Structural Features of 5′ Untranslated Region in Translational Control of Eukaryotes
Abstract
:1. Introduction
2. 5′ Untranslated Region in Translation Initiation
3. Regulatory Sequences of 5′ Untranslated Region
3.1. Terminal Oligopyrimidine Tract (TOP)
3.2. Upstream Small Open Reading Frames (uORFs) and Start Codons
4. RNA Structures Form Regulatory Elements in the 5′ Untranslated Region
4.1. RNA Secondary Structures: Stem-Loops and Pseudoknots
4.2. Riboswitches
4.3. G-Quadruplexes (rG4)
4.4. IRES
5. Modifications of mRNA
6. Trans-Acting Factors
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
UTR | untranslated region |
IRES | internal ribosome entry site |
TOP | terminal oligopyrimidine tract |
uORF | upstream open reading frames |
RAN | repeat-associated non-AUG (translation) |
TISU | translation initiators of short 5′ UTRs |
PRTE | pyrimidine-rich translation elements |
rG4 | RNA G-quadruplexes |
CDS | Coding sequences |
CITE | cap-independent translation enhancer |
ITAF | IRES trans-acting factors |
References
- Zhang, L.; Kasif, S.; Cantor, C.R.; Broude, N.E. GC/AT-Content Spikes as Genomic Punctuation Marks. Proc. Natl. Acad. Sci. USA 2004, 101, 16855–16860. [Google Scholar] [CrossRef] [PubMed]
- Leppek, K.; Das, R.; Barna, M. Functional 5′ UTR mRNA Structures in Eukaryotic Translation Regulation and How to Find Them. Nat. Rev. Mol. Cell Biol. 2018, 19, 158–174. [Google Scholar] [CrossRef]
- Wieder, N.; D’Souza, E.N.; Martin-Geary, A.C.; Lassen, F.H.; Talbot-Martin, J.; Fernandes, M.; Chothani, S.P.; Rackham, O.J.L.; Schafer, S.; Aspden, J.L.; et al. Differences in 5′untranslated Regions Highlight the Importance of Translational Regulation of Dosage Sensitive Genes. Genome Biol. 2024, 25, 111. [Google Scholar] [CrossRef] [PubMed]
- Haimov, O.; Sinvani, H.; Dikstein, R. Cap-Dependent, Scanning-Free Translation Initiation Mechanisms. Biochim. Biophys. Acta 2015, 1849, 1313–1318. [Google Scholar] [CrossRef] [PubMed]
- Montoya, J.; Ojala, D.; Attardi, G. Distinctive Features of the 5′-Terminal Sequences of the Human Mitochondrial mRNAs. Nature 1981, 290, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, S.; Bram, M.P.V.; Marvin, E. Tanenbaum Heterogeneity in mRNA Translation. Trends Cell Biol. 2020, 30, 606–618. [Google Scholar] [CrossRef]
- Aitken, C.E.; Lorsch, J.R. A Mechanistic Overview of Translation Initiation in Eukaryotes. Nat. Struct. Mol. Biol. 2012, 19, 568–576. [Google Scholar] [CrossRef]
- Parra, C.; Ernlund, A.; Alard, A.; Ruggles, K.; Ueberheide, B.; Schneider, R.J. A Widespread Alternate Form of Cap-Dependent mRNA Translation Initiation. Nat. Commun. 2018, 9, 3068. [Google Scholar] [CrossRef] [PubMed]
- Green, K.M.; Linsalata, A.E.; Todd, P.K. RAN Translation—What Makes It Run? Brain Res. 2016, 1647, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.-J.; Krans, A.; Malik, I.; Deng, X.; Yildirim, E.; Ovunc, S.; Tank, E.M.H.; Jansen-West, K.; Kaufhold, R.; Gomez, N.B.; et al. Ribosomal Quality Control Factors Inhibit Repeat-Associated Non-AUG Translation from GC-Rich Repeats. Nucleic Acids Res. 2024, 52, 5928–5949. [Google Scholar] [CrossRef] [PubMed]
- Cleary, J.D.; Pattamatta, A.; Ranum, L.P.W. Repeat-Associated Non-ATG (RAN) Translation. J. Biol. Chem. 2018, 293, 16127–16141. [Google Scholar] [CrossRef] [PubMed]
- Meyuhas, O.; Kahan, T. The Race to Decipher the Top Secrets of TOP mRNAs. Biochim. Biophys. Acta 2015, 1849, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Lucas, P.; van den Elzen, A.; Watson, M.J.; Carson, T. Global Analysis of LARP1 Translation Targets Reveals Tunable and Dynamic Features of 5′ TOP Motifs. Proc. Natl. Acad. Sci. USA 2020, 117, 5319–5328. [Google Scholar] [CrossRef]
- Jensen, K.B.; Dredge, B.K.; Toubia, J.; Jin, X.; Iadevaia, V.; Goodall, G.J.; Proud, C.G. capCLIP: A New Tool to Probe Translational Control in Human Cells through Capture and Identification of the eIF4E–mRNA Interactome. Nucleic Acids Res. 2021, 49, e105. [Google Scholar] [CrossRef] [PubMed]
- Gan, S.; Su, C.; Ma, J.; Liu, M.; Cui, X.; Xin, L.; Ren, Y.; Gao, X.; Ge, L.; Wei, M.; et al. Translation of Tudor-SN, a Novel Terminal Oligo-Pyrimidine (TOP) mRNA, Is Regulated by the mTORC1 Pathway in Cardiomyocytes. RNA Biol. 2021, 18, 900–913. [Google Scholar] [CrossRef]
- Setayesh, T.; Colquhoun, S.D.; Wan, Y.-J.Y. Overexpression of Galectin-1 and Galectin-3 in Hepatocellular Carcinoma. Liver Res. 2020, 4, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.-B.; Liu, J.; Wang, S.; Ma, L.; Zhang, J.-F. Biological Role and Expression of Translationally Controlled Tumor Protein (TCTP) in Tumorigenesis and Development and Its Potential for Targeted Tumor Therapy. Cancer Cell Int. 2024, 24, 198. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xie, Y.; Luo, H.; Song, Y.; Que, T.; Hu, R.; Huang, H.; Luo, K.; Li, C.; Qin, C.; et al. NAP1L1 Promotes Proliferation and Chemoresistance in Glioma by Inducing CCND1/CDK4/CDK6 Expression through Its Interaction with HDGF and Activation of c-Jun. Aging 2021, 13, 26180–26200. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.G.; Jung, Y.; Lee, N.; Seo, J.-Y.; Kim, S.W.; Lee, K.-H.; Kim, D.-Y.; Kim, K.-T. HNRNP A1 Promotes Lung Cancer Cell Proliferation by Modulating VRK1 Translation. Int. J. Mol. Sci. 2021, 22, 5506. [Google Scholar] [CrossRef] [PubMed]
- Usman, S.; Waseem, N.H.; Nguyen, T.K.N.; Mohsin, S.; Jamal, A.; Teh, M.-T.; Waseem, A. Vimentin Is at the Heart of Epithelial Mesenchymal Transition (EMT) Mediated Metastasis. Cancers 2021, 13, 4985. [Google Scholar] [CrossRef] [PubMed]
- Dermani, F.K.; Khoei, S.G.; Afshar, S.; Amini, R. The potential role of nucleophosmin (NPM1) in the development of cancer. J. Cell. Physiol. 2021, 236, 7832–7852. [Google Scholar] [CrossRef]
- Yoshino, Y.; Chiba, N. Roles of RACK1 in Centrosome Regulation and Carcinogenesis. Cell Signal 2022, 90, 110207. [Google Scholar] [CrossRef]
- Hsieh, A.C.; Liu, Y.; Edlind, M.P.; Ingolia, N.T.; Janes, M.R.; Sher, A.; Shi, E.Y.; Stumpf, C.R.; Christensen, C.; Bonham, M.J.; et al. The Translational Landscape of mTOR Signalling Steers Cancer Initiation and Metastasis. Nature 2012, 485, 55–61. [Google Scholar] [CrossRef]
- Yamashita, R.; Suzuki, Y.; Takeuchi, N.; Wakaguri, H.; Ueda, T.; Sugano, S.; Nakai, K. Comprehensive Detection of Human Terminal Oligo-Pyrimidine (TOP) Genes and Analysis of Their Characteristics. Nucleic Acids Res. 2008, 36, 3707–3715. [Google Scholar] [CrossRef] [PubMed]
- Hochstoeger, T.; Chao, J.A. Towards a Molecular Understanding of the 5′TOP Motif in Regulating Translation of Ribosomal mRNAs. Semin. Cell Dev. Biol. 2024, 154, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Weber, R.; Ghoshdastider, U.; Spies, D.; Duré, C.; Valdivia-Francia, F.; Forny, M.; Ormiston, M.; Renz, P.F.; Taborsky, D.; Yigit, M.; et al. Monitoring the 5′UTR Landscape Reveals Isoform Switches to Drive Translational Efficiencies in Cancer. Oncogene 2023, 42, 638–650. [Google Scholar] [CrossRef]
