai
Metals 2025, 15(10), 1099; https://doi.org/10.3390/met15101099 - 1 Oct 2025
Abstract
According to the production process requirements of oriented silicon steel in a certain steel mill, optimization of the slag composition ratio is studied through thermodynamic calculations. The CaO-SiO2-Al2O3-FeO-MgO slag system is studied using FactSage thermodynamic software (FactSage [...] Read more.
According to the production process requirements of oriented silicon steel in a certain steel mill, optimization of the slag composition ratio is studied through thermodynamic calculations. The CaO-SiO2-Al2O3-FeO-MgO slag system is studied using FactSage thermodynamic software (FactSage 8.1), and a slag optimization plan is proposed based on industrial experiments involving changes in the composition ratio of the slag, calculation and analysis of the melting characteristics of RH refining slag, further verification through orthogonal experiments, and observations of the slag state, temperature, and composition relationship through phase diagrams. This study provides theoretical guidance for finding a suitable slag composition ratio based on the influence of slag on dissolved aluminum in steel liquid. Research has shown that, combined with thermodynamic analysis, slag melting characteristics, component content calculations, and industrial experiments, the range of RH refining slag composition suitable for production in this steel mill is slag in the range of 1.3~1.5 alkalinity, 25~30% Al2O3, 5~6% MgO, and 1–2% FeO. Full article
Show Figures

Figure 1

17 pages, 3677 KB  
Article
Improvement of Physical and Electrical Characteristics in 4H-SiC MOS Capacitors Using AlON Thin Films Fabricated via Plasma-Enhanced Atomic Layer Deposition
by Zhaopeng Bai, Chengxi Ding, Yunduo Guo, Man Luo, Zimo Zhou, Lin Gu, Qingchun Zhang and Hongping Ma
Materials 2025, 18(19), 4531; https://doi.org/10.3390/ma18194531 - 29 Sep 2025
Abstract
In this study, we investigate the improvement of physical and electrical characteristics in 4H-silicon carbide (SiC) MOS capacitors using Aluminum Oxynitride (AlON) thin films fabricated via Plasma-Enhanced Atomic Layer Deposition (PEALD). AlON thin films are grown on SiC substrates using a high ratio [...] Read more.
In this study, we investigate the improvement of physical and electrical characteristics in 4H-silicon carbide (SiC) MOS capacitors using Aluminum Oxynitride (AlON) thin films fabricated via Plasma-Enhanced Atomic Layer Deposition (PEALD). AlON thin films are grown on SiC substrates using a high ratio of NH3 and O2 as nitrogen and oxygen sources through PEALD technology, with improved material properties and electrical performance. The AlON films exhibited excellent thickness uniformity, with a minimal error of only 0.14%, a high refractive index of 1.90, and a low surface roughness of 0.912 nm, demonstrating the precision of the PEALD process. Through XPS depth profiling and electrical characterization, it was found that the AlON/SiC interface showed a smooth transition from Al-N and Al-O at the surface to Al-O-Si at the interface, ensuring robust bonding. Electrical measurements indicated that the SiC/AlON MOS capacitors demonstrated Type I band alignment with a valence band offset of 1.68 eV and a conduction band offset of 1.16 eV. Additionally, the device demonstrated a low interface state density (Dit) of 7.6 × 1011 cm−2·eV−1 with a high breakdown field strength of 10.4 MV/cm. The results highlight AlON’s potential for enhancing the performance of high-voltage, high-power SiC devices. Full article
Show Figures

