Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (334)

Search Parameters:
Keywords = Synthetic mRNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6950 KiB  
Article
Cell Cycle-Based Molecular Features via Synthetic Lethality and Non-Coding RNA Interactions in Cancer
by Shizheng Xiong, Jiaming Jin, Xinmiao Zhao, Yang Zhao, Zhiheng He, Haochuan Guo, Chengjun Gong, Jiafeng Yu, Li Guo and Tingming Liang
Genes 2025, 16(3), 310; https://doi.org/10.3390/genes16030310 - 5 Mar 2025
Viewed by 279
Abstract
Background: The cell cycle, a critical and intricate biological process, comprises various phases, and its dysregulation plays a pivotal role in tumorigenesis and metastasis. The exploration of cell cycle-based molecular subtypes across pan-cancers, along with the application of synthetic lethality concepts, holds promise [...] Read more.
Background: The cell cycle, a critical and intricate biological process, comprises various phases, and its dysregulation plays a pivotal role in tumorigenesis and metastasis. The exploration of cell cycle-based molecular subtypes across pan-cancers, along with the application of synthetic lethality concepts, holds promise for advancing cancer therapies. Methods: A pan-cancer analysis was conducted to assess the cell cycle serves as a reliable signature for classifying molecular subtypes and to understand the potential clinical application of genes as potential drug targets based on synthetic lethality. Results: Molecular subtypes derived from cell cycle features in certain cancers, particularly kidney-related malignancies, exhibited distinct immune characteristics. Synthetic lethal interactions within the cell cycle pathway were common, with significant genetic interactions further identifying potential drug targets through the exploitation of genetic relationships with key driver genes. Additionally, miRNAs and lncRNAs may influence the cell cycle through miRNA:mRNA interactions and ceRNA networks, thereby enriching the genetic interaction landscape. Conclusions: These findings suggest that the cell cycle pathway could serve as a promising molecular subtype signature to enhance cancer prognostication and offer potential targets for anticancer drug development through synthetic lethality. Full article
(This article belongs to the Special Issue Feature Papers: RNA)
Show Figures

Figure 1

11 pages, 2811 KiB  
Article
miR395e from Manihot esculenta Decreases Expression of PD-L1 in Renal Cancer: A Preliminary Study
by Joanna Bogusławska, Aizhan Rakhmetullina, Małgorzata Grzanka, Alex Białas, Beata Rybicka, Joanna Życka-Krzesińska, Tomasz Molcan, Piotr Zielenkiewicz, Leszek Pączek and Agnieszka Piekiełko-Witkowska
Genes 2025, 16(3), 293; https://doi.org/10.3390/genes16030293 - 27 Feb 2025
Viewed by 341
Abstract
Background/Objectives: microRNAs are small non-coding RNAs that regulate gene expression by inducing mRNA degradation or inhibiting translation. A growing body of evidence suggests that miRNAs may be utilized as anti-cancer therapeutics by targeting expression of key genes involved in cancerous transformation and [...] Read more.
Background/Objectives: microRNAs are small non-coding RNAs that regulate gene expression by inducing mRNA degradation or inhibiting translation. A growing body of evidence suggests that miRNAs may be utilized as anti-cancer therapeutics by targeting expression of key genes involved in cancerous transformation and progression. Renal cell cancer (RCC) is the most common kidney malignancy. The most efficient RCC treatments involve blockers of immune checkpoints, including antibodies targeting PD-L1 (Programmed Death Ligand 1). Interestingly, recent studies revealed the cross-kingdom horizontal transfer of plant miRNAs into mammalian cells, contributing to the modulation of gene expression by food ingestion. Here, we hypothesized that PD-L1 expression may be modulated by miRNAs originating from edible plants. Methods: To verify this hypothesis, we performed bioinformatic analysis to identify mes-miR395e from Manihot esculenta (cassava) as a promising candidate miRNA that could target PD-L1. To verify PD-L1 regulation mediated by the predicted plant miRNA, synthetic mes-miR395 mimics were transfected into cell lines derived from RCC tumors, followed by evaluation of PD-L1 expression using qPCR and Western blot. Results: Transfection of mes-miR395e mimics into RCC-derived cell lines confirmed that this miRNA decreases expression of PD-L1 in RCC cells at both mRNA and protein levels. Conclusions: This preliminary study shows the promise of plant miRNA as potential adjuvants supporting RCC treatment. Full article
Show Figures

