Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = Space–Air–Ground Integrated Networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1970 KB  
Article
Transmission Control for Space–Air–Ground Integrated Multi-Hop Networks in Millimeter-Wave and Terahertz Communications
by Liang Zong, Yun Cheng, Zhangfeng Ma, Han Wang, Zhan Liu and Yinqing Tang
Electronics 2025, 14(16), 3330; https://doi.org/10.3390/electronics14163330 - 21 Aug 2025
Viewed by 274
Abstract
Millimeter-wave (mmWave) and terahertz (THz) communications are susceptible to frequent link disruptions and severe performance degradation due to high directionality, significant path loss, and sensitivity to blockages. These challenges are particularly acute in highly dynamic and densely populated user environments. The issues present [...] Read more.
Millimeter-wave (mmWave) and terahertz (THz) communications are susceptible to frequent link disruptions and severe performance degradation due to high directionality, significant path loss, and sensitivity to blockages. These challenges are particularly acute in highly dynamic and densely populated user environments. The issues present significant obstacles to ensuring reliability and quality of service (QoS) in future space–air–ground integrated networks. To address these challenges, this paper proposes an adaptive transmission control scheme designed for space–air–ground integrated multi-hop networks operating in the mmWave/THz bands. By analyzing the intermittent connectivity inherent in such networks, the proposed scheme incorporates an incremental factor and a backlog indicator into its congestion control mechanism. This allows for the accurate differentiation between packet losses resulting from network congestion and those caused by channel blockages, such as human body occlusion or beam misalignment. Furthermore, the scheme optimizes the initial congestion window during the slow-start phase and dynamically adapts its transmission strategy during the congestion avoidance phase according to the identified cause of packet loss. Simulation results demonstrate that the proposed method effectively mitigates throughput degradation from link blockages, improves data transmission rates in highly dynamic environments, and sustains more stable end-to-end connectivity. Our proposed scheme achieves a 35% higher throughput than TCP Hybla, 40% lower latency than TCP Veno, and maintains 99.2% link utilization under high mobility. Full article
Show Figures

Figure 1

26 pages, 10272 KB  
Article
Research on Disaster Environment Map Fusion Construction and Reinforcement Learning Navigation Technology Based on Air–Ground Collaborative Multi-Heterogeneous Robot Systems
by Hongtao Tao, Wen Zhao, Li Zhao and Junlong Wang
Sensors 2025, 25(16), 4988; https://doi.org/10.3390/s25164988 - 12 Aug 2025
Viewed by 612
Abstract
The primary challenge that robots face in disaster rescue is to precisely and efficiently construct disaster maps and achieve autonomous navigation. This paper proposes a method for air–ground collaborative map construction. It utilizes the flight capability of an unmanned aerial vehicle (UAV) to [...] Read more.
The primary challenge that robots face in disaster rescue is to precisely and efficiently construct disaster maps and achieve autonomous navigation. This paper proposes a method for air–ground collaborative map construction. It utilizes the flight capability of an unmanned aerial vehicle (UAV) to achieve rapid three-dimensional space coverage and complex terrain crossing for rapid and efficient map construction. Meanwhile, it utilizes the stable operation capability of an unmanned ground vehicle (UGV) and the ground detail survey capability to achieve precise map construction. The maps constructed by the two are accurately integrated to obtain precise disaster environment maps. Among them, the map construction and positioning technology is based on the FAST LiDAR–inertial odometry 2 (FAST-LIO2) framework, enabling the robot to achieve precise positioning even in complex environments, thereby obtaining more accurate point cloud maps. Before conducting map fusion, the point cloud is preprocessed first to reduce the density of the point cloud and also minimize the interference of noise and outliers. Subsequently, the coarse and fine registrations of the point clouds are carried out in sequence. The coarse registration is used to reduce the initial pose difference of the two point clouds, which is conducive to the subsequent rapid and efficient fine registration. The coarse registration uses the improved sample consensus initial alignment (SAC-IA) algorithm, which significantly reduces the registration time compared with the traditional SAC-IA algorithm. The precise registration uses the voxelized generalized iterative closest point (VGICP) algorithm. It has a faster registration speed compared with the generalized iterative closest point (GICP) algorithm while ensuring accuracy. In reinforcement learning navigation, we adopted the deep deterministic policy gradient (DDPG) path planning algorithm. Compared with the deep Q-network (DQN) algorithm and the A* algorithm, the DDPG algorithm is more conducive to the robot choosing a better route in a complex and unknown environment, and at the same time, the motion trajectory is smoother. This paper adopts Gazebo simulation. Compared with physical robot operation, it provides a safe, controllable, and cost-effective environment, supports efficient large-scale experiments and algorithm debugging, and also supports flexible sensor simulation and automated verification, thereby optimizing the overall testing process. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