- Farooq, Z.; Kusuma, F.; Burke, P.; Dufour, C.R.; Lee, D.; Tabatabaei, N.; Toboz, P.; Radovani, E.; Greenblatt, J.F.; Rehman, J.; et al. The Amino Acid Sensor GCN2 Suppresses Terminal Oligopyrimidine (TOP) mRNA Translation via La-Related Protein 1 (LARP1). J. Biol. Chem. 2022, 298, 102277. [Google Scholar] [CrossRef] [PubMed]
- Gismondi, A.; Caldarola, S.; Lisi, G.; Juli, G.; Chellini, L.; Iadevaia, V.; Proud, C.G.; Loreni, F. Ribosomal Stress Activates eEF2K–eEF2 Pathway Causing Translation Elongation Inhibition and Recruitment of Terminal Oligopyrimidine (TOP) mRNAs on Polysomes. Nucleic Acids Res. 2014, 42, 12668–12680. [Google Scholar] [CrossRef] [PubMed]
- Li, B.B.; Qian, C.; Gameiro, P.A.; Liu, C.-C.; Jiang, T.; Roberts, T.M.; Struhl, K.; Zhao, J.J. Targeted Profiling of RNA Translation Reveals mTOR-4EBP1/2-Independent Translation Regulation of mRNAs Encoding Ribosomal Proteins. Proc. Natl. Acad. Sci. USA 2018, 115, E9325–E9332. [Google Scholar] [CrossRef] [PubMed]
- Cockman, E.; Anderson, P.; Ivanov, P. TOP mRNPs: Molecular Mechanisms and Principles of Regulation. Biomolecules 2020, 10, 969. [Google Scholar] [CrossRef] [PubMed]
- del Valle Morales, D.; Trotman, J.B.; Bundschuh, R.; Schoenberg, D.R. Inhibition of Cytoplasmic Cap Methylation Identifies 5′ TOP mRNAs as Recapping Targets and Reveals Recapping Sites Downstream of Native 5′ Ends. Nucleic Acids Res. 2020, 48, 3806–3815. [Google Scholar] [CrossRef]
- Jia, J.-J.; Lahr, R.M.; Solgaard, M.T.; Moraes, B.J.; Pointet, R.; Yang, A.-D.; Celucci, G.; Graber, T.E.; Hoang, H.-D.; Niklaus, M.R.; et al. mTORC1 Promotes TOP mRNA Translation through Site-Specific Phosphorylation of LARP1. Nucleic Acids Res. 2021, 49, 3461–3489. [Google Scholar] [CrossRef]
- Shichino, Y.; Yamaguchi, T.; Kashiwagi, K.; Mito, M.; Takahashi, M.; Ito, T.; Ingolia, N.T.; Kuba, K.; Iwasaki, S. eIF4A1 Enhances LARP1-Mediated Translational Repression during mTORC1 Inhibition. Nat. Struct. Mol. Biol. 2024, 31, 1557–1566. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.; Yi, H.; Baeg, K.; Choi, Y.; Lee, Y.; Lim, J.; Kim, V.N. Short Poly(A) Tails Are Protected from Deadenylation by the LARP1–PABP Complex. Nat. Struct. Mol. Biol. 2023, 30, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Ogami, K.; Oishi, Y.; Sakamoto, K.; Okumura, M.; Yamagishi, R.; Inoue, T.; Hibino, M.; Nogimori, T.; Yamaguchi, N.; Furutachi, K.; et al. mTOR- and LARP1-Dependent Regulation of TOP mRNA Poly(A) Tail and Ribosome Loading. Cell Rep. 2022, 41, 111548. [Google Scholar] [CrossRef] [PubMed]
- Mattijssen, S.; Kozlov, G.; Gaidamakov, S.; Ranjan, A.; Fonseca, B.D.; Gehring, K.; Maraia, R.J. The Isolated La-Module of LARP1 Mediates 3′ Poly(A) Protection and mRNA Stabilization, Dependent on Its Intrinsic PAM2 Binding to PABPC1. RNA Biol. 2021, 18, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Hochstoeger, T.; Papasaikas, P.; Piskadlo, E.; Chao, J.A. Distinct Roles of LARP1 and 4EBP1/2 in Regulating Translation and Stability of 5′TOP mRNAs. Sci. Adv. 2024, 10, eadi7830. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, P.; Pelletier, J.; Martinez-Herráez, C.; Diez-Obrero, V.; Iannizzotto, F.; Rubio, T.; Garcia-Cajide, M.; Menoyo, S.; Moreno, V.; Salazar, R.; et al. The 40S-LARP1 Complex Reprograms the Cellular Translatome upon mTOR Inhibition to Preserve the Protein Synthetic Capacity. Sci. Adv. 2021, 7, eabg9275. [Google Scholar] [CrossRef] [PubMed]
- Gentilella, A.; Morón-Duran, F.D.; Fuentes, P.; Zweig-Rocha, G.; Riaño-Canalias, F.; Pelletier, J.; Ruiz, M.; Turón, G.; Castaño, J.; Tauler, A.; et al. Autogenous Control of 5′TOP mRNA Stability by 40S Ribosomes. Mol. Cell 2017, 67, 55–70.e4. [Google Scholar] [CrossRef] [PubMed]
- Saba, J.A.; Huang, Z.; Schole, K.L.; Ye, X.; Bhatt, S.D.; Li, Y.; Timp, W.; Cheng, J.; Green, R. LARP1 Senses Free Ribosomes to Coordinate Supply and Demand of Ribosomal Proteins. bioRxiv 2023. [Google Scholar]
- Mansouri-Noori, F.; Pircher, A.; Bilodeau, D.; Siniavskaia, L.; Grigull, J.; Rissland, O.S.; Bayfield, M.A. The LARP1 Homolog Slr1p Controls the Stability and Expression of Proto-5′TOP mRNAs in Fission Yeast. Cell Rep. 2023, 42, 113226. [Google Scholar] [CrossRef]
- Kozak, M. At Least Six Nucleotides Preceding the AUG Initiator Codon Enhance Translation in Mammalian Cells. J. Mol. Biol. 1987, 196, 947–950. [Google Scholar] [CrossRef] [PubMed]
- Loughran, G.; Sachs, M.S.; Atkins, J.F.; Ivanov, I.P. Stringency of Start Codon Selection Modulates Autoregulation of Translation Initiation Factor eIF5. Nucleic Acids Res. 2012, 40, 2898–2906. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I.P.; Firth, A.E.; Michel, A.M.; Atkins, J.F.; Baranov, P.V. Identification of Evolutionarily Conserved Non-AUG-Initiated N-Terminal Extensions in Human Coding Sequences. Nucleic Acids Res. 2011, 39, 4220–4234. [Google Scholar] [CrossRef] [PubMed]
- Kostenis, E.; Degtyarev, M.Y.; Conklin, B.R.; Wess, J. The N-Terminal Extension of Gαq Is Critical for Constraining the Selectivity of Receptor Coupling. J. Biol. Chem. 1997, 272, 19107–19110. [Google Scholar] [CrossRef]
- Sunn, K.L.; Cock, T.-A.; Crofts, L.A.; Eisman, J.A.; Gardiner, E.M. Novel N-Terminal Variant of Human VDR. Mol. Endocrinol. 2001, 15, 1599–1609. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, H.; Lu, J. Recent Advances in Ribosome Profiling for Deciphering Translational Regulation. Methods 2020, 176, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Valdivia-Francia, F.; Sendoel, A. No Country for Old Methods: New Tools for Studying Microproteins. iScience 2024, 27, 108972. [Google Scholar] [CrossRef]
- Yang, H.; Li, Q.; Stroup, E.K.; Wang, S.; Ji, Z. Widespread Stable Noncanonical Peptides Identified by Integrated Analyses of Ribosome Profiling and ORF Features. Nat. Commun. 2024, 15, 1932. [Google Scholar] [CrossRef]
- Mudge, J.M.; Ruiz-Orera, J.; Prensner, J.R.; Brunet, M.A.; Calvet, F.; Jungreis, I.; Gonzalez, J.M.; Magrane, M.; Martinez, T.F.; Schulz, J.F.; et al. Standardized Annotation of Translated Open Reading Frames. Nat. Biotechnol. 2022, 40, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Chothani, S.P.; Adami, E.; Widjaja, A.A.; Langley, S.R.; Viswanathan, S.; Pua, C.J.; Zhihao, N.T.; Harmston, N.; D’Agostino, G.; Whiffin, N.; et al. A High-Resolution Map of Human RNA Translation. Mol. Cell 2022, 82, 2885–2899.e8. [Google Scholar] [CrossRef]
- Sandmann, C.-L.; Schulz, J.F.; Ruiz-Orera, J.; Kirchner, M.; Ziehm, M.; Adami, E.; Marczenke, M.; Christ, A.; Liebe, N.; Greiner, J.; et al. Evolutionary Origins and Interactomes of Human, Young Microproteins and Small Peptides Translated from Short Open Reading Frames. Mol. Cell 2023, 83, 994–1011.e18. [Google Scholar] [CrossRef]