Figure 1

25 pages, 3476 KiB  
Review
Structural Features of 5′ Untranslated Region in Translational Control of Eukaryotes
by Elizaveta Razumova, Aleksandr Makariuk, Olga Dontsova, Nikita Shepelev and Maria Rubtsova
Int. J. Mol. Sci. 2025, 26(5), 1979; https://doi.org/10.3390/ijms26051979 - 25 Feb 2025
Viewed by 352
Abstract
Gene expression is a complex process regulated at multiple levels in eukaryotic cells. Translation frequently represents a pivotal step in the control of gene expression. Among the stages of translation, initiation is particularly important, as it governs ribosome recruitment and the efficiency of [...] Read more.
Gene expression is a complex process regulated at multiple levels in eukaryotic cells. Translation frequently represents a pivotal step in the control of gene expression. Among the stages of translation, initiation is particularly important, as it governs ribosome recruitment and the efficiency of protein synthesis. The 5′ untranslated region (5′ UTR) of mRNA plays a key role in this process, often exhibiting a complicated and structured landscape. Numerous eukaryotic mRNAs possess long 5′ UTRs that contain diverse regulatory elements, including RNA secondary structures, specific nucleotide motifs, and chemical modifications. These structural features can independently modulate translation through their intrinsic properties or by serving as platforms for trans-acting factors such as RNA-binding proteins. The dynamic nature of 5′ UTR elements allows cells to fine-tune translation in response to environmental and cellular signals. Understanding these mechanisms is not only fundamental to molecular biology but also holds significant biomedical potential. Insights into 5′ UTR-mediated regulation could drive advancements in synthetic biology and mRNA-based targeted therapies. This review outlines the current knowledge of the structural elements of the 5′ UTR, the interplay between them, and their combined functional impact on translation. Full article
(This article belongs to the Special Issue Recent Progress in Molecular Biology of RNA 2.0)
Show Figures

Graphical abstract

14 pages, 1934 KiB  
Article
Comparative In Vitro Drug Susceptibility Study of Five Oxazolidinones Against Mycobacterium tuberculosis in Hainan, China
by Jinhui Dong, Qian Cheng, Chuanning Tang, Yeteng Zhong, Jieying Wang, Meiping Lv, Zhuolin Chen, Peibo Li, Ming Luo and Hua Pei
Pathogens 2025, 14(3), 218; https://doi.org/10.3390/pathogens14030218 - 24 Feb 2025
Viewed by 281
Abstract
Oxazolidinones, novel synthetic antibacterials, inhibit protein biosynthesis and show potent activity against Gram-positive bacteria, including Mycobacterium tuberculosis (MTB). In this study, we aimed to compare the in vitro activity of linezolid (LZD) and four oxazolidinones, including tedizolid (TZD), contezolid (CZD), sutezolid (SZD), and [...] Read more.
Oxazolidinones, novel synthetic antibacterials, inhibit protein biosynthesis and show potent activity against Gram-positive bacteria, including Mycobacterium tuberculosis (MTB). In this study, we aimed to compare the in vitro activity of linezolid (LZD) and four oxazolidinones, including tedizolid (TZD), contezolid (CZD), sutezolid (SZD), and delpazolid (DZD), against multidrug-resistant tuberculosis (MDR-TB) and pre-extensively drug-resistant tuberculosis (pre-XDR-TB) isolates from Hainan. We established their epidemiological cut-off values (ECOFFs) using ECOFFinder software and analyzed mutations in rrl (23S rRNA), rplC, rplD, mce3R, tsnR, Rv0545c, Rv0930, Rv3331, and Rv0890c genes to uncover potential mechanisms of oxazolidinone resistance. This study included 177 MTB isolates, comprising 67 MDR and 110 pre-XDR-TB isolates. Overall, SZD exhibited the strongest antibacterial activity against clinical MTB isolates, followed by TZD and LZD, with CZD and DZD showing equivalent but weaker activity (SZDMIC50 = TZDMIC50 < LZDMIC50 < CZDMIC50 = DZDMIC50; SZDMIC90 < TZDMIC90 = LZDMIC90 < CZDMIC90 = DZDMIC90). Significant differences in MIC distribution were observed for TZD (p < 0.0001), CZD (p < 0.01), SZD (p < 0.0001), and DZD (p < 0.0001) compared to LZD but not between MDR-TB and pre-XDR-TB isolates. We propose the following ECOFFs: SZD, 0.5 µg/mL; LZD, TZD, and CZD, 1.0 µg/mL; DZD, 2.0 µg/mL. No statistically significant differences in resistance rates were observed among these five drugs (p > 0.05). We found that eight MTB isolates (4.52% [8/177]) resisted these five oxazolidinones. Among these, only one isolate, M26, showed an amino acid substitution (Arg79His) in the protein encoded by the rplD gene, which conferred cross-resistance to TZD and CZD. Three distinct mutations were identified in the mce3R gene; notably, isolate P604 displayed two insertions that contributed to resistance against all five oxazolidinones. However, no significant correlation was observed between mutations in the rrl, rplC, rplD, mce3R, tsnR, Rv0545c, Rv0930, Rv3331, and Rv0890c genes with oxazolidinone resistance in the clinical MTB isolates tested. In summary, this study provides the first report on the resistance of MTB in Hainan to the five oxazolidinones (LZD, TZD, CZD, SZD, and DZD). In vitro susceptibility testing indicated that SZD exhibited the strongest antibacterial activity, followed by TZD and LZD, while CZD and DZD demonstrated comparable but weaker effectiveness. Mutations in rplD and mce3R were discovered, but further research is needed to clarify their role in conferring oxazolidinone resistance in MTB. Full article
Show Figures

