Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Solanum tuberosum L. polysaccharide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1070 KB  
Article
Anti-Inflammatory Effects of Solanum tuberosum L. Polysaccharide and Its Limited Gene Expression Profile
by Evgenii Generalov, Ilya Grigoryan, Vladislav Minaichev, Olga Sinitsyna, Leonid Yakovenko, Arkady Sinitsyn and Liubov Generalova
Int. J. Mol. Sci. 2025, 26(12), 5562; https://doi.org/10.3390/ijms26125562 - 10 Jun 2025
Cited by 1 | Viewed by 634
Abstract
Previous studies showed a potent anti-inflammatory activity of Solanum tuberosum L. polysaccharide (STP), which inhibited pro-inflammatory cytokines and stimulated anti-inflammatory ones in peptic ulcer models. Thus, the main goal of this study was to find out the molecular background of such activity and [...] Read more.
Previous studies showed a potent anti-inflammatory activity of Solanum tuberosum L. polysaccharide (STP), which inhibited pro-inflammatory cytokines and stimulated anti-inflammatory ones in peptic ulcer models. Thus, the main goal of this study was to find out the molecular background of such activity and possible applications in different anti-inflammatory models. This study investigated the anti-inflammatory potential of the polysaccharide STP using model of LPS-induced inflammation in THP-1 macrophage-like cells (on the expression of IL1B, IL6, IL10, TNF, NFKB1, BCL2, NRF2, and BAX—genes involved in the regulation of inflammatory processes and oxidative stress), rat pocket granuloma, and carrageenan-induced oedema models. STP significantly reduced oedema volume, exhibiting a comparable anti-exudative effect to ibuprofen and surpassing the control group. The anti-inflammatory mechanism of STP extends beyond suppression of proinflammatory cytokine (IL1B, IL6, TNF) expression, as it also activates cellular defence mechanisms (NRF2, BCL2, BAX) and expression of anti-inflammatory cytokine (IL10). This complex, multifactorial action suggests that STP may possess significant therapeutic value for inflammatory conditions. The combined functional and molecular findings underscore STP’s potent anti-inflammatory properties, comparable to ibuprofen. Full article
Show Figures

Graphical abstract

12 pages, 4291 KB  
Article
Immune Basis of Therapeutic Effects of Solanum tuberosum L. Polysaccharide on Chronic Peptic Ulcer Healing
by Evgenii Generalov, Denis Laryushkin, Kristina Kritskaya, Nina Kulchenko, Arkady Sinitsyn, Leonid Yakovenko, Liubov Generalova and Nikolay Belostotsky
Pharmaceuticals 2025, 18(4), 502; https://doi.org/10.3390/ph18040502 - 31 Mar 2025
Cited by 3 | Viewed by 1935
Abstract
Background/Objectives: Polysaccharides are complex molecules with a wide range of biological activities that can be used in various biomedical applications. In this work, the antiulcer effect and influence on the level of pro- and anti-inflammatory cytokines of Solanum tuberosum L. polysaccharide [...] Read more.
Background/Objectives: Polysaccharides are complex molecules with a wide range of biological activities that can be used in various biomedical applications. In this work, the antiulcer effect and influence on the level of pro- and anti-inflammatory cytokines of Solanum tuberosum L. polysaccharide (STP) were studied. Methods: The antiulcer effect of STP was studied in the Okabe chronic peptic ulcer model by evaluating the influence of STP on the ulcer index in Wistar rats, comparing it to omeprazole and ranitidine. Dose-effect analysis was also carried out. The level of pro- and anti-inflammatory cytokines was studied using ELISA kits. Results: After treatment in the polysaccharide groups, ulcer healing is observed in 60–80% of cases, in the omeprazole group in 50%, and in the ranitidine group in 25%. STP intravenous injections lead to the formation of a more differentiated mucous membrane; no coarse scar tissue is formed, which is typical for control and comparison drugs. Glycan causes a significant acceleration of the healing of experimental peptic ulcers in rats. STP appears to modulate pro- and anti-inflammatory cytokines. On the fourth and tenth days, a significant decrease in the levels of pro-inflammatory cytokines IL-1b and IFN-γ was noted in the polysaccharide group compared to the control group, while the level of anti-inflammatory cytokine IL-4 significantly increased. Conclusions: Intravenous administration of STP leads to the restoration of functionality and effective tissue regeneration. The antiulcer activity of STP is based on the regulation of the pro- and anti-inflammatory balance. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