- Dasgupta, A.; Prensner, J.R. Upstream Open Reading Frames: New Players in the Landscape of Cancer Gene Regulation. NAR Cancer 2024, 6, zcae023. [Google Scholar] [CrossRef] [PubMed]
- Young, S.K.; Wek, R.C. Upstream Open Reading Frames Differentially Regulate Gene-Specific Translation in the Integrated Stress Response. J. Biol. Chem. 2016, 291, 16927–16935. [Google Scholar] [CrossRef] [PubMed]
- Thiadens, K.A.M.H.; Klerck, E.; Fokkema, I.F.A.C.; Hoen, P.A.C.; von Lindern, M. Ribosome Profiling Uncovers the Role of uORFs in Translational Control of Gene Expression during Erythroblast Differentiation. Blood 2014, 124, 2658. [Google Scholar] [CrossRef]
- Barbosa, C.; Peixeiro, I.; Romão, L. Gene Expression Regulation by Upstream Open Reading Frames and Human Disease. PLoS Genet. 2013, 9, e1003529. [Google Scholar] [CrossRef] [PubMed]
- Dever, T.E.; Ivanov, I.P.; Hinnebusch, A.G. Translational Regulation by uORFs and Start Codon Selection Stringency. Genes Dev. 2023, 37, 474–489. [Google Scholar] [CrossRef]
- Kozak, M. Constraints on Reinitiation of Translation in Mammals. Nucleic Acids Res. 2001, 29, 5226–5232. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Qian, S.-B. Translational Reprogramming in Cellular Stress Response. WIREs RNA 2014, 5, 301–305. [Google Scholar] [CrossRef]
- Palam, L.R.; Baird, T.D.; Wek, R.C. Phosphorylation of eIF2 Facilitates Ribosomal Bypass of an Inhibitory Upstream ORF to Enhance CHOP Translation. J. Biol. Chem. 2011, 286, 10939–10949. [Google Scholar] [CrossRef]
- Adomavicius, T.; Guaita, M.; Zhou, Y. The Structural Basis of Translational Control by eIF2 Phosphorylation. Nat. Commun. 2019, 10, 2136. [Google Scholar] [CrossRef] [PubMed]
- Krishna, M.V.; Ronald, C. Wek Reinitiation Involving Upstream ORFs Regulates ATF4 mRNA Translation in Mammalian Cells. Proc. Natl. Acad. Sci. USA 2004, 101, 11269–11274. [Google Scholar] [CrossRef]
- Smirnova, A.M.; Hronová, V.; Mohammad, M.P.; Herrmannová, A.; Gunišová, S.; Petráčková, D.; Halada, P.; Coufal, Š.; Świrski, M.; Rendleman, J.; et al. Stem-Loop-Induced Ribosome Queuing in the uORF2/ATF4 Overlap Fine-Tunes Stress-Induced Human ATF4 Translational Control. Cell Rep. 2024, 43, 113976. [Google Scholar] [CrossRef] [PubMed]
- Amin, P.H.; Carlson, K.R.; Wek, R.C. An RNA Stem-Loop Functions in Conjunction with an Upstream Open Reading Frame to Direct Preferential Translation in the Integrated Stress Response. J. Biol. Chem. 2023, 299, 102864. [Google Scholar] [CrossRef]
- Murat, P.; Marsico, G.; Herdy, B.; Ghanbarian, A.; Portella, G.; Balasubramanian, S. RNA G-Quadruplexes at Upstream Open Reading Frames Cause DHX36- and DHX9-Dependent Translation of Human mRNAs. Genome Biol. 2018, 19, 229. [Google Scholar] [CrossRef] [PubMed]
- Kozak, M. Downstream Secondary Structure Facilitates Recognition of Initiator Codons by Eukaryotic Ribosomes. Proc. Natl. Acad. Sci. USA 1990, 87, 8301–8305. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.; Yaman, I.; Huang, C.; Liu, H.; Lopez, A.B.; Komar, A.A.; Caprara, M.G.; Merrick, W.C.; Snider, M.D.; Kaufman, R.J.; et al. Ribosome Stalling Regulates IRES-Mediated Translation in Eukaryotes, a Parallel to Prokaryotic Attenuation. Mol. Cell 2005, 17, 405–416. [Google Scholar] [CrossRef]
- Meijer, H.A.; Thomas, A.A.M. Ribosomes Stalling on uORF1 in the Xenopus Cx41 5′ UTR Inhibit Downstream Translation Initiation. Nucleic Acids Res. 2003, 31, 3174–3184. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; May, G.E.; Kready, H.; Nazzaro, L.; Mao, M.; Spealman, P.; Creeger, Y.; McManus, C.J. Impacts of uORF Codon Identity and Position on Translation Regulation. Nucleic Acids Res. 2019, 47, 9358–9367. [Google Scholar] [CrossRef]
- Park, M.H.; Wolff, E.C. Hypusine, a Polyamine-Derived Amino Acid Critical for Eukaryotic Translation. J. Biol. Chem. 2018, 293, 18710–18718. [Google Scholar] [CrossRef]
- Venkataramanan, S.; Floor, S.N. The Traffic Jam: Polyamine Prevalence Pauses Protein Production. Mol. Cell 2018, 70, 191–192. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I.P.; Shin, B.-S.; Loughran, G.; Tzani, I.; Young-Baird, S.K.; Cao, C.; Atkins, J.F.; Dever, T.E. Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing. Mol. Cell 2018, 70, 254–264.e6. [Google Scholar] [CrossRef] [PubMed]
- Pegg, A.E. Functions of Polyamines in Mammals. J. Biol. Chem. 2016, 291, 14904–14912. [Google Scholar] [CrossRef] [PubMed]
- Raney, A.; Baron, A.C.; Mize, G.J.; Law, G.L.; Morris, D.R. In Vitro Translation of the Upstream Open Reading Frame in the Mammalian mRNA Encoding S-Adenosylmethionine Decarboxylase. J. Biol. Chem. 2000, 275, 24444–24450. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.R.; Morris, D.R. Cell-Specific Translational Regulation of S-Adenosylmethionine Decarboxylase mRNA. Dependence on Translation and Coding Capacity of the Cis-Acting Upstream Open Reading Frame. J. Biol. Chem. 1993, 268, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Law, G.L.; Raney, A.; Heusner, C.; Morris, D.R. Polyamine Regulation of Ribosome Pausing at the Upstream Open Reading Frame of S-Adenosylmethionine Decarboxylase. J. Biol. Chem. 2001, 276, 38036–38043. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I.P.; Atkins, J.F.; Michael, A.J. A Profusion of Upstream Open Reading Frame Mechanisms in Polyamine-Responsive Translational Regulation. Nucleic Acids Res. 2009, 38, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Werner, M.; Feller, A.; Messenguy, F.; Piérard, A. The Leader Peptide of Yeast Gene CPA1 Is Essential for the Translational Repression of Its Expression. Cell 1987, 49, 805–813. [Google Scholar] [CrossRef]
- Wu, C.; Wei, J.; Lin, P.-J.; Tu, L.; Deutsch, C.; Johnson, A.E.; Sachs, M.S. Arginine Changes the Conformation of the Arginine Attenuator Peptide Relative to the Ribosome Tunnel. J. Mol. Biol. 2012, 416, 518–533. [Google Scholar] [CrossRef] [PubMed]
- Gaba, A.; Jacobson, A.; Sachs, M.S. Ribosome Occupancy of the Yeast CPA1 Upstream Open Reading Frame Termination Codon Modulates Nonsense-Mediated mRNA Decay. Mol. Cell 2005, 20, 449–460. [Google Scholar] [CrossRef]
- He, F.; Li, X.; Spatrick, P.; Casillo, R.; Dong, S.; Jacobson, A. Genome-Wide Analysis of mRNAs Regulated by the Nonsense-Mediated and 5′ to 3′ mRNA Decay Pathways in Yeast. Mol. Cell 2003, 12, 1439–1452. [Google Scholar] [CrossRef] [PubMed]
- Nyikó, T.; Sonkoly, B.; Mérai, Z.; Benkovics, A.H.; Silhavy, D. Plant Upstream ORFs Can Trigger Nonsense-Mediated mRNA Decay in a Size-Dependent Manner. Plant Mol. Biol. 2009, 71, 367. [Google Scholar] [CrossRef] [PubMed]
- van der Horst, S.; Filipovska, T.; Hanson, J.; Smeekens, S. Metabolite Control of Translation by Conserved Peptide uORFs: The Ribosome as a Metabolite Multisensor. Plant Physiol. 2020, 182, 110–122. [Google Scholar] [CrossRef]