Figure 1

16 pages, 1613 KiB  
Article
mRNA Degradation as a Therapeutic Solution for Mucopolysaccharidosis Type IIIC: Use of Antisense Oligonucleotides to Promote Downregulation of Heparan Sulfate Synthesis
by Juliana Inês Santos, Mariana Gonçalves, Matilde Barbosa Almeida, Hugo Rocha, Ana Joana Duarte, Liliana Matos, Luciana Vaz Moreira, Marisa Encarnação, Paulo Gaspar, Maria João Prata, Maria Francisca Coutinho and Sandra Alves
Int. J. Mol. Sci. 2025, 26(3), 1273; https://doi.org/10.3390/ijms26031273 - 1 Feb 2025
Viewed by 694
Abstract
Mucopolysaccharidosis type IIIC is a neurodegenerative lysosomal storage disorder (LSD) characterized by the accumulation of undegraded heparan sulfate (HS) due to the lack of an enzyme responsible for its degradation: acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT). Classical treatments are ineffective. Here, we attempt a new approach [...] Read more.
Mucopolysaccharidosis type IIIC is a neurodegenerative lysosomal storage disorder (LSD) characterized by the accumulation of undegraded heparan sulfate (HS) due to the lack of an enzyme responsible for its degradation: acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT). Classical treatments are ineffective. Here, we attempt a new approach in genetic medicine, genetic substrate reduction therapy (gSRT), to counteract this neurological disorder. Briefly, we used synthetic oligonucleotides, particularly gapmer antisense oligonucleotides (ASOs), to target the synthesis of the accumulated compounds at the molecular level, downregulating a specific gene involved in the first step of HS biosynthesis, XYLT1. Our goal was to reduce HS production and, consequently, its accumulation. Initially, five gapmer ASOs were designed and their potential to decrease XYLT1 mRNA levels were tested in patient-derived fibroblasts. Subsequent analyses focused on the two best performing molecules alone. The results showed a high inhibition of the XYLT1 gene mRNA (around 90%), a decrease in xylosyltransferase I (XT-I) protein levels and a reduction in HS storage 6 and 10 days after transfection (up to 21% and 32%, respectively). Overall, our results are highly promising and may represent the initial step towards the development of a potential therapeutic option not only for MPS IIIC, but virtually for every other MPS III form. Ultimately, the same principle may also apply to other neuropathic MPS. Full article
(This article belongs to the Special Issue Peroxisome and Lysosome in Health and Disease)
Show Figures