15 pages, 2398 KB  
Article
Evaluation of the Polysaccharide “Immeran” Activity in Syrian hamsters’ Model of SARS-CoV-2
by Liubov Viktorovna Generalova, Denis Pavlovich Laryushkin, Irina Anatolievna Leneva, Anna Valerievna Ivanina, Galina Vladimirovna Trunova, Sergei Vladimirovich Dolinnyi and Evgenii Aleksandrovich Generalov
Viruses 2024, 16(3), 423; https://doi.org/10.3390/v16030423 - 9 Mar 2024
Cited by 3 | Viewed by 1642
Abstract
COVID-19 is a highly contagious respiratory disease with a high number of lethal cases in humans, which causes the need to search for new therapeutic agents. Polysaccharides could be one of the prospective types of molecules with a large variety of biological activities, [...] Read more.
COVID-19 is a highly contagious respiratory disease with a high number of lethal cases in humans, which causes the need to search for new therapeutic agents. Polysaccharides could be one of the prospective types of molecules with a large variety of biological activities, especially antiviral. The aim of this work was to study the specific antiviral activity of the drug “Immeran” on a model of a new coronavirus infection SARS-CoV-2 in hamsters. Based on the second experiment, intraperitoneal treatment with the drug according to a treatment regimen in doses of 500 and 1000 μg/kg (administration after an hour, then once a day every other day, a total of 3 administrations) was effective, reliably suppressing the replication of the virus in the lungs and, at a dose of 1000 μg/kg, prevented weight loss in animals. In all cases, the treatment stimulated the formation of virus-neutralizing antibodies to the SARS-CoV-2 virus, which suggests that the drug possesses adjuvant properties. Full article
Show Figures

Figure 1

17 pages, 1923 KB  
Article
Genetic Loci of Plant Pathogenic Dickeya solani IPO 2222 Expressed in Contact with Weed-Host Bittersweet Nightshade (Solanum dulcamara L.) Plants
by Robert Czajkowski, Dorota M. Krzyżanowska, Daryna Sokolova, Łukasz Rąbalski, Maciej Kosiński, Sylwia Jafra and Aleksandra Królicka
Int. J. Mol. Sci. 2024, 25(5), 2794; https://doi.org/10.3390/ijms25052794 - 28 Feb 2024
Cited by 1 | Viewed by 2050
Abstract
Dickeya solani, belonging to the Soft Rot Pectobacteriaceae, are aggressive necrotrophs, exhibiting both a wide geographic distribution and a wide host range that includes many angiosperm orders, both dicot and monocot plants, cultivated under all climatic conditions. Little is known about [...] Read more.
Dickeya solani, belonging to the Soft Rot Pectobacteriaceae, are aggressive necrotrophs, exhibiting both a wide geographic distribution and a wide host range that includes many angiosperm orders, both dicot and monocot plants, cultivated under all climatic conditions. Little is known about the infection strategies D. solani employs to infect hosts other than potato (Solanum tuberosum L.). Our earlier study identified D. solani Tn5 mutants induced exclusively by the presence of the weed host S. dulcamara. The current study assessed the identity and virulence contribution of the selected genes mutated by the Tn5 insertions and induced by the presence of S. dulcamara. These genes encode proteins with functions linked to polyketide antibiotics and polysaccharide synthesis, membrane transport, stress response, and sugar and amino acid metabolism. Eight of these genes, encoding UvrY (GacA), tRNA guanosine transglycosylase Tgt, LPS-related WbeA, capsular biosynthesis protein VpsM, DltB alanine export protein, glycosyltransferase, putative transcription regulator YheO/PAS domain-containing protein, and a hypothetical protein, were required for virulence on S. dulcamara plants. The implications of D. solani interaction with a weed host, S. dulcamara, are discussed. Full article
(This article belongs to the Special Issue Systems Biology of Plant–Microbe Interactions)
Show Figures

Figure 1

16 pages, 2934 KB  
Article
CRISPR/Cas9-Mediated Mutagenesis of the Granule-Bound Starch Synthase Gene in the Potato Variety Yukon Gold to Obtain Amylose-Free Starch in Tubers
by Stephany Toinga-Villafuerte, Maria Isabel Vales, Joseph M. Awika and Keerti S. Rathore
Int. J. Mol. Sci. 2022, 23(9), 4640; https://doi.org/10.3390/ijms23094640 - 22 Apr 2022
Cited by 47 | Viewed by 11401
Abstract
Potato (Solanum tuberosum L.) is the third most important food crop after rice and wheat. Its tubers are a rich source of dietary carbohydrates in the form of starch, which has many industrial applications. Starch is composed of two polysaccharides, amylose and [...] Read more.
Potato (Solanum tuberosum L.) is the third most important food crop after rice and wheat. Its tubers are a rich source of dietary carbohydrates in the form of starch, which has many industrial applications. Starch is composed of two polysaccharides, amylose and amylopectin, and their ratios determine different properties and functionalities. Potato varieties with higher amylopectin have many food processing and industrial applications. Using Agrobacterium-mediated transformation, we delivered Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) reagents to potato (variety Yukon Gold) cells to disrupt the granule-bound starch synthase (gbssI) gene with the aim of eliminating the amylose component of starch. Lugol-Iodine staining of the tubers showed a reduction or complete elimination of amylose in some of the edited events. These results were further confirmed by the perchloric acid and enzymatic methods. One event (T2-7) showed mutations in all four gbss alleles and total elimination of amylose from the tubers. Viscosity profiles of the tuber starch from six different knockout events were determined using a Rapid Visco Analyzer (RVA), and the values reflected the amylopectin/amylose ratio. Follow-up studies will focus on eliminating the CRISPR components from the events and on evaluating the potential of clones with various amylose/amylopectin ratios for food processing and other industrial applications. Full article
(This article belongs to the Special Issue Crop Genome Editing)
Show Figures