- Jayaram, D.R.; Frost, S.; Argov, C.; Livneh, E. Unraveling the Hidden Role of a uORF-Encoded Peptide as a Kinase Inhibitor of PKCs. Proc. Natl. Acad. Sci. USA 2021, 118, e2018899118. [Google Scholar] [CrossRef]
- Cloutier, P.; Poitras, C.; Faubert, D.; Bouchard, A.; Blanchette, M.; Gauthier, M.-S.; Coulombe, B. Upstream ORF-Encoded ASDURF Is a Novel Prefoldin-like Subunit of the PAQosome. J. Proteome Res. 2020, 19, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Hofman, D.A.; Ruiz-Orera, J.; Yannuzzi, I.; Murugesan, R.; Brown, A.; Clauser, K.R.; Condurat, A.L.; van Dinter, J.T.; Engels, S.A.G.; Goodale, A.; et al. Translation of Non-Canonical Open Reading Frames as a Cancer Cell Survival Mechanism in Childhood Medulloblastoma. Mol. Cell 2024, 84, 261–276.e18. [Google Scholar] [CrossRef]
- Mou, R.; Niu, R.; Yang, R.; Xu, G. Engineering Crop Performance with Upstream Open Reading Frames. Trends Plant Sci. 2024, 24, 1360–1385. [Google Scholar] [CrossRef]
- Um, T.; Park, T.; Shim, J.S.; Kim, Y.S.; Lee, G.-S.; Choi, I.-Y.; Kim, J.-K.; Seo, J.S.; Park, S.C. Application of Upstream Open Reading Frames (uORFs) Editing for the Development of Stress-Tolerant Crops. Int. J. Mol. Sci. 2021, 22, 3743. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.; Yaman, I.; Merrick, W.C.; Koromilas, A.; Wek, R.C.; Sood, R.; Hensold, J.; Hatzoglou, M. Regulation of Internal Ribosome Entry Site-Mediated Translation by Eukaryotic Initiation Factor-2α Phosphorylation and Translation of a Small Upstream Open Reading Frame. J. Biol. Chem. 2002, 277, 2050–2058. [Google Scholar] [CrossRef] [PubMed]
- Nijs, Y.D.; Maeseneire, S.L.D.; Soetaert, W.K. 5′ untranslated regions: The next regulatory sequence in yeast synthetic biology. Biol. Rev. 2019, 95, 517–529. [Google Scholar] [CrossRef]
- Silva, J.; Fernandes, R.; Romão, L. Translational Regulation by Upstream Open Reading Frames and Human Diseases. In The mRNA Metabolism in Human Disease; Romão, L., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 99–116. ISBN 978-3-030-19966-1. [Google Scholar]
- Muckenthaler, M.; Gray, N.K.; Hentze, M.W. IRP-1 Binding to Ferritin mRNA Prevents the Recruitment of the Small Ribosomal Subunit by the Cap-Binding Complex eIF4F. Mol. Cell 1998, 2, 383–388. [Google Scholar] [CrossRef]
- Hentze, M.W.; Caughman, S.W.; Rouault, T.A.; Barriocanal, J.G.; Dancis, A.; Harford, J.B.; Klausner, R.D. Identification of the Iron-Responsive Element for the Translational Regulation of Human Ferritin mRNA. Science 1987, 238, 1570–1573. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.J.; Shortridge, M.D.; Albin, D.D.; Cominsky, L.Y.; Varani, G. Structure of the RNA Specialized Translation Initiation Element That Recruits eIF3 to the 5′-UTR of c-Jun. J. Mol. Biol. 2020, 432, 1841–1855. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.S.Y.; Kranzusch, P.J.; Cate, J.H.D. eIF3 Targets Cell-Proliferation Messenger RNAs for Translational Activation or Repression. Nature 2015, 522, 111–114. [Google Scholar] [CrossRef]
- Grayeski, P.J.; Weidmann, C.A.; Kumar, J.; Lackey, L.; Mustoe, A.M.; Busan, S.; Laederach, A.; Weeks, K.M. Global 5′-UTR RNA Structure Regulates Translation of a SERPINA1 mRNA. Nucleic Acids Res. 2022, 50, 9689–9704. [Google Scholar] [CrossRef]
- Ben-Asouli, Y.; Banai, Y.; Pel-Or, Y.; Shir, A.; Kaempfer, R. Human Interferon-γ mRNA Autoregulates Its Translation through a Pseudoknot That Activates the Interferon-Inducible Protein Kinase PKR. Cell 2002, 108, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Du, Z. Possible involvement of three-stemmed pseudoknots in regulating translational initiation in human mRNAs. PLoS ONE 2024, 19, e0307541. [Google Scholar] [CrossRef]
- Kavita, K.; Breaker, R.R. Discovering Riboswitches: The Past and the Future. Trends Biochem. Sci. 2023, 48, 119–141. [Google Scholar] [CrossRef] [PubMed]
- Wachter, A. Riboswitch-Mediated Control of Gene Expression in Eukaryotes. RNA Biol. 2010, 7, 67–76. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, X.; Chen, D.; Murchie, A.I.H. Interactions between the 5′ UTR mRNA of the Spe2 Gene and Spermidine Regulate Translation in S. Pombe. RNA 2020, 26, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, W.; Chen, D.; Murchie, A.I.H. Interactions between SAM and the 5′ UTR mRNA of the Sam1 Gene Regulate Translation in S. Pombe. RNA 2020, 26, 150–161. [Google Scholar] [CrossRef]
- Pavlova, N.; Kaloudas, D.; Penchovsky, R. Riboswitch Distribution, Structure, and Function in Bacteria. Gene 2019, 708, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Giarimoglou, N.; Kouvela, A.; Maniatis, A.; Papakyriakou, A.; Zhang, J.; Stamatopoulou, V.; Stathopoulos, C. A Riboswitch-Driven Era of New Antibacterials. Antibiotics 2022, 11, 1243. [Google Scholar] [CrossRef]
- Tickner, Z.J.; Farzan, M. Riboswitches for Controlled Expression of Therapeutic Transgenes Delivered by Adeno-Associated Viral Vectors. Pharmaceuticals 2021, 14, 554. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.T.D.T.; Scaife, M.A.; Helliwell, K.E.; Smith, A.G. Role of riboswitches in gene regulation and their potential for algal biotechnology. J. Phycol. 2016, 52, 320–328. [Google Scholar] [CrossRef]
- Tabuchi, T.; Yokobayashi, Y. Cell-Free Riboswitches. RSC Chem. Biol. 2021, 2, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Panchasara, H.; Braddick, D.; Gohil, N.; Singh, V. Synthetic small RNAs: Current status, challenges, and opportunities. J. Cell Biochem. 2018, 119, 9619–9639. [Google Scholar] [CrossRef]
- Kim, J.; Cheong, C.; Moore, P.B. Tetramerization of an RNA Oligonucleotide Containing a GGGG Sequence. Nature 1991, 351, 331–332. [Google Scholar] [CrossRef] [PubMed]
- Kwok, C.K.; Marsico, G.; Sahakyan, A.B.; Chambers, V.S.; Balasubramanian, S. rG4-Seq Reveals Widespread Formation of G-Quadruplex Structures in the Human Transcriptome. Nat. Methods 2016, 13, 841–844. [Google Scholar] [CrossRef]
- Chow, E.Y.-C.; Lyu, K.; Kwok, C.K.; Chan, T.-F. rG4-Seeker Enables High-Confidence Identification of Novel and Non-Canonical rG4 Motifs from rG4-Seq Experiments. RNA Biol. 2020, 17, 903–917. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Qi, Y.; Yang, B.; Yang, X.; Ding, Y. G4Atlas: A comprehensive transcriptome-wide G-quadruplex database. Nucleic Acids Res. 2022, 51, D126. [Google Scholar] [CrossRef]
- Fay, M.M.; Lyons, S.M.; Ivanov, P. RNA G-Quadruplexes in Biology: Principles and Molecular Mechanisms. J. Mol. Biol. 2017, 429, 2127–2147. [Google Scholar] [CrossRef] [PubMed]