Figure 1

19 pages, 3101 KiB  
Article
The Establishment of Artificial RNA Cascade Circuits for Gene Regulation Based on Doxycycline-Induced Pre-mRNA Alternative Splicing
by Guimin Dai, Jiawen Cheng, Weiran Liu, Xueli Yin and Yuanyuan Zhang
Int. J. Mol. Sci. 2025, 26(3), 1163; https://doi.org/10.3390/ijms26031163 - 29 Jan 2025
Viewed by 584
Abstract
This study developed an artificial chimeric intron module with an RNA riboswitch and TetR aptamer that were integrated into essential gene exons. Doxycycline can modulate Pre-mRNA alternative splicing, modify the exon reading frame, and dynamically regulate gene expression. By shifting the aptamer 2 [...] Read more.
This study developed an artificial chimeric intron module with an RNA riboswitch and TetR aptamer that were integrated into essential gene exons. Doxycycline can modulate Pre-mRNA alternative splicing, modify the exon reading frame, and dynamically regulate gene expression. By shifting the aptamer 2 base pair within the switch, we unexpectedly obtained the “on-switch” CTM and “off-switch” C2ITetR>4A, which possess thoroughly contrasting regulatory functions. The CTM module can conditionally induce tumor cell apoptosis and regulate genes reversibly and sustainably following doxycycline induction. We integrated the C2ITetR>4A/CTM switches with the L7Ae/k-turn module to create an intron-spliced double-switched RNA cascade system. The system can both activate and inhibit the splicing mechanism utilizing the same ligand to minimize crosstalk among aptamer switching elements, control target gene leakage, and enhance the dynamic range of gene expression. We analyzed numerous factors affecting Pre-mRNA splicing to identify the optimal equilibrium point for switch regulation. This will enable precise predictions of dynamic regulatory efficiency and the rational design of genetic modules, thereby providing a valuable instrument for mammalian synthetic biology. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

20 pages, 2550 KiB  
Article
Synthesis and Application of 4′-C-[(N-alkyl)aminoethyl]thymidine Analogs for Optimizing Oligonucleotide Properties
by Kota Fujiki, Yuri Kakisawa, Elsayed M. Mahmoud and Yoshihito Ueno
Molecules 2025, 30(3), 581; https://doi.org/10.3390/molecules30030581 - 27 Jan 2025
Viewed by 726
Abstract
Gapmer-type antisense oligonucleotides (ASOs) are an emerging class of therapeutic agents that directly inhibit pathogenic mRNA. In this study, three new 4′-C-substituted thymidine analogs were generated using a synthetic strategy recently established by our group, namely, 4′-C-(N-ethyl) [...] Read more.
Gapmer-type antisense oligonucleotides (ASOs) are an emerging class of therapeutic agents that directly inhibit pathogenic mRNA. In this study, three new 4′-C-substituted thymidine analogs were generated using a synthetic strategy recently established by our group, namely, 4′-C-(N-ethyl) aminoethyl (4′-EAE-T), 4′-C-(N-butyl) aminoethyl (4′-BAE-T), and 4′-C-(N-octyl) aminoethyl (4′-OAE-T). Their properties were evaluated and compared with those of previously reported analogs, including 4′-C-aminoethyl (4′-AE-T) and 4′-C-(N-methyl) aminoethyl (4′-MAE-T). The novel nucleoside analogs were subsequently incorporated into gapmer-type ASOs featuring phosphorothioate (PS) linkages and locked nucleic acids (LNAs) in the wing regions. The incorporation of 4′-EAE-T and 4′-BAE-T analogs resulted in RNA binding affinities similar to that of the previously reported 4′-MAE-T analog, whereas a marked decrease in RNA affinity was noted for 4′-OAE-T, however, this reduction was mitigated when combined with other chemical modifications. Furthermore, the structural modifications conferred enhanced nuclease resistance under bovine serum conditions, with 4′-EAE-T resulting in the highest stability, followed by 4′-BAE-T and 4′-OAE-T. Additionally, oligonucleotides modified with the developed analogs preserved their RNase H cleavage susceptibility, albeit inducing minor alterations in the cleavage pattern. Finally, the oligonucleotides were applied in a gene silencing experiment targeting the KRAS gene, conducted without the use of transfection agents, displaying gene silencing activities comparable to that of the control, with the exception of the 4′-OAE-modified nucleotide, which exhibited low activity. Full article
Show Figures