32 pages, 19346 KB  
Article
Three-Dimensional Intelligent Understanding and Preventive Conservation Prediction for Linear Cultural Heritage
by Ruoxin Wang, Ming Guo, Yaru Zhang, Jiangjihong Chen, Yaxuan Wei and Li Zhu
Buildings 2025, 15(16), 2827; https://doi.org/10.3390/buildings15162827 - 8 Aug 2025
Viewed by 402
Abstract
This study proposes an innovative method that integrates multi-source remote sensing technologies and artificial intelligence to meet the urgent needs of deformation monitoring and ecohydrological environment analysis in Great Wall heritage protection. By integrating synthetic aperture radar (InSAR) technology, low-altitude oblique photogrammetry models, [...] Read more.
This study proposes an innovative method that integrates multi-source remote sensing technologies and artificial intelligence to meet the urgent needs of deformation monitoring and ecohydrological environment analysis in Great Wall heritage protection. By integrating synthetic aperture radar (InSAR) technology, low-altitude oblique photogrammetry models, and the three-dimensional Gaussian splatting model, an integrated air–space–ground system for monitoring and understanding the Great Wall is constructed. Low-altitude tilt photogrammetry combined with the Gaussian splatting model, through drone images and intelligent generation algorithms (e.g., generative adversarial networks), quickly constructs high-precision 3D models, significantly improving texture details and reconstruction efficiency. Based on the 3D Gaussian splatting model of the AHLLM-3D network, the integration of point cloud data and the large language model achieves multimodal semantic understanding and spatial analysis of the Great Wall’s architectural structure. The results show that the multi-source data fusion method can effectively identify high-risk deformation zones (with annual subsidence reaching −25 mm) and optimize modeling accuracy through intelligent algorithms (reducing detail error by 30%), providing accurate deformation warnings and repair bases for Great Wall protection. Future studies will further combine the concept of ecological water wisdom to explore heritage protection strategies under multi-hazard coupling, promoting the digital transformation of cultural heritage preservation. Full article
Show Figures

Figure 1

20 pages, 2223 KB  
Article
Category Attribute-Oriented Heterogeneous Resource Allocation and Task Offloading for SAGIN Edge Computing
by Yuan Qiu, Xiang Luo, Jianwei Niu, Xinzhong Zhu and Yiming Yao
J. Sens. Actuator Netw. 2025, 14(4), 81; https://doi.org/10.3390/jsan14040081 - 1 Aug 2025
Viewed by 473
Abstract
Space-Air-Ground Integrated Network (SAGIN), which is considered a network architecture with great development potential, exhibits significant cross-domain collaboration characteristics at present. However, most of the existing works ignore the matching and adaptability of differential tasks and heterogeneous resources, resulting in significantly inefficient task [...] Read more.
Space-Air-Ground Integrated Network (SAGIN), which is considered a network architecture with great development potential, exhibits significant cross-domain collaboration characteristics at present. However, most of the existing works ignore the matching and adaptability of differential tasks and heterogeneous resources, resulting in significantly inefficient task execution and undesirable network performance. As a consequence, we formulate a category attribute-oriented resource allocation and task offloading optimization problem with the aim of minimizing the overall scheduling cost. We first introduce a task–resource matching matrix to facilitate optimal task offloading policies with computation resources. In addition, virtual queues are constructed to take the impacts of randomized task arrival into account. To solve the optimization objective which jointly considers bandwidth allocation, transmission power control and task offloading decision effectively, we proposed a deep reinforcement learning (DRL) algorithm framework considering type matching. Simulation experiments demonstrate the effectiveness of our proposed algorithm as well as superior performance compared to others. Full article
(This article belongs to the Section Communications and Networking)
Show Figures