- Lyu, K.; Chow, E.Y.-C.; Mou, X.; Chan, T.-F.; Kwok, C.K. RNA G-Quadruplexes (rG4s): Genomics and Biological Functions. Nucleic Acids Res. 2021, 49, 5426–5450. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-H.; Yang, Q.-F.; Lin, X.; Chen, D.; Wang, Z.-Y.; Chen, B.; Han, H.-Y.; Chen, H.-D.; Cai, K.-C.; Li, Q.; et al. G4LDB 2.2: A Database for Discovering and Studying G-Quadruplex and i-Motif Ligands. Nucleic Acids Res. 2022, 50, D150–D160. [Google Scholar] [CrossRef] [PubMed]
- Bourdon, S.; Herviou, P.; Dumas, L.; Destefanis, E.; Zen, A.; Cammas, A.; Millevoi, S.; Dassi, E. QUADRatlas: The RNA G-Quadruplex and RG4-Binding Proteins Database. Nucleic Acids Res. 2023, 51, D240–D247. [Google Scholar] [CrossRef]
- Kharel, P.; Ivanov, P. Structure and Functions of RNA G-Quadruplexes. In RNA Structure and Function; Barciszewski, J., Ed.; Springer: Cham, Switzerland, 2023; Volume 14, pp. 183–203. [Google Scholar] [CrossRef]
- Guo, J.U.; Bartel, D.P. RNA G-Quadruplexes Are Globally Unfolded in Eukaryotic Cells and Depleted in Bacteria. Science 2016, 353, aaf5371. [Google Scholar] [CrossRef] [PubMed]
- Kharel, P.; Becker, G.; Tsvetkov, V.; Ivanov, P. Properties and Biological Impact of RNA G-Quadruplexes: From Order to Turmoil and Back. Nucleic Acids Res. 2020, 48, 12534–12555. [Google Scholar] [CrossRef]
- Biffi, G.; Di Antonio, M.; Tannahill, D.; Balasubramanian, S. Visualization and Selective Chemical Targeting of RNA G-Quadruplex Structures in the Cytoplasm of Human Cells. Nat. Chem. 2014, 6, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.; Stenspil, S.G.; Maleckaite, K.; Bartlett, M.; Di Antonio, M.; Vilar, R.; Kuimova, M.K. Cellular Visualization of G-Quadruplex RNA via Fluorescence- Lifetime Imaging Microscopy. J. Am. Chem. Soc. 2024, 146, 1009–1018. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, H.; Chen, H.; Li, Q.; Guan, A.; Wang, L.; Shi, Y.; Xu, S.; Liu, M.; Tang, Y. Direct Visualization of Nucleolar G-Quadruplexes in Live Cells by Using a Fluorescent Light-up Probe. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.L.; Zhao, H.; Feng, H.; Kwok, C.K. Specific Targeting and Imaging of RNA G-Quadruplex (rG4) Structure Using Non-G4-Containing l-RNA Aptamer and Fluorogenic l-Aptamer. Small Methods 2024, e2401097. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-B.; Hu, M.-H.; Liu, G.-C.; Wang, J.; Ou, T.-M.; Gu, L.-Q.; Huang, Z.-S.; Tan, J.-H. Visualization of NRAS RNA G-Quadruplex Structures in Cells with an Engineered Fluorogenic Hybridization Probe. J. Am. Chem. Soc. 2016, 138, 10382–10385. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-C.; Chen, S.-B.; Dai, J.; Yuan, J.-H.; Ou, T.-M.; Huang, Z.-S.; Tan, J.-H. Tracking the Dynamic Folding and Unfolding of RNA G-Quadruplexes in Live Cells. Angew. Chem. Int. Ed. Engl. 2018, 57, 4702–4706. [Google Scholar] [CrossRef]
- Zheng, B.-X.; Long, W.; She, M.-T.; Wang, Y.; Zhao, D.; Yu, J.; Leung, A.S.-L.; Chan, K.H.; Hou, J.; Lu, Y.-J.; et al. A Cytoplasm-Specific Fluorescent Ligand for Selective Imaging of RNA G-Quadruplexes in Live Cancer Cells. Chemistry 2023, 29, e202300705. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, A.; Tornmalm, J.; Demirbay, B.; Piguet, J.; Kinjo, M.; Widengren, J. Trans-Cis Isomerization Kinetics of Cyanine Dyes Reports on the Folding States of Exogeneous RNA G-Quadruplexes in Live Cells. Nucleic Acids Res. 2023, 51, e27. [Google Scholar] [CrossRef] [PubMed]
- Pandith, A.; Siddappa, R.G.; Seo, Y.J. Recent Developments in Novel Blue/Green/Red/NIR Small Fluorescent Probes for in Cellulo Tracking of RNA/DNA G-Quadruplexes. J. Photochem. Photobiol. C Photochem. Rev. 2019, 40, 81–116. [Google Scholar] [CrossRef]
- Bao, H.-L.; Ishizuka, T.; Sakamoto, T.; Fujimoto, K.; Uechi, T.; Kenmochi, N.; Xu, Y. Characterization of Human Telomere RNA G-Quadruplex Structures in Vitro and in Living Cells Using 19F NMR Spectroscopy. Nucleic Acids Res. 2017, 45, 5501–5511. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Meng, S.; Zhou, J.; Yang, J.; Li, H.; Zhou, W. Translational Inhibition of α-Neurexin 2. Sci. Rep. 2020, 10, 3403. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Bugaut, A.; Huppert, J.L.; Balasubramanian, S. An RNA G-Quadruplex in the 5′ UTR of the NRAS Proto-Oncogene Modulates Translation. Nat. Chem. Biol. 2007, 3, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.; Guédin, A.; Mergny, J.-L.; Salles, B.; Riou, J.-F.; Teulade-Fichou, M.-P.; Calsou, P. A G-Quadruplex Structure within the 5′-UTR of TRF2 mRNA Represses Translation in Human Cells. Nucleic Acids Res. 2010, 38, 7187–7198. [Google Scholar] [CrossRef] [PubMed]
- Kwok, C.K.; Ding, Y.; Shahid, S.; Assmann, S.M.; Bevilacqua, P.C. A Stable RNA G-Quadruplex within the 5′-UTR of Arabidopsis Thaliana ATR mRNA Inhibits Translation. Biochem. J. 2015, 467, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Shahid, R.; Bugaut, A.; Balasubramanian, S. The BCL-2 5′ Untranslated Region Contains an RNA G-Quadruplex-Forming Motif That Modulates Protein Expression. Biochemistry 2010, 49, 8300–8306. [Google Scholar] [CrossRef] [PubMed]
- Lammich, S.; Kamp, F.; Wagner, J.; Nuscher, B.; Zilow, S.; Ludwig, A.-K.; Willem, M.; Haass, C. Translational Repression of the Disintegrin and Metalloprotease ADAM10 by a Stable G-Quadruplex Secondary Structure in Its 5′-Untranslated Region. J. Biol. Chem. 2011, 286, 45063–45072. [Google Scholar] [CrossRef]
- Weng, H.-Y.; Huang, H.-L.; Zhao, P.-P.; Zhou, H.; Qu, L.-H. Translational Repression of Cyclin D3 by a Stable G-Quadruplex in Its 5′ UTR: Implications for Cell Cycle Regulation. RNA Biol. 2012, 9, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.J.; Basu, S. An Unusually Stable G-Quadruplex within the 5′-UTR of the MT3 Matrix Metalloproteinase mRNA Represses Translation in Eukaryotic Cells. Biochemistry 2009, 48, 5313–5319. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Bugaut, A.; Balasubramanian, S. Position and Stability Are Determining Factors for Translation Repression by an RNA G-Quadruplex-Forming Sequence within the 5′ UTR of the NRAS Proto-Oncogene. Biochemistry 2008, 47, 12664–12669. [Google Scholar] [CrossRef]
- Hoque, M.E.; Mahendran, T.; Basu, S. Reversal of G-Quadruplexes’ Role in Translation Control When Present in the Context of an IRES. Biomolecules 2022, 12, 314. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Diamond, P.; Basu, S. An Independently Folding RNA G-Quadruplex Domain Directly Recruits the 40S Ribosomal Subunit. Biochemistry 2015, 54, 1879–1885. [Google Scholar] [CrossRef] [PubMed]
- Singha Roy, A.; Majumder, S.; Saha, P. Stable RNA G-Quadruplex in the 5′-UTR of Human cIAP1 mRNA Promotes Translation in an IRES-Independent Manner. Biochemistry 2024, 63, 475–486. [Google Scholar] [CrossRef]
- Agarwala, P.; Pandey, S.; Mapa, K.; Maiti, S. The G-Quadruplex Augments Translation in the 5′ Untranslated Region of Transforming Growth Factor Β2. Biochemistry 2013, 52, 1528–1538. [Google Scholar] [CrossRef] [PubMed]