Graphical abstract

23 pages, 2274 KiB  
Review
Anti-Drug Antibody Response to Therapeutic Antibodies and Potential Mitigation Strategies
by Erin L. Howard, Melanie M. Goens, Leonardo Susta, Ami Patel and Sarah K. Wootton
Biomedicines 2025, 13(2), 299; https://doi.org/10.3390/biomedicines13020299 - 26 Jan 2025
Viewed by 1154
Abstract
The development of anti-drug antibodies (ADAs) against therapeutic monoclonal antibodies (mAbs) poses significant challenges in the efficacy and safety of these treatments. ADAs can lead to adverse immune reactions, reduced drug efficacy, and increased clearance of therapeutic antibodies. This paper reviews the formation [...] Read more.
The development of anti-drug antibodies (ADAs) against therapeutic monoclonal antibodies (mAbs) poses significant challenges in the efficacy and safety of these treatments. ADAs can lead to adverse immune reactions, reduced drug efficacy, and increased clearance of therapeutic antibodies. This paper reviews the formation and mechanisms of ADAs, explores factors contributing to their development, and discusses potential strategies to mitigate ADA responses. Current and emerging strategies to reduce ADA formation include in silico and in vitro prediction tools, deimmunization techniques, antibody engineering, and various drug delivery methods. Additionally, novel approaches such as tolerogenic nanoparticles, oral tolerance, and in vivo delivery of therapeutic proteins via viral vectors and synthetic mRNA or DNA are explored. These strategies have the potential to enhance clinical outcomes of mAb therapies by minimizing immunogenicity and improving patient safety. Further research and innovation in this field are critical to overcoming the ongoing challenges of ADA responses in therapeutic antibody development. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Biomedicines (2nd Edition))
Show Figures

Figure 1

15 pages, 2263 KiB  
Article
Nrf2 Regulates Basal Glutathione Production in Astrocytes
by Jiali He and Sandra J. Hewett
Int. J. Mol. Sci. 2025, 26(2), 687; https://doi.org/10.3390/ijms26020687 - 15 Jan 2025
Viewed by 557
Abstract
Astrocytes produce and export glutathione (GSH), an important thiol antioxidant essential for protecting neural cells from oxidative stress and maintaining optimal brain health. While it has been established that oxidative stress increases GSH production in astrocytes, with Nrf2 acting as a critical transcription [...] Read more.
Astrocytes produce and export glutathione (GSH), an important thiol antioxidant essential for protecting neural cells from oxidative stress and maintaining optimal brain health. While it has been established that oxidative stress increases GSH production in astrocytes, with Nrf2 acting as a critical transcription factor regulating key components of the GSH synthetic pathway, the role of Nrf2 in controlling constitutive GSH synthetic and release mechanisms remains incompletely investigated. Our data show that naïve primary mouse astrocytes cultured from the cerebral cortices of Nrf2 knockout (Nrf2−/−) pups have significantly less intracellular and extracellular GSH levels when compared to astrocytes cultured from Nrf2 wild-type (Nrf2+/+) pups. Key components of the GSH synthetic pathway, including xCT (the substrate-specific light chain of the substrate-importing transporter, system xc), glutamate-cysteine ligase [catalytic (GCLc) and modifying (GCLm) subunits], were affected. To wit: qRT-PCR analysis demonstrates that naïve Nrf2−/− astrocytes have significantly lower basal mRNA levels of xCT and both GCL subunits compared to naïve Nrf2+/+ astrocytes. No change in mRNA levels of glutathione synthetase (GS) or the GSH exporting transporter, Mrp1, was found. Western blot analysis reveals reduced protein levels of both subunits of GCL, while (seleno)cystine uptake into Nrf2−/− astrocytes was reduced compared to Nrf2+/+ astrocytes, confirming decreased system xc activity. These findings suggest that Nrf2 regulates the basal production of GSH in astrocytes through constitutive transcriptional regulation of GCL and xCT. Full article
(This article belongs to the Special Issue The Role of NRF2 in Health and Disease)
Show Figures