Figure 1

23 pages, 6982 KB  
Article
An Efficient and Low-Delay SFC Recovery Method in the Space–Air–Ground Integrated Aviation Information Network with Integrated UAVs
by Yong Yang, Buhong Wang, Jiwei Tian, Xiaofan Lyu and Siqi Li
Drones 2025, 9(6), 440; https://doi.org/10.3390/drones9060440 - 16 Jun 2025
Viewed by 486
Abstract
Unmanned aerial vehicles (UAVs), owing to their flexible coverage expansion and dynamic adjustment capabilities, hold significant application potential across various fields. With the emergence of urban low-altitude air traffic dominated by UAVs, the integrated aviation information network combining UAVs and manned aircraft has [...] Read more.
Unmanned aerial vehicles (UAVs), owing to their flexible coverage expansion and dynamic adjustment capabilities, hold significant application potential across various fields. With the emergence of urban low-altitude air traffic dominated by UAVs, the integrated aviation information network combining UAVs and manned aircraft has evolved into a complex space–air–ground integrated Internet of Things (IoT) system. The application of 5G/6G network technologies, such as cloud computing, network function virtualization (NFV), and edge computing, has enhanced the flexibility of air traffic services based on service function chains (SFCs), while simultaneously expanding the network attack surface. Compared to traditional networks, the aviation information network integrating UAVs exhibits greater heterogeneity and demands higher service reliability. To address the failure issues of SFCs under attack, this study proposes an efficient SFC recovery method for recovery rate optimization (ERRRO) based on virtual network functions (VNFs) migration technology. The method first determines the recovery order of failed SFCs according to their recovery costs, prioritizing the restoration of SFCs with the lowest costs. Next, the migration priorities of the failed VNFs are ranked based on their neighborhood certainty, with the VNFs exhibiting the highest neighborhood certainty being migrated first. Finally, the destination nodes for migrating the failed VNFs are determined by comprehensively considering attributes such as the instantiated SFC paths, delay of physical platforms, and residual resources. Experiments demonstrate that the ERRRO performs well under networks with varying resource redundancy and different types of attacks. Compared to methods reported in the literature, the ERRRO achieves superior performance in terms of the SFC recovery rate and delay. Full article
(This article belongs to the Special Issue Space–Air–Ground Integrated Networks for 6G)
Show Figures

Figure 1

32 pages, 3240 KB  
Review
From 6G to SeaX-G: Integrated 6G TN/NTN for AI-Assisted Maritime Communications—Architecture, Enablers, and Optimization Problems
by Anastasios Giannopoulos, Panagiotis Gkonis, Alexandros Kalafatelis, Nikolaos Nomikos, Sotirios Spantideas, Panagiotis Trakadas and Theodoros Syriopoulos
J. Mar. Sci. Eng. 2025, 13(6), 1103; https://doi.org/10.3390/jmse13061103 - 30 May 2025
Viewed by 1303
Abstract
The rapid evolution of wireless communications has introduced new possibilities for the digital transformation of maritime operations. As 5G begins to take shape in selected nearshore and port environments, the forthcoming 6G promises to unlock transformative capabilities across the entire maritime domain, integrating [...] Read more.
The rapid evolution of wireless communications has introduced new possibilities for the digital transformation of maritime operations. As 5G begins to take shape in selected nearshore and port environments, the forthcoming 6G promises to unlock transformative capabilities across the entire maritime domain, integrating Terrestrial/Non-Terrestrial Networks (TN/NTN) to form a space-air-ground-sea-underwater system. This paper presents a comprehensive review of how 6G-enabling technologies can be adapted to address the unique challenges of Maritime Communication Networks (MCNs). We begin by outlining a reference architecture for heterogeneous MCNs and reviewing the limitations of existing 5G deployments at sea. We then explore the key technical advancements introduced by 6G and map them to maritime use cases such as fleet coordination, just-in-time port logistics, and low-latency emergency response. Furthermore, the critical Artificial Intelligence/Machine Learning (AI/ML) concepts and algorithms are described to highlight their potential in optimizing maritime functionalities. Finally, we propose a set of resource optimization scenarios, including dynamic spectrum allocation, energy-efficient communications and edge offloading in MCNs, and discuss how AI/ML and learning-based methods can offer scalable, adaptive solutions. By bridging the gap between emerging 6G capabilities and practical maritime requirements, this paper highlights the role of intelligent, resilient, and globally connected networks in shaping the future of maritime communications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 7097 KB  
Article
Suitability Assessment of Remotely Sensed Urban Air Quality Data
by Zixin Zhang, Bin Zou and Shenxin Li
Remote Sens. 2025, 17(11), 1848; https://doi.org/10.3390/rs17111848 - 26 May 2025
Viewed by 544
Abstract
The application of remotely sensed PM2.5 concentration datasets has become increasingly widespread, but the spatial precision verification at local scales is lacking. This study aims to investigate the consistency of PM2.5 concentration between remotely sensed data and ground-based data and optimize [...] Read more.
The application of remotely sensed PM2.5 concentration datasets has become increasingly widespread, but the spatial precision verification at local scales is lacking. This study aims to investigate the consistency of PM2.5 concentration between remotely sensed data and ground-based data and optimize the accuracy of remotely sensed PM2.5 concentration data at the urban scale. Specifically, taking Changsha city as a case, four evaluation indices—R2, RMSE, uncertainty, and high deviation rate (HDR)—were employed to evaluate the credibility of remotely sensed data at national and dense ground-based stations, then analyze spatial variations of credibility and develop a Recursive Feature Elimination–Cross-Validation Random Forest (RFECV-RF) model to improve local fitting accuracy. Results show that remotely sensed data exhibit high credibility at national stations, while credibility at dense stations varies spatially and tends to decline with increasing distance from national stations. After optimizing by the RFECV-RF model, the credibility of remotely sensed data can be significantly improved, with R2 increasing from 0.87 to 0.98, RMSE decreasing from 8.59 µg/m3 to 3.08 µg/m3, HDR reducing from 2.01% to 0.04%, and uncertainty declining from 18.93% to 8.27%. Nevertheless, certain regions still require additional monitoring to further expand the credible spatial extent. These findings provide valuable insights for improving PM2.5 concentration remote sensing monitoring methods and designing the integrated “air–space–ground” observational network scheme. Full article
Show Figures