- Agarwala, P.; Pandey, S.; Ekka, M.K.; Chakraborty, D.; Maiti, S. Combinatorial Role of Two G-Quadruplexes in 5′ UTR of Transforming Growth Factor Β2 (TGFβ2). Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 129416. [Google Scholar] [CrossRef] [PubMed]
- Jodoin, R.; Carrier, J.C.; Rivard, N.; Bisaillon, M.; Perreault, J.-P. G-Quadruplex Located in the 5′UTR of the BAG-1 mRNA Affects Both Its Cap-Dependent and Cap-Independent Translation through Global Secondary Structure Maintenance. Nucleic Acids Res. 2019, 47, 10247–10266. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chu, Z.; Yang, X. A Key Molecular Regulator, RNA G-Quadruplex and Its Function in Plants. Front. Plant Sci. 2022, 13, 926953. [Google Scholar] [CrossRef] [PubMed]
- Dumetz, F.; Chow, E.Y.-C.; Harris, L.M.; Liew, S.W.; Jensen, A.; Umar, M.I.; Chung, B.; Chan, T.F.; Merrick, C.J.; Kwok, C.K. G-Quadruplex RNA Motifs Influence Gene Expression in the Malaria Parasite Plasmodium Falciparum. Nucleic Acids Res. 2021, 49, 12486–12501. [Google Scholar] [CrossRef] [PubMed]
- Varshney, D.; Cuesta, S.M.; Herdy, B.; Abdullah, U.B.; Tannahill, D.; Balasubramanian, S. RNA G-Quadruplex Structures Control Ribosomal Protein Production. Sci. Rep. 2021, 11, 22735. [Google Scholar] [CrossRef]
- Benhalevy, D.; Gupta, S.K.; Danan, C.H.; Ghosal, S.; Sun, H.-W.; Kazemier, H.G.; Paeschke, K.; Hafner, M.; Juranek, S.A. The Human CCHC-Type Zinc Finger Nucleic Acid-Binding Protein Binds G-Rich Elements in Target mRNA Coding Sequences and Promotes Translation. Cell Rep. 2017, 18, 2979–2990. [Google Scholar] [CrossRef] [PubMed]
- Herviou, P.; Le Bras, M.; Dumas, L.; Hieblot, C.; Gilhodes, J.; Cioci, G.; Hugnot, J.-P.; Ameadan, A.; Guillonneau, F.; Dassi, E.; et al. hnRNP H/F Drive RNA G-Quadruplex-Mediated Translation Linked to Genomic Instability and Therapy Resistance in Glioblastoma. Nat. Commun. 2020, 11, 2661. [Google Scholar] [CrossRef]
- Caterino, M.; Paeschke, K. Action and Function of Helicases on RNA G-Quadruplexes. Methods 2022, 204, 110–125. [Google Scholar] [CrossRef]
- Sauer, M.; Juranek, S.A.; Marks, J.; De Magis, A.; Kazemier, H.G.; Hilbig, D.; Benhalevy, D.; Wang, X.; Hafner, M.; Paeschke, K. DHX36 Prevents the Accumulation of Translationally Inactive mRNAs with G4-Structures in Untranslated Regions. Nat. Commun. 2019, 10, 2421. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xue, G.; Zhao, J.; Zhang, Y.; Zhang, S.; Wang, W.; Li, Y.; Yuan, J.; He, L.; Chan, C.Y.; et al. Lockd Promotes Myoblast Proliferation and Muscle Regeneration via Binding with DHX36 to Facilitate 5′ UTR rG4 Unwinding and Anp32e Translation. Cell Rep. 2022, 39, 110927. [Google Scholar] [CrossRef] [PubMed]
- Lyu, K.; Chen, S.-B.; Chow, E.Y.-C.; Zhao, H.; Yuan, J.-H.; Cai, M.; Shi, J.; Chan, T.-F.; Tan, J.-H.; Kwok, C.K. An RNA G-Quadruplex Structure within the ADAR 5′UTR Interacts with DHX36 Helicase to Regulate Translation. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203553. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, A.L.; Singh, K.; Zhong, Y.; Drewe, P.; Rajasekhar, V.K.; Sanghvi, V.R.; Mavrakis, K.J.; Jiang, M.; Roderick, J.E.; Van der Meulen, J.; et al. RNA G-Quadruplexes Cause eIF4A-Dependent Oncogene Translation in Cancer. Nature 2014, 513, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Kharel, P.; Balaratnam, S.; Beals, N.; Basu, S. The Role of RNA G-quadruplexes in Human Diseases and Therapeutic Strategies. Wiley Interdiscip. Rev. RNA 2020, 11, e1568. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Thombre, R.; Shah, Y.; Latanich, R.; Wang, J. G-Quadruplexes as Pathogenic Drivers in Neurodegenerative Disorders. Nucleic Acids Res. 2021, 49, 4816–4830. [Google Scholar] [CrossRef]
- Lee, D.S.M.; Ghanem, L.R.; Barash, Y. Integrative Analysis Reveals RNA G-Quadruplexes in UTRs Are Selectively Constrained and Enriched for Functional Associations. Nat. Commun. 2020, 11, 527. [Google Scholar] [CrossRef] [PubMed]
- Zeraati, M.; Moye, A.L.; Wong, J.W.H.; Perera, D.; Cowley, M.J.; Christ, D.U.; Bryan, T.M.; Dinger, M.E. Cancer-Associated Noncoding Mutations Affect RNA G-Quadruplex-Mediated Regulation of Gene Expression. Sci. Rep. 2017, 7, 708. [Google Scholar] [CrossRef] [PubMed]
- Jodoin, R.; Perreault, J.-P. G-Quadruplexes Formation in the 5′UTRs of mRNAs Associated with Colorectal Cancer Pathways. PLoS ONE 2018, 13, e0208363. [Google Scholar] [CrossRef] [PubMed]
- Cammas, A.; Desprairies, A.; Dassi, E.; Millevoi, S. The Shaping of mRNA Translation Plasticity by RNA G-Quadruplexes in Cancer Progression and Therapy Resistance. NAR Cancer 2024, 6, zcae025. [Google Scholar] [CrossRef] [PubMed]
- Umar, M.I.; Chan, C.-Y.; Kwok, C.K. Development of RNA G-Quadruplex (rG4)-Targeting l-RNA Aptamers by rG4-SELEX. Nat. Protoc. 2022, 17, 1385–1414. [Google Scholar] [CrossRef]
- Tao, Y.; Zheng, Y.; Zhai, Q.; Wei, D. Recent Advances in the Development of Small Molecules Targeting RNA G-Quadruplexes for Drug Discovery. Bioorg. Chem. 2021, 110, 104804. [Google Scholar] [CrossRef] [PubMed]
- Miglietta, G.; Cogoi, S.; Marinello, J.; Capranico, G.; Tikhomirov, A.S.; Shchekotikhin, A.; Xodo, L.E. RNA G-Quadruplexes in Kirsten Ras (KRAS) Oncogene as Targets for Small Molecules Inhibiting Translation. J. Med. Chem. 2017, 60, 9448–9461. [Google Scholar] [CrossRef]
- Wang, X.-D.; Liu, Y.-S.; Hu, M.-H. Discovery of an Indolium-Based, Turn-on Fluorescent Ligand That Represses the Neuroblastoma RAS Expression by Targeting the 5′-UTR G-Quadruplex Structure. Sens. Actuators B Chem. 2024, 408, 135506. [Google Scholar] [CrossRef]
- Kharel, P.; Ivanov, P. RNA G-Quadruplexes and Stress: Emerging Mechanisms and Functions: Trends in Cell Biology. Trends Cell Biol. 2024, 34, 771–784. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yang, Y.; Xin, J.; He, L.; Hu, Z.; Gao, T.; Pan, F.; Guo, Z. RNA G-Quadruplex within the 5′-UTR of FEN1 Regulates mRNA Stability under Oxidative Stress. Antioxidants 2023, 12, 276. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.; Wieden, H.-J. Viruses, IRESs, and a Universal Translation Initiation Mechanism. Biotechnol. Genet. Eng. Rev. 2018, 34, 60–75. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, Y.; Wang, C.; Zhang, H.; Zhang, H.; Jiang, B.; Guo, X.; Song, X. IRESbase: A Comprehensive Database of Experimentally Validated Internal Ribosome Entry Sites. Genom. Proteom. Bioinform. 2020, 18, 129–139. [Google Scholar] [CrossRef]
- Loughran, G.; Andreev, D.E.; Terenin, I.M.; Namy, O.; Mikl, M.; Yordanova, M.M.; Mcmanus, C.J.; Firth, A.E.; Atkins, J.F.; Fraser, C.S.; et al. Guidelines for Minimal Reporting Requirements, Design and Interpretation of Experiments Involving the Use of Eukaryotic Dual Gene Expression Reporters (MINDR). HAL 2024, hal:04395528. Available online: https://hal.science/hal-04395528/ (accessed on 20 February 2025).