Figure 1

14 pages, 2465 KiB  
Article
Targeted Polymer–Peptide Conjugates for E-Selectin Blockade in Renal Injury
by Nenad Milošević, Marie Rütter, Yvonne Ventura, Valeria Feinshtein and Ayelet David
Pharmaceutics 2025, 17(1), 82; https://doi.org/10.3390/pharmaceutics17010082 - 9 Jan 2025
Viewed by 713
Abstract
Background/Objectives: Leukocytes play a significant role in both acute kidney injury (AKI) and chronic kidney disease (CKD), contributing to pathogenesis and tissue damage. The process of leukocyte infiltration into the inflamed tissues is mediated by the interactions between the leukocytes and cell adhesion [...] Read more.
Background/Objectives: Leukocytes play a significant role in both acute kidney injury (AKI) and chronic kidney disease (CKD), contributing to pathogenesis and tissue damage. The process of leukocyte infiltration into the inflamed tissues is mediated by the interactions between the leukocytes and cell adhesion molecules (CAMs, i.e., E-selectin, P-selectin, and VCAM-1) present on the inner surface of the inflamed vasculature. Directly interfering with these interactions is a viable strategy to limit the extent of excessive inflammation; however, several small-molecule drug candidates failed during clinical translation. We hypothesized that a synthetic polymer presenting multiple copies of the high-affinity E-selecting binding peptide (P-Esbp) could block E-selectin-mediated functions and decrease leukocytes infiltration, thus reducing the extent of inflammatory kidney injury. Methods: P-Esbp was synthesized by conjugating E-selecting binding peptide (Esbp) to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer with reactive ester groups via aminolysis. The effects of P-Esbp treatment on kidney injury were investigated in two different models: AKI model (renal ischemia—reperfusion injury—RIRI) and CKD model (adenine-induced kidney injury). Results: We found that the mRNA levels of E-selectin were up-regulated in the kidney following acute and chronic tissue injury. P-Esbp demonstrated an extended half-life time in the bloodstream, and the polymer accumulated significantly in the liver, lungs, and kidneys within 4 h post injection. Treatment with P-Esbp suppressed the up-regulation of E-selectin in mice with RIRI and attenuated the inflammatory process. In the adenine-induced CKD model, the use of the E-selectin blocking copolymer had little impact on the progression of kidney injury, owing to the compensating function of P-selectin and VCAM-1. Conclusion: Our findings provide valuable insights into the interconnection between CAMs and compensatory mechanisms in controlling leukocyte migration in AKI and CKD. The combination of multiple CAM blockers, given simultaneously, may provide protective effects for preventing excessive leukocyte infiltration and control renal injury. Full article
(This article belongs to the Special Issue Advanced Pharmaceutical Science and Technology in Israel)
Show Figures

Figure 1

17 pages, 2681 KiB  
Article
Onvansertib and Navitoclax Combination as a New Therapeutic Option for Mucinous Ovarian Carcinoma
by Serena Petrella, Marika Colombo, Mirko Marabese, Chiara Grasselli, Andrea Panfili, Michela Chiappa, Valentina Sancisi, Ilaria Craparotta, Maria C. Barbera, Giada A. Cassanmagnago, Marco Bolis and Giovanna Damia
Int. J. Mol. Sci. 2025, 26(2), 472; https://doi.org/10.3390/ijms26020472 - 8 Jan 2025
Viewed by 895
Abstract
Mucinous epithelial ovarian cancer (mEOC) is a rare subtype of epithelial ovarian cancer, characterized by poor responses to standard platinum-based chemotherapy. Polo-like kinase 1 (PLK1) is a key regulator of mitosis and cell cycle progression and its inhibition has been recently identified as [...] Read more.
Mucinous epithelial ovarian cancer (mEOC) is a rare subtype of epithelial ovarian cancer, characterized by poor responses to standard platinum-based chemotherapy. Polo-like kinase 1 (PLK1) is a key regulator of mitosis and cell cycle progression and its inhibition has been recently identified as a target in mEOC. In this study, we aimed to identify further therapeutic targets in mEOC using a CRISPR/Cas9 library targeting 3015 genes, with and without treatment with onvansertib, a PLK1 inhibitor. We identified twelve genes associated with cell survival (ZC2HC1C, RPA2, KIN17, TUBG1, SMC2, CDC26, CDC42, HOXA9, TAF10, SENP1, MRPS31, and COPS2) and three genes (JUND, CARD9, and BCL2L2) in synthetic lethality with onvansertib treatment. We validated that SENP1 downregulation is important for the growth of mEOC cells through esiRNA interference and the use of a pharmacological inhibitor Momordin Ic. The downregulation of CARD9 and BCL2L2 combined with subtoxic doses of onvansertib interfered with mEOC cell growth. Interestingly, the combination of navitoclax, an inhibitor of BcL2 family members including BCL2L2, was synergistic in all four of the mEOC cell lines tested and substantially induced cell death through apoptosis. These data support the use of a combination of navitoclax and onvansertib as a new therapeutic strategy for mEOC. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