Figure 1

33 pages, 2563 KB  
Review
Research Progress on Modulation Format Recognition Technology for Visible Light Communication
by Shengbang Zhou, Weichang Du, Chuanqi Li, Shutian Liu and Ruiqi Li
Photonics 2025, 12(5), 512; https://doi.org/10.3390/photonics12050512 - 19 May 2025
Cited by 1 | Viewed by 680 | Correction
Abstract
As sixth-generation mobile communication (6G) advances towards ultra-high speed and global coverage, visible light communication (VLC) has emerged as a crucial complementary technology due to its ultra-high bandwidth, low power consumption, and immunity to electromagnetic interference. Modulation format recognition (MFR) plays a vital [...] Read more.
As sixth-generation mobile communication (6G) advances towards ultra-high speed and global coverage, visible light communication (VLC) has emerged as a crucial complementary technology due to its ultra-high bandwidth, low power consumption, and immunity to electromagnetic interference. Modulation format recognition (MFR) plays a vital role in the dynamic optimization and adaptive transmission of VLC systems, significantly influencing communication performance in complex channel environments. This paper systematically reviews the research progress in MFR for VLC, comparing the theoretical frameworks and limitations of traditional likelihood-based (LB) and feature-based (FB) methods. It also explores the advancements brought by deep learning (DL) technology, particularly in enhancing noise robustness, classification accuracy, and cross-scenario adaptability through automatic feature extraction and nonlinear mapping. The findings indicate that DL-based MFR substantially enhances recognition performance in intricate channels via multi-dimensional feature fusion, lightweight architectures, and meta-learning paradigms. Nonetheless, challenges remain, including high model complexity and a strong reliance on labeled data. Future research should prioritize multi-domain feature fusion, interdisciplinary collaboration, and hardware–algorithm co-optimization to develop lightweight, high-precision, and real-time MFR technologies that align with the 6G vision of space–air–ground–sea integrated networks. Full article
Show Figures