- Shatsky, I.N.; Terenin, I.M.; Smirnova, V.V.; Andreev, D.E. Cap-Independent Translation: What’s in a Name? Trends Biochem. Sci. 2018, 43, 882–895. [Google Scholar] [CrossRef]
- Godet, A.-C.; David, F.; Hantelys, F.; Tatin, F.; Lacazette, E.; Garmy-Susini, B.; Prats, A.-C. IRES Trans-Acting Factors, Key Actors of the Stress Response. Int. J. Mol. Sci. 2019, 20, 924. [Google Scholar] [CrossRef]
- Yaman, I.; Fernandez, J.; Liu, H.; Caprara, M.; Komar, A.A.; Koromilas, A.E.; Zhou, L.; Snider, M.D.; Scheuner, D.; Kaufman, R.J.; et al. The Zipper Model of Translational Control: A Small Upstream ORF Is the Switch That Controls Structural Remodeling of an mRNA Leader. Cell 2003, 113, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Bastide, A.; Karaa, Z.; Bornes, S.; Hieblot, C.; Lacazette, E.; Prats, H.; Touriol, C. An Upstream Open Reading Frame within an IRES Controls Expression of a Specific VEGF-A Isoform. Nucleic Acids Res. 2008, 36, 2434–2445. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-M.; Shih, Y.-H.; Tseng, J.T.; Lai, M.-C.; Wu, C.-H.; Li, Y.-H.; Tsai, S.-J.; Sun, H.S. Overexpression of FGF9 in Colon Cancer Cells Is Mediated by Hypoxia-Induced Translational Activation. Nucleic Acids Res. 2014, 42, 2932–2944. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Tian, S.; Fujii, K.; Kladwang, W.; Das, R.; Barna, M. RNA Regulons in Hox 5′ UTRs Confer Ribosome Specificity to Gene Regulation. Nature 2015, 517, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Akirtava, C.; May, G.E.; McManus, C.J. False-Positive IRESes from Hoxa9 and Other Genes Resulting from Errors in Mammalian 5′ UTR Annotations. Proc. Natl. Acad. Sci. USA 2022, 119, e2122170119. [Google Scholar] [CrossRef]
- Sun, H.; Li, K.; Liu, C.; Yi, C. Regulation and Functions of Non-m6A mRNA Modifications. Nat. Rev. Mol. Cell Biol. 2023, 24, 714–731. [Google Scholar] [CrossRef]
- Ramanathan, A.; Robb, G.B.; Chan, S.-H. mRNA Capping: Biological Functions and Applications. Nucleic Acids Res. 2016, 44, 7511–7526. [Google Scholar] [CrossRef] [PubMed]
- Mancini, F.; Cahova, H. The Mysterious World of Non-Canonical Caps—What We Know and Why We Need New Sequencing Techniques. Chembiochem 2024, 26, e202400604. [Google Scholar] [CrossRef] [PubMed]
- Malbec, L.; Zhang, T.; Chen, Y.-S.; Zhang, Y.; Sun, B.-F.; Shi, B.-Y.; Zhao, Y.-L.; Yang, Y.; Yang, Y.-G. Dynamic Methylome of Internal mRNA N7-Methylguanosine and Its Regulatory Role in Translation. Cell Res. 2019, 29, 927–941. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-S.; Liu, C.; Ma, H.; Dai, Q.; Sun, H.-L.; Luo, G.; Zhang, Z.; Zhang, L.; Hu, L.; Dong, X.; et al. Transcriptome-Wide Mapping of Internal N7-Methylguanosine Methylome in Mammalian mRNA. Mol. Cell 2019, 74, 1304–1316.e8. [Google Scholar] [CrossRef] [PubMed]
- Cesaro, B.; Tarullo, M.; Fatica, A. Regulation of Gene Expression by m6Am RNA Modification. Int. J. Mol. Sci. 2023, 24, 2277. [Google Scholar] [CrossRef] [PubMed]
- Boulias, K.; Toczydłowska-Socha, D.; Hawley, B.R.; Liberman, N.; Takashima, K.; Zaccara, S.; Guez, T.; Vasseur, J.-J.; Debart, F.; Aravind, L.; et al. Identification of the m6Am Methyltransferase PCIF1 Reveals the Location and Functions of m6Am in the Transcriptome. Mol. Cell 2019, 75, 631–643.e8. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lv, W.; Li, T.; Zhang, S.; Wang, H.; Li, X.; Wang, L.; Ma, D.; Zang, Y.; Shen, J.; et al. Dynamic Regulation and Functions of mRNA m6A Modification. Cancer Cell Int. 2022, 22, 48. [Google Scholar] [CrossRef]
- Meyer, K.D.; Patil, D.P.; Zhou, J.; Zinoviev, A.; Skabkin, M.A.; Elemento, O.; Pestova, T.V.; Qian, S.-B.; Jaffrey, S.R. 5′ UTR m6A Promotes Cap-Independent Translation. Cell 2015, 163, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Coots, R.A.; Liu, X.-M.; Mao, Y.; Dong, L.; Zhou, J.; Wan, J.; Zhang, X.; Qian, S.-B. m6A Facilitates eIF4F-Independent mRNA Translation. Mol. Cell 2017, 68, 504–514.e7. [Google Scholar] [CrossRef]
- Chang, G.; Shi, L.; Ye, Y.; Shi, H.; Zeng, L.; Tiwary, S.; Huse, J.T.; Huo, L.; Ma, L.; Ma, Y.; et al. YTHDF3 Induces the Translation of m6A-Enriched Gene Transcripts to Promote Breast Cancer Brain Metastasis. Cancer Cell 2020, 38, 857–871.e7. [Google Scholar] [CrossRef]
- Prats, A.-C.; David, F.; Diallo, L.H.; Roussel, E.; Tatin, F.; Garmy-Susini, B.; Lacazette, E. Circular RNA, the Key for Translation. Int. J. Mol. Sci. 2020, 21, 8591. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.D. m6A-Mediated Translation Regulation. Biochim. Biophys. Acta Gene Regul. Mech. 2019, 1862, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Kimsey, I.J.; Nikolova, E.N.; Sathyamoorthy, B.; Grazioli, G.; McSally, J.; Bai, T.; Wunderlich, C.H.; Kreutz, C.; Andricioaei, I.; et al. m1A and m1G Disrupt A-RNA Structure through the Intrinsic Instability of Hoogsteen Base Pairs. Nat. Struct. Mol. Biol. 2016, 23, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiong, X.; Zhang, M.; Wang, K.; Chen, Y.; Zhou, J.; Mao, Y.; Lv, J.; Yi, D.; Chen, X.-W.; et al. Base-Resolution Mapping Reveals Distinct m1A Methylome in Nuclear- and Mitochondrial-Encoded Transcripts. Mol. Cell 2017, 68, 993–1005.e9. [Google Scholar] [CrossRef]
- Li, X.; Xiong, X.; Wang, K.; Wang, L.; Shu, X.; Ma, S.; Yi, C. Transcriptome-Wide Mapping Reveals Reversible and Dynamic N1-Methyladenosine Methylome. Nat. Chem. Biol. 2016, 12, 311–316. [Google Scholar] [CrossRef]
- Dominissini, D.; Rechavi, G. Loud and Clear Epitranscriptomic m1A Signals: Now in Single-Base Resolution. Mol. Cell 2017, 68, 825–826. [Google Scholar] [CrossRef]
- Dominissini, D.; Nachtergaele, S.; Moshitch-Moshkovitz, S.; Peer, E.; Kol, N.; Ben-Haim, M.S.; Dai, Q.; Di Segni, A.; Salmon-Divon, M.; Clark, W.C.; et al. The Dynamic N1-Methyladenosine Methylome in Eukaryotic Messenger RNA. Nature 2016, 530, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Schumann, U.; Zhang, H.-N.; Sibbritt, T.; Pan, A.; Horvath, A.; Gross, S.; Clark, S.J.; Yang, L.; Preiss, T. Multiple Links between 5-Methylcytosine Content of mRNA and Translation. BMC Biol. 2020, 18, 40. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Chen, W.; Liu, J.; Gu, N.; Zhang, R. Genome-Wide Identification of mRNA 5-Methylcytosine in Mammals. Nat. Struct. Mol. Biol. 2019, 26, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, H.G.; Beal, P.A. Structural and Functional Effects of Inosine Modification in mRNA. RNA 2024, 30, 512–520. [Google Scholar] [CrossRef]