Graphical abstract

17 pages, 5036 KB  
Article
Strength and Microstructural Characteristics of Fly Ash–Waste Glass Powder Ternary Blended Concrete
by Moruf O. Yusuf, Khaled A. Alawi Al-Sodani, Adeshina A. Adewumi, Muyideen Abdulkareem and Ali H. Alateah
Materials 2025, 18(19), 4483; https://doi.org/10.3390/ma18194483 - 25 Sep 2025
Abstract
To reduce the proliferation of greenhouse gases in the construction industry, ternary blended concrete comprising fly ash (FA) powder, waste glass (WG) powder, and ordinary Portland cement (OPC) was developed such that the WG to total binder varied from 0 to 20% at [...] Read more.
To reduce the proliferation of greenhouse gases in the construction industry, ternary blended concrete comprising fly ash (FA) powder, waste glass (WG) powder, and ordinary Portland cement (OPC) was developed such that the WG to total binder varied from 0 to 20% at intervals of 5% (C80FA20-xWGx:x = WG/(WG + FA + OPC)). The developed concrete was investigated for water absorption, workability, 28-day compressive strength, binder phases, bond characteristics, microstructure, and elemental composition of the concrete. The mixture proportions of C80FA15WG5 and C80FA10WG10 exhibited better consistency and water absorption than the OPC concrete (C100FA0WG0). Furthermore, the 28 d strength of C80FA15WG5 marginally outperformed those of C80FA10WG10 and C80FA20WG0. The sample with equal proportions of FA and WG (C80FA10G10) was more amorphous owing to the disappearance of the hedenbergite phase (CaFeSi2O6) and conversion of tobermorite (CSH) to C-A-S-H. C80FA10WG10 also exhibited better microstructural stability than FA + OPC concrete (C80FA20G0), owing to the pore-filling of the microcracks within the matrix. Finally, higher Si/Ca, Ca/Al, and Si/Al ratios were recorded in C80FA10WG10 than in the case of FA preponderating WG in ternary blending. Finally, structural concrete can be produced through the ternary blending of glass waste, fly ash, and OPC, thereby promoting the valorization of solid waste and a sustainable environment. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

26 pages, 6089 KB  
Article
Petrogenesis of Transitional Kimberlite: A Case Study of the Hypabyssal Wafangdian Kimberlite in the North China Craton
by Renzhi Zhu, Pei Ni, Yan Li and Fanglai Wan
Minerals 2025, 15(10), 1009; https://doi.org/10.3390/min15101009 - 24 Sep 2025
Viewed by 53
Abstract
Kimberlite has attracted considerable interest among geologists as the primary source of natural gem-quality diamonds. The term “transitional kimberlite” was previously introduced to categorize rocks that exhibit bulk geochemical and Sr–Nd isotopic characteristics intermediate between those of archetypal kimberlite (formerly Group-I) and orangeite [...] Read more.
Kimberlite has attracted considerable interest among geologists as the primary source of natural gem-quality diamonds. The term “transitional kimberlite” was previously introduced to categorize rocks that exhibit bulk geochemical and Sr–Nd isotopic characteristics intermediate between those of archetypal kimberlite (formerly Group-I) and orangeite (formerly Group-II). Nevertheless, the petrogenesis of transitional diamond-bearing kimberlites remains poorly understood due to limited research. The diamondiferous transitional Wafangdian kimberlite in the North China Craton (NCC) thus provides a valuable opportunity for a detailed case study. We investigated fresh hypabyssal transitional Wafangdian kimberlites using bulk-rock major and trace element geochemistry to constrain near-primary parental magma compositions and decipher their petrogenesis. Geochemical compositions identify samples affected by crustal contamination based on elevated SiO2, Pb, heavy rare earth element (HREE) concentrations, and Sr isotopic ratios. Compositional variations among macrocrystic samples (MgO: 29.7–31.5 wt.%; SiO2: 30.6–34.7 wt.%; CaO: 3.9–7.5 wt.%; Mg# [atomic Mg/(Mg + Fe2+) × 100]: 85–88) result from substantial entrainment and partial assimilation of peridotite xenoliths (up to 35%). In contrast, variations within aphanitic samples (MgO: 24.0–29.7 wt.%; SiO2: 27.7–30.9 wt.%; CaO: 6.0–11.8 wt.%; Mg#: 81–85) are attributed to fractional crystallization of olivine and phlogopite (~1–32%). Based on these constraints, the near-primary parental magma composition for the Wafangdian kimberlite is estimated as ~29.7 wt.% SiO2, ~29.7 wt.% MgO, and Mg# 85. Trace element concentrations in the transitional Wafangdian kimberlites resemble those of archetypal kimberlites globally (e.g., Nb/U > 26, La/Nb < 1.4, Ba/Nb < 16, Th/Nb < 0.25), indicating a shared convective mantle source. However, the Wafangdian kimberlites exhibit distinct characteristics: εNd(t) values ranging from −3.44 to −1.77, higher Al2O3 and K2O contents, and lower Ce/Pb ratios (10–20) compared to archetypal kimberlites. These features suggest the mantle source region was profoundly influenced by deeply subducted oceanic material. Full article
(This article belongs to the Special Issue Formation Study of Gem Deposits)
Show Figures