22 pages, 1150 KiB  
Review
Endosomal Escape and Nuclear Localization: Critical Barriers for Therapeutic Nucleic Acids
by Randall Allen and Toshifumi Yokota
Molecules 2024, 29(24), 5997; https://doi.org/10.3390/molecules29245997 - 19 Dec 2024
Viewed by 2232
Abstract
Therapeutic nucleic acids (TNAs) including antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) have emerged as promising treatment strategies for a wide variety of diseases, offering the potential to modulate gene expression with a high degree of specificity. These small, synthetic nucleic acid-like [...] Read more.
Therapeutic nucleic acids (TNAs) including antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) have emerged as promising treatment strategies for a wide variety of diseases, offering the potential to modulate gene expression with a high degree of specificity. These small, synthetic nucleic acid-like molecules provide unique advantages over traditional pharmacological agents, including the ability to target previously “undruggable” genes. Despite this promise, several biological barriers severely limit their clinical efficacy. Upon administration, TNAs primarily enter cells through endocytosis, becoming trapped inside membrane-bound vesicles known as endosomes. Studies estimate that only 1–2% of TNAs successfully escape endosomal compartments to reach the cytosol, and in some cases the nucleus, where they bind target mRNA and exert their therapeutic effect. Endosomal entrapment and inefficient nuclear localization are therefore critical bottlenecks in the therapeutic application of TNAs. This review explores the current understanding of TNA endosomal escape and nuclear transport along with strategies aimed at overcoming these challenges, including the use of endosomal escape agents, peptide-TNA conjugates, non-viral delivery vehicles, and nuclear localization signals. By improving both endosomal escape and nuclear localization, significant advances in TNA-based therapeutics can be realized, ultimately expanding their clinical utility. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

14 pages, 1781 KiB  
Article
Anti-Inflammatory Activity of the Major Triterpenic Acids of Chios Mastic Gum and Their Semi-Synthetic Analogues
by Panagiota Stamou, Despoina D. Gianniou, Ioannis P. Trougakos, Sofia Mitakou, Maria Halabalaki, Ioannis K. Kostakis and Alexios-Leandros Skaltsounis
Biomolecules 2024, 14(12), 1618; https://doi.org/10.3390/biom14121618 - 18 Dec 2024
Cited by 1 | Viewed by 960
Abstract
24Z-Masticadienonic acid (MNA) and 24Z-isomasticadienonic acid (IMNA) are the major triterpenic acids in Chios Mastic Gum (CMG), a resin derived from Pistacia lentiscus var. Chia. Despite their promising pharmacological potential, limited information is available due to the complexity [...] Read more.
24Z-Masticadienonic acid (MNA) and 24Z-isomasticadienonic acid (IMNA) are the major triterpenic acids in Chios Mastic Gum (CMG), a resin derived from Pistacia lentiscus var. Chia. Despite their promising pharmacological potential, limited information is available due to the complexity of isolating them in pure form. This study developed a chemo-selective method for isolating MNA and IMNA and investigated their chemical transformation through isomerization of the external double bond and A-ring contraction of the triterpene scaffold. A rapid method for isolating MNA from CMG was first established, followed by a high-yield acid-catalyzed procedure to obtain both 24Z and 24E isomers of IMNA. Additionally, a basic catalyzed isomerization of IMNA led to the formation of two new compounds with A-ring contraction, which could serve as novel scaffolds for the design of new triterpene analogs. The mixture of MNA/IMNA, along with the individual compounds and their semi-synthetic analogs, exhibited significant anti-inflammatory activity. Notably, 24E-isomasticadienonic acid and 24Z-2-hydroxy-3-oxotirucalla-1,8,24-trien-26-oic acid, a previously unreported compound, significantly reduced the mRNA expression levels of Tnf, Il6, and Nfkb1 in RAW 264.7 macrophage cells. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