Figure 1

38 pages, 7485 KB  
Article
Privacy-Preserving Federated Learning for Space–Air–Ground Integrated Networks: A Bi-Level Reinforcement Learning and Adaptive Transfer Learning Optimization Framework
by Ling Li, Lidong Zhu and Weibang Li
Sensors 2025, 25(9), 2828; https://doi.org/10.3390/s25092828 - 30 Apr 2025
Cited by 1 | Viewed by 715
Abstract
The Space-Air-Ground Integrated Network (SAGIN) has emerged as a core architecture for future intelligent communication due to its wide-area coverage and dynamic heterogeneous characteristics. However, its high latency, dynamic topology, and privacy–security challenges severely constrain the application of Federated Learning (FL). This paper [...] Read more.
The Space-Air-Ground Integrated Network (SAGIN) has emerged as a core architecture for future intelligent communication due to its wide-area coverage and dynamic heterogeneous characteristics. However, its high latency, dynamic topology, and privacy–security challenges severely constrain the application of Federated Learning (FL). This paper proposes a Privacy-Preserving Federated Learning framework for SAGIN (PPFL-SAGIN), which for the first time integrates differential privacy, adaptive transfer learning, and bi-level reinforcement learning to systematically address data heterogeneity, device dynamics, and privacy leakage in SAGINs. Specifically, (1) an adaptive knowledge-sharing mechanism based on transfer learning is designed to balance device heterogeneity and data distribution divergence through dynamic weighting factors; (2) a bi-level reinforcement learning device selection strategy is proposed, combining meta-learning and hierarchical attention mechanisms to optimize global–local decision-making and enhance model convergence efficiency; (3) dynamic privacy budget allocation and robust aggregation algorithms are introduced to reduce communication overhead while ensuring privacy. Finally, experimental evaluations validate the proposed method. Results demonstrate that PPFL-SAGIN significantly outperforms baseline solutions such as FedAvg, FedAsync, and FedAsyncISL in terms of model accuracy, convergence speed, and privacy protection strength, verifying its effectiveness in addressing privacy preservation, device selection, and global aggregation in SAGINs. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

20 pages, 816 KB  
Article
Internal Backpressure for Onboard Crosspoint-Buffered Switches with Port Multiplexing
by Ling Zheng, Weiqiang Wang, Yingge Feng and Weitao Pan
Appl. Sci. 2025, 15(8), 4103; https://doi.org/10.3390/app15084103 - 8 Apr 2025
Viewed by 446
Abstract
Onboard switching, as a core technology in satellite networks, offers robust support for the advancement of the Space–Air–Ground Integrated Network (SAGIN). The onboard switching fabric is tasked with achieving high-speed and large-capacity data exchange and ensuring service quality within the constraints of limited [...] Read more.
Onboard switching, as a core technology in satellite networks, offers robust support for the advancement of the Space–Air–Ground Integrated Network (SAGIN). The onboard switching fabric is tasked with achieving high-speed and large-capacity data exchange and ensuring service quality within the constraints of limited resources. However, the current onboard crossbar switching fabric is confronted with internal traffic congestion issues. To address this, this paper introduces an internal backpressure scheme for the crosspoint buffered switching. This scheme entails the incorporation of a buffer queue at the output port. Once an output queue reaches the maximum queue capacity due to traffic congestion, a backpressure (BP) signal is transmitted to the input end, thereby preventing the input port from sending data to the output port, alleviating crosspoint buffer overload. A validation and performance evaluation of various backpressure algorithms are conducted. The results demonstrate that the implementation of a backpressure mechanism in switching fabric can significantly reduce packet loss rate under network congestion conditions. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

25 pages, 7652 KB  
Article
A High-Precision Frequency Synchronization Method Based on a Novel Geostationary Communication Satellite Phase-Locked Transponder
by Xueyi Tang, Chenhao Yan, Haiyuan Sun, Lijiaoyue Meng, Yibin He, Rui Liu, Shiguang Wang and Lijun Wang
Remote Sens. 2025, 17(7), 1280; https://doi.org/10.3390/rs17071280 - 3 Apr 2025
Cited by 1 | Viewed by 689
Abstract
Equipping satellites with a series of high-precision frequency references is essential; however, even advanced active hydrogen masers can often be too heavy and expensive for the current satellite payload constraints. Moreover, in geostationary Earth-orbit communication satellites lacking atomic clocks, onboard oscillators can degrade [...] Read more.
Equipping satellites with a series of high-precision frequency references is essential; however, even advanced active hydrogen masers can often be too heavy and expensive for the current satellite payload constraints. Moreover, in geostationary Earth-orbit communication satellites lacking atomic clocks, onboard oscillators can degrade the performance of time–frequency transmission methods. To address these challenges, this study proposes a novel phase-locked transponder that leverages Einstein’s synchronization theory and real-time carrier-phase compensation to improve the transmission performance of satellite frequency transfer systems while mitigating the noise from onboard satellite oscillators. Notably, this requires only simple modifications to the existing transponder structure. By replicating the high-precision atomic frequency standards from ground stations to satellites, the proposed system achieves enhanced frequency synchronization without additional onboard clocks. The feasibility of the satellite-to-ground link was validated through both a theoretical analysis and an experimental verification. Specifically, ground experiments demonstrated a reproducibility of 6.33 ps (1σ) over a 24 h period, with a long-term frequency stability of 3.36 × 10−16 at an average time of 10,000 s under dynamic conditions, showcasing the potential of this approach for advanced frequency synchronization. This paper presents a cost-effective and scalable solution for enhancing frequency synchronization in geostationary satellites, improving communication reliability, supporting advanced scientific and navigational applications, and enabling the development of high-precision, space-air-ground integrated time–frequency synchronization networks. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Graphical abstract