Figure 1

11 pages, 2010 KB  
Article
Technical Analysis of Ironmaking in Benxi Region During the Ming Dynasty
by Dongying Zhao and Maofa Jiang
Processes 2025, 13(9), 3016; https://doi.org/10.3390/pr13093016 - 21 Sep 2025
Viewed by 228
Abstract
During the development of metallurgical technology in the feudal period, the main ironmaking technology in the Benxi region was the crucible, reaching its peak period in the Ming Dynasty. By studying the Wangguan ironmaking site in Benxi, the historical details of the Ming [...] Read more.
During the development of metallurgical technology in the feudal period, the main ironmaking technology in the Benxi region was the crucible, reaching its peak period in the Ming Dynasty. By studying the Wangguan ironmaking site in Benxi, the historical details of the Ming Dynasty ironmaking process in the region were investigated, and a technical analysis was carried out. The results show that this historical site was the location of the Hundred-Household Iron Yard in the northeastern region during the Ming Dynasty. The unearthed slag, iron, and crucible samples indicate that a relatively complete ironmaking process chain had been formed at this time. The raw material used for the crucibles was high-alumina clay, which has been widely distributed in Benxi, Liaoning, China, since ancient times. The refractoriness of the crucibles exceeded 1700 °C, and the molar ratio of SiO2 to Al2O3 was close to the upper limit for the optimal formation of mullite and thermal shock resistance. Slag was produced from a typical high-silica, high-alumina aluminosilicate system, and no fluxes, such as limestone and dolomite, were added during the smelting process. Moreover, coal resources have been widely used in ironmaking activities in the Benxi region at least since the Ming Dynasty, and craftsmen at that time had already mastered the technology of using coke as fuel and reductant to control the sulfur content in pig iron. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

26 pages, 7813 KB  
Article
Fe–Si–O Isotope Characteristics and Ore Formation Mechanisms of the Hugushan Area BIF-Type Iron Deposits in the Central North China Craton
by Ende Wang, Deqing Zhang, Jinpeng Luan, Yekai Men, Ran Wang, Jianming Xia and Suibo Zhang
Minerals 2025, 15(9), 996; https://doi.org/10.3390/min15090996 - 19 Sep 2025
Viewed by 241
Abstract
The Hugushan banded iron formation (BIF) is one of the most representative iron ore deposits in the central part of the North China Craton, and its ore formation mechanism remains highly controversial. This study presents whole-rock and Fe–Si–O isotope geochemical evidence, offering a [...] Read more.
The Hugushan banded iron formation (BIF) is one of the most representative iron ore deposits in the central part of the North China Craton, and its ore formation mechanism remains highly controversial. This study presents whole-rock and Fe–Si–O isotope geochemical evidence, offering a new perspective on the ore formation mechanism of the Hugushan BIFs. The samples from the upper and lower parts of the Hugushan BIFs are characterized by slight enrichment of heavy and light Fe isotopes, respectively. Additionally, the samples from the upper part of the Hugushan BIFs show characteristics of slightly positive Ce anomalies and negative La anomalies, suggesting that the shallow ancient seawater was in a partially oxidized state, whereas the deep seawater remained in a reductive environment during the depositional period. The low Al2O3 and TiO2 concentrations, as well as the depletion of Zr and Hf in the Hugushan BIFs, suggest that the contribution of terrestrial detrital materials to deposition is extremely limited. The BIFs all exhibit positive Eu anomalies, and the quartz in the BIFs is depleted in 30Si, a characteristic similar to that observed in siliceous rocks formed in hydrothermal vent environments and during hydrothermal plume activity. Additionally, the δ18O values of quartz in Hugushan BIFs are similar to the O isotope compositions of hydrothermal sedimentary siliceous rocks, further suggesting that the silicon in BIFs originates primarily from seafloor hydrothermal activity. The combination of Eu/Sm, Sm/Yb, and Y/Ho ratios indicates that the major components (iron and silica) of the Hugushan Iron Ore Deposit originated from the mixing of high-temperature hydrothermal fluids with seawater, with the hydrothermal fluid contributing slightly less than 0.1%. The magnetite and quartz bands in the BIFs exhibit inhomogeneous and covariant δ56Fe and δ30Si isotope characteristics, suggesting that the alternating siliceous and ferruginous layers are products of original chemical deposition in the ocean. Periodic hydrothermal activity and ocean transgression caused the recurring deposition of siliceous and ferruginous layers, resulting in the characteristic banded structure of the Hugushan Iron Ore Deposit. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