Graphical abstract

26 pages, 5606 KB  
Article
Novel Nanobiocomposites Based on Natural Polysaccharides as Universal Trophic Low-Dose Micronutrients
by Spartak S. Khutsishvili, Alla I. Perfileva, Olga A. Nozhkina, Tatjana V. Ganenko and Konstantin V. Krutovsky
Int. J. Mol. Sci. 2021, 22(21), 12006; https://doi.org/10.3390/ijms222112006 - 5 Nov 2021
Cited by 18 | Viewed by 2993
Abstract
New promising manganese-containing nanobiocomposites (NCs) based on natural polysaccharides, arabinogalactan (AG), arabinogalactan sulfate (AGS), and κ-carrageenan (κ-CG) were studied to develop novel multi-purpose trophic low-dose organomineral fertilizers. The general toxicological effects of manganese (Mn) on the vegetation of potatoes ( [...] Read more.
New promising manganese-containing nanobiocomposites (NCs) based on natural polysaccharides, arabinogalactan (AG), arabinogalactan sulfate (AGS), and κ-carrageenan (κ-CG) were studied to develop novel multi-purpose trophic low-dose organomineral fertilizers. The general toxicological effects of manganese (Mn) on the vegetation of potatoes (Solanum tuberosum L.) was evaluated in this study. The essential physicochemical properties of this trace element in plant tissues, such as its elemental analysis and its spectroscopic parameters in electron paramagnetic resonance (EPR), were determined. Potato plants grown in an NC-containing medium demonstrated better biometric parameters than in the control medium, and no Mn accumulated in plant tissues. In addition, the synthesized NCs demonstrated a pronounced antibacterial effect against the phytopathogenic bacterium Clavibacter sepedonicus (Cms) and were proved to be safe for natural soil microflora. Full article
(This article belongs to the Special Issue Biopolymer Composites: Synthesis, properties and Applications)
Show Figures

Figure 1

22 pages, 2834 KB  
Article
Pectobacterium parmentieri SCC 3193 Mutants with Altered Synthesis of Cell Surface Polysaccharides Are Resistant to N4-Like Lytic Bacteriophage ϕA38 (vB_Ppp_A38) but Express Decreased Virulence in Potato (Solanum tuberosum L.) Plants
by Przemyslaw Bartnik, Sylwia Jafra, Magdalena Narajczyk, Paulina Czaplewska and Robert Czajkowski
Int. J. Mol. Sci. 2021, 22(14), 7346; https://doi.org/10.3390/ijms22147346 - 8 Jul 2021
Cited by 7 | Viewed by 4040
Abstract
Pectobacterium parmentieri is a Gram-negative plant-pathogenic bacterium able to infect potato (Solanum tuberosum L.). Little is known about lytic bacteriophages infecting P. parmentieri and how phage-resistance influences the environmental fitness and virulence of this species. A lytic phage vB_Ppp_A38 (ϕA38) has been [...] Read more.
Pectobacterium parmentieri is a Gram-negative plant-pathogenic bacterium able to infect potato (Solanum tuberosum L.). Little is known about lytic bacteriophages infecting P. parmentieri and how phage-resistance influences the environmental fitness and virulence of this species. A lytic phage vB_Ppp_A38 (ϕA38) has been previously isolated and characterized as a potential biological control agent for the management of P. parmentieri. In this study, seven P. parmentieri SCC 3193 Tn5 mutants were identified that exhibited resistance to infection caused by vB_Ppp_A38 (ϕA38). The genes disrupted in these seven mutants encoded proteins involved in the assembly of O-antigen, sugar metabolism, and the production of bacterial capsule exopolysaccharides. The potential of A38-resistant P. parmentieri mutants for plant colonization and pathogenicity as well as other phenotypes expected to contribute to the ecological fitness of P. parmentieri, including growth rate, use of carbon and nitrogen sources, production of pectinolytic enzymes, proteases, cellulases, and siderophores, swimming and swarming motility, presence of capsule and flagella as well as the ability to form biofilm were assessed. Compared to the wild-type P. parmentieri strain, all phage-resistant mutants exhibited a reduced ability to colonize and to cause symptoms in growing potato (S. tuberosum L.) plants. The implications of bacteriophage resistance on the ecological fitness of P. parmentieri are discussed. Full article
(This article belongs to the Special Issue Advances on Bacterial Genomics)
Show Figures

Figure 1

Back to TopTop