17 pages, 3071 KB  
Article
OTFS: A Potential Waveform for Space–Air–Ground Integrated Networks in 6G and Beyond
by Obinna Okoyeigbo, Xutao Deng, Agbotiname Lucky Imoize and Olamilekan Shobayo
Telecom 2025, 6(1), 19; https://doi.org/10.3390/telecom6010019 - 11 Mar 2025
Cited by 2 | Viewed by 2445
Abstract
6G is expected to provide ubiquitous connectivity, particularly in remote and inaccessible environments, by integrating satellite and aerial networks with existing terrestrial networks, forming Space–Air–Ground Integrated Networks (SAGINs). These networks, comprising satellites, unmanned aerial vehicles (UAVs), and high-speed terrestrial networks, introduce severe Doppler [...] Read more.
6G is expected to provide ubiquitous connectivity, particularly in remote and inaccessible environments, by integrating satellite and aerial networks with existing terrestrial networks, forming Space–Air–Ground Integrated Networks (SAGINs). These networks, comprising satellites, unmanned aerial vehicles (UAVs), and high-speed terrestrial networks, introduce severe Doppler effects due to high mobility. Traditional modulation techniques like Orthogonal Frequency Division Multiplexing (OFDM) struggle to maintain reliable communication under such conditions. This paper investigates Orthogonal Time Frequency Space (OTFS) modulation as a robust alternative for high-mobility scenarios in SAGINs. Using 6G exploration library in MATLAB, this study compares the bit error rate (BER) performance of OTFS and OFDM under static and multipath channels with varying mobility scenarios from 20 km/h to 2000 km/h, and varying modulation orders (BPSK, QPSK, and 8-PSK). The results indicate that OTFS significantly outperforms OFDM, while maintaining signal integrity under extreme mobility conditions. OTFS modulates information symbols in the delay–Doppler domain, demonstrating a strong robustness against Doppler shifts and delay spreads. This makes it particularly suitable for high-mobility applications such as satellites, UAVs, and high-speed terrestrial networks. Conversely, while OFDM remains effective in static and low-mobility environments, it struggles with severe Doppler effects, common in the proposed SAGINs. These findings reinforce OTFS as a promising modulation technique for SAGINs in 6G and beyond. Full article
Show Figures

Figure 1

24 pages, 2940 KB  
Communication
Secure Transmission for RIS-Assisted Downlink Hybrid FSO/RF SAGIN: Sum Secrecy Rate Maximization
by Jiawei Li, Weichao Yang, Tong Liu, Li Li, Yi Jin, Yixin He and Dawei Wang
Drones 2025, 9(3), 198; https://doi.org/10.3390/drones9030198 - 10 Mar 2025
Cited by 2 | Viewed by 986
Abstract
This paper proposes a novel reconfigurable intelligent surface (RIS)-assisted downlink hybrid free-space optics (FSO)/radio frequency (RF) space–air–ground integrated network (SAGIN) architecture, where the high altitude platform (HAP) converts the optical signal sent by the satellite into an electrical signal through optoelectronic conversion. The [...] Read more.
This paper proposes a novel reconfigurable intelligent surface (RIS)-assisted downlink hybrid free-space optics (FSO)/radio frequency (RF) space–air–ground integrated network (SAGIN) architecture, where the high altitude platform (HAP) converts the optical signal sent by the satellite into an electrical signal through optoelectronic conversion. The drone equipped with RIS dynamically adjusts the signal path to serve ground users, thereby addressing communication challenges caused by RF link blockages from clouds or buildings. To improve the security performance of SAGIN, this paper maximizes the sum secrecy rate (SSR) by optimizing the power allocation, RIS phase shift, and drone trajectory. Then, an alternating iterative framework is proposed for a joint solution using the simulated annealing algorithm, semi-definite programming, and the designed deep deterministic policy gradient (DDPG) algorithm. The simulation results show that the proposed scheme can significantly enhance security performance. Specifically, compared with the NOMA and SDMA schemes, the SSR of the proposed scheme is increased by 39.7% and 286.7%, respectively. Full article
(This article belongs to the Special Issue Advances in UAV Networks Towards 6G)
Show Figures