12 pages, 7302 KB  
Article
Effects of Deoxidation Processes on Inclusions in Environmentally Friendly Free-Cutting Steel
by Dong Wang, Binzhou Li, Luoyi Huang, Dongping Zhan and Hang Gao
Metals 2025, 15(9), 1018; https://doi.org/10.3390/met15091018 - 13 Sep 2025
Viewed by 299
Abstract
Deoxidation of liquid steel is a key link that affects the quality of environmentally friendly free-cutting steel. The selection and addition sequence of deoxidizer affects the composition, size, distribution, and morphology of non-metallic inclusions, which ultimately affect the machinability of free-cutting steel. The [...] Read more.
Deoxidation of liquid steel is a key link that affects the quality of environmentally friendly free-cutting steel. The selection and addition sequence of deoxidizer affects the composition, size, distribution, and morphology of non-metallic inclusions, which ultimately affect the machinability of free-cutting steel. The effects of deoxidation processes on inclusions in environmentally friendly free-cutting steel were studied by high-temperature experiments and thermodynamic calculations. The content of total oxygen and inclusion characteristics in steel were analyzed by an oxygen and nitrogen analyzer, a metallographic microscope, a scanning electron microscope, and an energy spectrum analyzer. The results show that the inclusions in the process of an initial Si-Fe alloy addition followed by a manganese addition (H1) are mainly Al2O3-SiO2-MnO composite inclusions in the liquid phase. In addition to the liquid phase Al2O3-SiO2-MnO complex inclusions in the MnO-rich region, there are also some solid phase Al2O3-MnO inclusions with high Al2O3 content in the process of an initial manganese addition followed by a Si-Fe alloy addition (H2). In the two deoxidation experiments, Bi particles mainly exist in the form of adhesion to MnS inclusions. Referring to H2, the average value and median of the aspect ratio is larger and the number of sulfide inclusions with aspect ratio greater than 1.0 increases significantly in H1. In addition, the spheroidization degree of MnS inclusions in the H2 is relatively good. Full article
Show Figures