- Hagen, T.; Laski, A.; Brümmer, A.; Pruška, A.; Schlösser, V.; Cléry, A.; Allain, F.H.-T.; Zenobi, R.; Bergmann, S.; Hall, J. Inosine Substitutions in RNA Activate Latent G-Quadruplexes. J. Am. Chem. Soc. 2021, 143, 15120–15130. [Google Scholar] [CrossRef]
- Arango, D.; Sturgill, D.; Alhusaini, N.; Dillman, A.A.; Sweet, T.J.; Hanson, G.; Hosogane, M.; Sinclair, W.R.; Nanan, K.K.; Mandler, M.D.; et al. Acetylation of Cytidine in mRNA Promotes Translation Efficiency. Cell 2018, 175, 1872–1886.e24. [Google Scholar] [CrossRef] [PubMed]
- Arango, D.; Sturgill, D.; Yang, R.; Kanai, T.; Bauer, P.; Roy, J.; Wang, Z.; Hosogane, M.; Schiffers, S.; Oberdoerffer, S. Direct Epitranscriptomic Regulation of Mammalian Translation Initiation through N4-Acetylcytidine. Mol. Cell 2022, 82, 2797–2814.e11. [Google Scholar] [CrossRef] [PubMed]
- Sas-Chen, A.; Thomas, J.M.; Matzov, D.; Taoka, M.; Nance, K.D.; Nir, R.; Bryson, K.M.; Shachar, R.; Liman, G.L.S.; Burkhart, B.W.; et al. Dynamic RNA Acetylation Revealed by Quantitative Cross-Evolutionary Mapping. Nature 2020, 583, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Peng, J.; Yi, C. Sequencing Methods and Functional Decoding of mRNA Modifications. Fundam. Res. 2023, 3, 738–748. [Google Scholar] [CrossRef]
- Lee, E.K.; Kim, W.; Tominaga, K.; Martindale, J.L.; Yang, X.; Subaran, S.S.; Carlson, O.D.; Mercken, E.M.; Kulkarni, R.N.; Akamatsu, W.; et al. RNA-Binding Protein HuD Controls Insulin Translation. Mol. Cell 2012, 45, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.C.; Sahu, I.; Kulkarni, S.D.; Martindale, J.L.; Abdelmohsen, K.; Vindu, A.; Joseph, J.; Gorospe, M.; Seshadri, V. miR-196b-Mediated Translation Regulation of Mouse Insulin2 via the 5′UTR. PLoS ONE 2014, 9, e101084. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, R.Y.; Chen, J.-K.; Kim, J.; Jeong, S.; Ohn, T. Splicing Factor SRSF3 Represses the Translation of Programmed Cell Death 4 mRNA by Associating with the 5′-UTR Region. Cell Death Differ. 2014, 21, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Schneider-Lunitz, V.; Ruiz-Orera, J.; Hubner, N.; Heesch, S. van Multifunctional RNA-Binding Proteins Influence mRNA Abundance and Translational Efficiency of Distinct Sets of Target Genes. PLoS Comput. Biol. 2021, 17, e1009658. [Google Scholar] [CrossRef] [PubMed]
- Ben-Oz, B.M.; Machour, F.E.; Nicola, M. A Dual Role of RBM42 in Modulating Splicing and Translation of CDKN1A/P21 during DNA Damage Response. Nat. Commun. 2023, 14, 7628. [Google Scholar] [CrossRef]
- Carrieri, C.; Cimatti, L.; Biagioli, M.; Beugnet, A.; Zucchelli, S.; Fedele, S.; Pesce, E.; Ferrer, I.; Collavin, L.; Santoro, C.; et al. Long Non-Coding Antisense RNA Controls Uchl1 Translation through an Embedded SINEB2 Repeat. Nature 2012, 491, 454–457. [Google Scholar] [CrossRef]
- Schein, A.; Zucchelli, S.; Kauppinen, S.; Gustincich, S.; Carninci, P. Identification of Antisense Long Noncoding RNAs That Function as SINEUPs in Human Cells. Sci. Rep. 2016, 6, 33605. [Google Scholar] [CrossRef]
- Tran, N.; Su, H.; Khodadadi-Jamayran, A.; Lin, S.; Zhang, L.; Zhou, D.; Pawlik, K.M.; Townes, T.M.; Chen, Y.; Mulloy, J.C.; et al. The AS-RBM15 lncRNA Enhances RBM15 Protein Translation during Megakaryocyte Differentiation. EMBO Rep. 2016, 17, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Toki, N.; Takahashi, H.; Sharma, H.; Valentine, M.N.Z.; Rahman, F.-U.M.; Zucchelli, S.; Gustincich, S.; Carninci, P. SINEUP Long Non-Coding RNA Acts via PTBP1 and HNRNPK to Promote Translational Initiation Assemblies. Nucleic Acids Res. 2020, 48, 11626–11644. [Google Scholar] [CrossRef]
- Pierattini, B.; D’Agostino, S.; Bon, C.; Peruzzo, O.; Alendar, A.; Codino, A.; Ros, G.; Persichetti, F.; Sanges, R.; Carninci, P.; et al. SINEUP Non-Coding RNA Activity Depends on Specific N6-Methyladenosine Nucleotides. Mol. Ther. Nucleic Acids 2023, 32, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Valentine, M.; Toki, N.; Nishiyori Sueki, H.; Gustincich, S.; Takahashi, H.; Carninci, P. Decryption of Sequence, Structure, and Functional Features of SINE Repeat Elements in SINEUP Non-Coding RNA-Mediated Post-Transcriptional Gene Regulation. Nat. Commun. 2024, 15, 1400. [Google Scholar] [CrossRef]
- D’Agostino, S.; Tettey-Matey, A.; Volpe, M.; Pierattini, B.; Ansaloni, F.; Lau, P.; Bon, C.; Peruzzo, O.; Braccia, C.; Armirotti, A.; et al. Internal Ribosome Entry Sites Act as Effector Domain in Linear and Circular Antisense Long Non-Coding SINEUP RNAs. bioRxiv 2023, 2023.05.25.542260. [Google Scholar]
- Valentini, P.; Pierattini, B.; Zacco, E.; Mangoni, D.; Espinoza, S.; Webster, N.A.; Andrews, B.; Carninci, P.; Tartaglia, G.G.; Pandolfini, L.; et al. Towards SINEUP-Based Therapeutics: Design of an in Vitro Synthesized SINEUP RNA. Mol. Ther. Nucleic Acids 2022, 27, 1092–1102. [Google Scholar] [CrossRef]
- Bon, C.; Luffarelli, R.; Russo, R.; Fortuni, S.; Pierattini, B.; Santulli, C.; Fimiani, C.; Persichetti, F.; Cotella, D.; Mallamaci, A.; et al. SINEUP Non-Coding RNAs Rescue Defective Frataxin Expression and Activity in a Cellular Model of Friedreich’s Ataxia. Nucleic Acids Res. 2019, 47, 10728–10743. [Google Scholar] [CrossRef] [PubMed]
- Zucchelli, S.; Fasolo, F.; Russo, R.; Cimatti, L.; Patrucco, L.; Takahashi, H.; Jones, M.H.; Santoro, C.; Sblattero, D.; Cotella, D.; et al. SINEUPs Are Modular Antisense Long Non-Coding RNAs That Increase Synthesis of Target Proteins in Cells. Front. Cell. Neurosci. 2015, 9, 174. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razumova, E.; Makariuk, A.; Dontsova, O.; Shepelev, N.; Rubtsova, M. Structural Features of 5′ Untranslated Region in Translational Control of Eukaryotes. Int. J. Mol. Sci. 2025, 26, 1979. https://doi.org/10.3390/ijms26051979
Razumova E, Makariuk A, Dontsova O, Shepelev N, Rubtsova M. Structural Features of 5′ Untranslated Region in Translational Control of Eukaryotes. International Journal of Molecular Sciences. 2025; 26(5):1979. https://doi.org/10.3390/ijms26051979
Chicago/Turabian StyleRazumova, Elizaveta, Aleksandr Makariuk, Olga Dontsova, Nikita Shepelev, and Maria Rubtsova. 2025. "Structural Features of 5′ Untranslated Region in Translational Control of Eukaryotes" International Journal of Molecular Sciences 26, no. 5: 1979. https://doi.org/10.3390/ijms26051979
APA StyleRazumova, E., Makariuk, A., Dontsova, O., Shepelev, N., & Rubtsova, M. (2025). Structural Features of 5′ Untranslated Region in Translational Control of Eukaryotes. International Journal of Molecular Sciences, 26(5), 1979. https://doi.org/10.3390/ijms26051979