17 pages, 5212 KiB  
Article
LINC01270 Regulates the NF-κB-Mediated Pro-Inflammatory Response via the miR-326/LDOC1 Axis in THP-1 Cells
by Imene Arab, Su-Geun Lim, Kyoungho Suk and Won-Ha Lee
Cells 2024, 13(23), 2027; https://doi.org/10.3390/cells13232027 - 8 Dec 2024
Viewed by 978
Abstract
Long intergenic noncoding (LINC)01270 is a 2278 bp transcript belonging to the intergenic subset of long noncoding (lnc)RNAs. Despite increased reports of LINC01270’s involvement in different diseases, evident research on its effects on inflammation is yet to be achieved. In the present study, [...] Read more.
Long intergenic noncoding (LINC)01270 is a 2278 bp transcript belonging to the intergenic subset of long noncoding (lnc)RNAs. Despite increased reports of LINC01270’s involvement in different diseases, evident research on its effects on inflammation is yet to be achieved. In the present study, we investigated the potential role of LINC01270 in modulating the inflammatory response in the human monocytic leukemia cell line THP-1. Lipopolysaccharide treatment upregulated LINC01270 expression, and siRNA-mediated suppression of LINC01270 enhanced NF-κB activity and the subsequent production of cytokines IL-6, IL-8, and MCP-1. Interestingly, the knockdown of LINC01270 downregulated expression of leucine zipper downregulated in cancer 1 (LDOC1), a novel NF-κB suppressor. An analysis of the LINC01270/micro-RNA (miRNA)/protein interactome profile identified miR-326 as a possible mediator. Synthetic RNA agents that perturb the interaction among LINC01270, miR-326, and LDOC1 mRNA mitigated the changes caused by LINC01270 knockdown in THP-1 cells. Additionally, a luciferase reporter assay in HEK293 cells further confirmed that LINC01270 knockdown enhances NF-κB activation, while its overexpression has the opposite effect. This study provides insight into LINC01270’s role in modulating inflammatory responses to lipopolysaccharide stimulation in THP-1 cells via the miR-326/LDOC1 axis, which negatively regulates NF-κB activation. Full article
(This article belongs to the Special Issue Macrophage Activation and Regulation)
Show Figures

Figure 1

39 pages, 6873 KiB  
Review
Exploring Mycolactone—The Unique Causative Toxin of Buruli Ulcer: Biosynthetic, Synthetic Pathways, Biomarker for Diagnosis, and Therapeutic Potential
by Gideon Atinga Akolgo, Kingsley Bampoe Asiedu and Richard Kwamla Amewu
Toxins 2024, 16(12), 528; https://doi.org/10.3390/toxins16120528 - 6 Dec 2024
Viewed by 1781
Abstract
Mycolactone is a complex macrolide toxin produced by Mycobacterium ulcerans, the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of [...] Read more.
Mycolactone is a complex macrolide toxin produced by Mycobacterium ulcerans, the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of action of these polyketides as well as their therapeutic potential. The synthetic work has largely been driven by the desire to afford researchers enough (≥100 mg) of the pure toxins for systematic biological studies toward understanding their very high biological activities. The review focuses on pioneering studies of Kishi which elaborate first-, second-, and third-generation approaches to the synthesis of mycolactones A/B. The three generations focused on the construction of the key intermediates required for the mycolactone synthesis. Synthesis of the first generation involves assignment of the relative and absolute stereochemistry of the mycolactones A and B. This was accomplished by employing a linear series of 17 chemical steps (1.3% overall yield) using the mycolactone core. The second generation significantly improved the first generation in three ways: (1) by optimizing the selection of protecting groups; (2) by removing needless protecting group adjustments; and (3) by enhancing the stereoselectivity and overall synthetic efficiency. Though the synthetic route to the mycolactone core was longer than the first generation, the overall yield was significantly higher (8.8%). The third-generation total synthesis was specifically aimed at an efficient, scalable, stereoselective, and shorter synthesis of mycolactone. The synthesis of the mycolactone core was achieved in 14 linear chemical steps with 19% overall yield. Furthermore, a modular synthetic approach where diverse analogues of mycolactone A/B were synthesized via a cascade of catalytic and/or asymmetric reactions as well as several Pd-catalyzed key steps coupled with hydroboration reactions were reviewed. In addition, the review discusses how mycolactone is employed in the diagnosis of Buruli ulcer with emphasis on detection methods of mass spectrometry, immunological assays, RNA aptamer techniques, and fluorescent-thin layer chromatography (f-TLC) methods as diagnostic tools. We examined studies of the structure–activity relationship (SAR) of various analogues of mycolactone. The paper highlights the multiple biological consequences associated with mycolactone such as skin ulceration, host immunomodulation, and analgesia. These effects are attributed to various proposed mechanisms of actions including Wiskott–Aldrich Syndrome protein (WASP)/neural Wiskott–Aldrich Syndrome protein (N-WASP) inhibition, Sec61 translocon inhibition, angiotensin II type 2 receptor (AT2R) inhibition, and inhibition of mTOR. The possible application of novel mycolactone analogues produced based on SAR investigations as therapeutic agents for the treatment of inflammatory disorders and inflammatory pain are discussed. Additionally, their therapeutic potential as anti-viral and anti-cancer agents have also been addressed. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

Back to TopTop