Figure 1

20 pages, 2734 KB  
Article
Development and Characterization of High-Strength Coalbed Fracturing Proppant Based on Activated Carbon Skeleton
by Kai Wang, Chenye Guo, Qisen Gong, Gen Li, Xiaoyue Zhuo, Peng Zhuo and Chaoxian Chen
Energies 2025, 18(18), 4854; https://doi.org/10.3390/en18184854 - 12 Sep 2025
Viewed by 274
Abstract
To address the challenges of low permeability, high gas adsorption, and a fragile structure in coalbed methane reservoirs, this study developed a high-strength composite proppant with an activated carbon skeleton via nitric acid pretreatment, silica–alumina sol coating, and calcination. Orthogonal experiments optimized the [...] Read more.
To address the challenges of low permeability, high gas adsorption, and a fragile structure in coalbed methane reservoirs, this study developed a high-strength composite proppant with an activated carbon skeleton via nitric acid pretreatment, silica–alumina sol coating, and calcination. Orthogonal experiments optimized the preparation conditions: 30–40 mesh activated carbon, Si/Al molar ratio of 4:1, calcination at 650 °C for 2 h. The resulting proppant exhibited an excellent performance: a single-particle compressive strength of 55.5 N, porosity of 33.2%, crushing rate of only 2.3% under 50 MPa closure pressure, and permeability 48.5% higher than quartz sand. In simulated acidic coalbed environments (pH 3–5), its acid corrosion rate was <2.8%, and it enhanced methane desorption by 16.2% compared to pure coal. Additionally, the proppant showed a superior transport performance in fracturing fluids, with better distribution uniformity in fractures than ceramsite, and its hydrophobic surface (contact angle 115.32°) improved fracturing fluid flowback efficiency. This proppant integrates high strength, good conductivity, gas desorption promotion, and corrosion resistance, offering a novel material solution for efficient coalbed methane extraction. Full article
(This article belongs to the Special Issue Advances in Unconventional Reservoirs and Enhanced Oil Recovery)
Show Figures

Figure 1

19 pages, 5973 KB  
Article
Phase Transformation and Si/Al Leaching Behavior of High-Silica–Alumina Coal Gangue Activated by Sodium-Based Additives
by Hongwei Du, Ke Li, Xinghao Shi, Lingxian Fang and Zhao Cao
Minerals 2025, 15(9), 942; https://doi.org/10.3390/min15090942 - 4 Sep 2025
Viewed by 423
Abstract
High-silica–alumina coal gangue is rich in kaolinite, quartz, and other mineral components. The potential for resource utilization is huge, but the silica–aluminate structure is highly stable, and it is difficult to achieve efficient dissociation and elemental enrichment using traditional extraction processes. This study [...] Read more.
High-silica–alumina coal gangue is rich in kaolinite, quartz, and other mineral components. The potential for resource utilization is huge, but the silica–aluminate structure is highly stable, and it is difficult to achieve efficient dissociation and elemental enrichment using traditional extraction processes. This study selects typical high-silica–alumina coal gangue as the research object and systematically studies the rules of the physical phase transformation mechanism and ion migration behavior in the activation process of the sodium-based additives stage. In addition, a graded leaching and separation processing route is established, realizing the effective separation and extraction of silica–alumina. The key parameters were optimized using response surface methodology (RSM), obtaining the optimal activation conditions of 800 °C, 30 min, and an additives ratio of 0.8. Under these conditions, the highest dissolution rates of silica and alumina are 82.1% and 92.36%, respectively. Characterization techniques such as XRD, FTIR, and SEM reveal that the activation mechanism of coal gangue involves the decomposition of the aluminosilicate framework and the erosion of sodium ions. At the same time, the chemical bonding reorganization contributes to forming water-soluble sodium silicate (Na2SiO3) and insoluble nepheline (NaAlSiO4), which significantly promotes the release of Si and Al. When the activation temperature is too high, the nepheline phase is transformed into amorphous glassy sodium aluminate and precipitated on the surface, which gradually encapsulates the sodium silicate. This encapsulation restricts dissolution pathways, thereby leading to system densification. Moreover, enhanced resistance to acid attack leads to a decrease in the dissolution rates of Si and Al. This study elucidates the mineral phase reconstruction and element migration mechanisms involved in sodium-based activation and presents a viable approach for the high-value utilization of coal gangue. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