Figure 1

45 pages, 1051 KB  
Review
UAV Communication in Space–Air–Ground Integrated Networks (SAGINs): Technologies, Applications, and Challenges
by Peiying Zhang, Shengpeng Chen, Xiangguo Zheng, Peiyan Li, Guilong Wang, Ruixin Wang, Jian Wang and Lizhuang Tan
Drones 2025, 9(2), 108; https://doi.org/10.3390/drones9020108 - 1 Feb 2025
Cited by 2 | Viewed by 4850
Abstract
With the continuous advancement of 6G technology, SAGINs provide seamless coverage and efficient connectivity for future communications by integrating terrestrial, aerial, and satellite networks. Unmanned aerial vehicles (UAVs), owing to their high maneuverability and flexibility, have emerged as a critical component of the [...] Read more.
With the continuous advancement of 6G technology, SAGINs provide seamless coverage and efficient connectivity for future communications by integrating terrestrial, aerial, and satellite networks. Unmanned aerial vehicles (UAVs), owing to their high maneuverability and flexibility, have emerged as a critical component of the aerial layer in SAGINs. In this paper, we systematically review the key technologies, applications, and challenges of UAV-assisted SAGINs. First, the hierarchical architecture of SAGINs and their dynamic heterogeneous characteristics are elaborated on, and this is followed by an in-depth discussion of UAV communication. Subsequently, the core technologies of UAV-assisted SAGINs are comprehensively analyzed across five dimensions—routing protocols, security control, path planning, resource management, and UAV deployment—highlighting the progress and limitations of existing research. In terms of applications, UAV-assisted SAGINs demonstrate significant potential in disaster recovery, remote network coverage, smart cities, and agricultural monitoring. However, their practical deployment still faces challenges such as dynamic topology management, cross-layer protocol adaptation, energy-efficiency optimization, and security threats. Finally, we summarize the applications and challenges of UAV-assisted SAGINs and provide prospects for future research directions. Full article
Show Figures

Figure 1

25 pages, 699 KB  
Review
Blockchain-Facilitated Cybersecurity for Ubiquitous Internet of Things with Space–Air–Ground Integrated Networks: A Survey
by Wenbing Zhao, Shunkun Yang and Xiong Luo
Sensors 2025, 25(2), 383; https://doi.org/10.3390/s25020383 - 10 Jan 2025
Cited by 2 | Viewed by 1522
Abstract
This article presents a systematic review on blockchain-facilitated cybersecurity solutions for Internet of Things (IoT) devices in space–air–ground integrated networks (SAGIN). First, we identify the objectives and the context of the blockchain-based solutions for SAGIN. Although, typically, the blockchain is primarily used to [...] Read more.
This article presents a systematic review on blockchain-facilitated cybersecurity solutions for Internet of Things (IoT) devices in space–air–ground integrated networks (SAGIN). First, we identify the objectives and the context of the blockchain-based solutions for SAGIN. Although, typically, the blockchain is primarily used to enhance the trustworthiness of some systems or operations, it is necessary to document exactly in what context the blockchain is used that is specific to the IoT and SAGIN. Second, we investigate how blockchain technology is used to achieve the objectives. Again, we want to report the technical details on how blockchain is used in this specific field instead of general discussion. Third, we provide a critique on the technical correctness of the blockchain-based solutions. As we elaborate in this article, there are serious technical issues in the proposed solutions. The most pervasive assumption made in many blockchain-based solutions is that higher-level trustworthiness can be achieved by using any form of blockchain. Fourth, we provide a guideline on when blockchain technology could be useful for IoT and SAGIN and what types of blockchain could be useful to enhance the security of ubiquitous IoT in SAGIN. Full article
(This article belongs to the Special Issue AI-Driven Cybersecurity in IoT-Based Systems)
Show Figures

Figure 1

Back to TopTop