12 pages, 1210 KB  
Communication
Synthesis of New Phenoxide-Modified Half-Titanocene Catalysts for Ethylene Polymerization
by Jiahao Gao, Wen-Hua Sun and Kotohiro Nomura
Catalysts 2025, 15(9), 840; https://doi.org/10.3390/catal15090840 - 2 Sep 2025
Viewed by 548
Abstract
A series of half-titanocenes containing different trialkylsilyl para-phenoxy substituents, Cp*TiCl2(O-2,6-iPr2-4-R-C6H2) [Cp* = C5Me5; R = Si(n-Bu)3 (5), SiMe2(n-C8 [...] Read more.
A series of half-titanocenes containing different trialkylsilyl para-phenoxy substituents, Cp*TiCl2(O-2,6-iPr2-4-R-C6H2) [Cp* = C5Me5; R = Si(n-Bu)3 (5), SiMe2(n-C8H17) (6), SiMe2(t-Bu) (7)], were prepared and identified. Catalytic activity in ethylene polymerization by Cp*TiCl2(O-2,6-iPr2-4-R-C6H2) [R = H (1), SiMe3 (2), SiEt3 (3), Si(i-Pr)3 (4), 57]–MAO (methylaluminoxane) catalysts increased in the following order (in toluene at 25 °C, ethylene 4 atm): R = H (1) < SiMe3 (2), SiEt3 (3), Si(i-Pr)3 (4) < SiMe2(t-Bu) (7) < SiMe2(n-C8H17) (6) < Si(n-Bu)3 (5, activity = 6.56 × 104 kg-PE/mol-Ti·h). The results thus suggest that the introduction of an alkyl group into a silyl substituent led to an increase in activity. The activities of 5 were affected by the Al/Ti molar ratio (amount of MAO charged), and the highest activity (7.00 × 105 kg-PE/mol-Ti·h) was observed under optimized conditions at 50 °C, whereas the activity decreased at 80 °C. In ethylene copolymerization with 1-dodecene, the Si(n-Bu)3 analog (5) exhibited remarkable catalytic activity (4.32 × 106 kg-polymer/mol-Ti·h at 25 °C), which was higher than those of the reported catalysts (13), affording poly(ethylene-co-1-dodecene)s with efficient comonomer incorporation as observed in 3 [rE = 3.77 (5) vs. 3.58 (3)]. Full article
(This article belongs to the Special Issue Innovative Catalytic Approaches in Polymerization)
Show Figures

Scheme 1

20 pages, 3801 KB  
Article
Structural Study of Metakaolin-Phosphate Geopolymers Prepared with Wide Range of Al/P Molar Ratios
by Martin Keppert, Martina Urbanová, Ivana Šeděnková, Václav Pokorný, Michala Breníková, Jitka Krejsová, Vojtěch Pommer, Eva Vejmelková, Dana Koňáková and Jiří Brus
Polymers 2025, 17(17), 2358; https://doi.org/10.3390/polym17172358 - 30 Aug 2025
Viewed by 796
Abstract
Geopolymers represent an innovative and environmentally sustainable alternative to traditional construction materials, offering significant potential for reducing anthropogenic CO2 emissions. Among these, phosphoric acid-activated metakaolin-based systems have attracted increasing attention for their chemical and thermal resilience. In this study, we present a [...] Read more.
Geopolymers represent an innovative and environmentally sustainable alternative to traditional construction materials, offering significant potential for reducing anthropogenic CO2 emissions. Among these, phosphoric acid-activated metakaolin-based systems have attracted increasing attention for their chemical and thermal resilience. In this study, we present a comprehensive structural and mechanical evaluation of metakaolin-based geopolymers synthesized across a wide range of Al/P molar ratios (0.8–4.0). Six formulations were systematically prepared and analyzed using X-ray powder diffraction (XRPD), small-angle X-ray scattering (SAXS), Fourier-transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (ssNMR), and complementary mechanical testing. The novelty of this work lies in the integrated mapping of composition–structure–property relationships across the broad Al/P spectrum under controlled synthesis, combined with the rare application of SAXS to reveal composition-dependent nanoscale domains (~18–50 nm). We identify a stoichiometric window at Al/P ≈ 1.5, where complete acid consumption leads to a structurally homogeneous AlVI–O–P network, yielding the highest compressive strength. In contrast, acid-rich systems exhibit divergent flexural and compressive behaviors, with enhanced flexural strength linked to hydrated silica domains arising from metakaolin dealumination, quantitatively tracked by 29Si MAS NMR. XRPD further reveals the formation of uncommon Si–P crystalline phases (SiP2O7, Si5P6O25) under low-temperature curing in acid-rich compositions. Together, these findings provide new insights into the nanoscale structuring, phase evolution, and stoichiometric control of silica–alumino–phosphate geopolymers, highlighting strategies for optimizing their performance in demanding thermal and chemical environments. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

18 pages, 4766 KB  
Article
Numerical Analysis and Experimental Verification of Radial Shear Rolling of Titanium Alloy
by Abdullah Mahmoud Alhaj Ali, Anna Khakimova, Yury Gamin, Tatiana Kin, Nikolay Letyagin and Dmitry Demin
Modelling 2025, 6(3), 93; https://doi.org/10.3390/modelling6030093 - 29 Aug 2025
Viewed by 585
Abstract
Numerical simulation of metal forming processes is finding increasingly wide applications in advanced industry for the optimization of material processing conditions and prediction of process parameters, finally delivering a reduction of production costs. This work presents a comparison between simulation results of radial [...] Read more.
Numerical simulation of metal forming processes is finding increasingly wide applications in advanced industry for the optimization of material processing conditions and prediction of process parameters, finally delivering a reduction of production costs. This work presents a comparison between simulation results of radial shear rolling (RSR) of VT3-1 titanium alloy (Ti-Al-Mo-Cr-Fe-Si) and results of experimental RSR at 1060 °C, 980 °C, and 900 °C in one, three, and five passes, respectively. The digital model (DM) demonstrates a high convergence of the calculation results (calculation error of less than 5%) with the actual geometric parameters of the experimental bars, their surface temperature, and rolling time during the experiment, which indicates a good potential for its application in the selection of deformation modes. Based on the simulation and experimental data, the conditions providing for the formation of differently sized grains in the bar cross-section have been identified. All of the as-rolled bars exhibit a gradient distribution of macrostructure grain size number (GSN), from the smallest one at the bar surface (2–4) to the greatest one in the center (4–6). The macrostructure GSN correlates with the workpiece temperature, which is the highest in the axial zone of the bars, and with the experimentally observed high plastic strain figures in the surface layers. It was found that, depending on the temperature conditions and reduction ratio per pass, any minor change in the values of process parameters can lead to the formation of macrostructures with different grain size numbers. Full article
(This article belongs to the Special Issue Finite Element Simulation and Analysis)
Show Figures

Figure 1

10 pages, 1879 KB  
Article
Design of a High-Power, High-Efficiency GaN Power Amplifier for W-Band Applications
by Shuai Liu, Xiaohua Ma, Yi Zhang and Chunliang Xu
Micromachines 2025, 16(9), 985; https://doi.org/10.3390/mi16090985 - 28 Aug 2025
Viewed by 671
Abstract
This paper presents a W-band high-efficiency and high-output-power power amplifier (PA) based on a 130 nm AlGaN/GaN-on-SiC HEMT process. The PA is designed to deliver optimal output power and gain performance across the entire W-band. A balanced architecture is adopted, combining two amplifier [...] Read more.
This paper presents a W-band high-efficiency and high-output-power power amplifier (PA) based on a 130 nm AlGaN/GaN-on-SiC HEMT process. The PA is designed to deliver optimal output power and gain performance across the entire W-band. A balanced architecture is adopted, combining two amplifier units through Lange couplers. High- and low-impedance microstrip lines are employed for input, output, and inter-stage matching. Each amplifier core adopts a three-stage configuration with gate width ratios of 1:2:4 to enhance gain. The bias network incorporates MIM capacitors and thin-film resistors to improve stability. Measured results indicate a small signal gain exceeding 17 dB under a gate voltage of −2.2 V and a drain voltage of +20 V. Within the 80–86 GHz frequency range, the PA achieves an output power above 34 dBm with a 22 dBm input power, corresponding to a power gain above 12 dB and a power-added efficiency (PAE) greater than 20%. The chip occupies a compact area of 2.65 mm × 3.75 mm. Compared with previously reported works, the proposed PA demonstrates the highest PAE within the 80–86 GHz band. Full article
(This article belongs to the Special Issue RF and Power Electronic Devices and Applications)
Show Figures

Figure 1

Back to TopTop