Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = TM-catalyzed synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3330 KB  
Article
Nickel-Catalyzed Reductive Cyanation of Aryl Halides and Epoxides with Cyanogen Bromide
by Yu-Juan Wu, Chen Ma, Muhammad Bilal and Yu-Feng Liang
Molecules 2024, 29(24), 6016; https://doi.org/10.3390/molecules29246016 - 20 Dec 2024
Cited by 2 | Viewed by 2067
Abstract
Nitriles are valuable compounds because they have widespread applications in organic chemistry. This report details the nickel-catalyzed reductive cyanation of aryl halides and epoxides with cyanogen bromide for the synthesis of nitriles. This robust protocol underscores the practicality of using a commercially available [...] Read more.
Nitriles are valuable compounds because they have widespread applications in organic chemistry. This report details the nickel-catalyzed reductive cyanation of aryl halides and epoxides with cyanogen bromide for the synthesis of nitriles. This robust protocol underscores the practicality of using a commercially available and cost-effective cyanation reagent. A variety of aryl halides and epoxides featuring diverse functional groups, such as -TMS, -Bpin, -OH, -NH2, -CN, and -CHO, were successfully converted into nitriles in moderate-to-good yields. Moreover, the syntheses at gram-scale and application in late-stage cyanation of natural products and drugs reinforces its potentiality. Full article
Show Figures

Figure 1

14 pages, 2400 KB  
Article
Boosting Fructosyl Transferase’s Thermostability and Catalytic Performance for Highly Efficient Fructooligosaccharides (FOS) Production
by Dandan Niu, Nan Zhao, Jun Wang, Nokuthula Peace Mchunu, Kugen Permaul, Suren Singh and Zhengxiang Wang
Foods 2024, 13(18), 2997; https://doi.org/10.3390/foods13182997 - 21 Sep 2024
Cited by 1 | Viewed by 1764
Abstract
Achieving enzymatic food processing at high substrate concentrations can significantly enhance production efficiency; however, related studies are notably insufficient. This study focused on the enzymatic synthesis of fructooligosaccharides (FOS) at high temperature and high substrate concentration. Results revealed that increased viscosity and limited [...] Read more.
Achieving enzymatic food processing at high substrate concentrations can significantly enhance production efficiency; however, related studies are notably insufficient. This study focused on the enzymatic synthesis of fructooligosaccharides (FOS) at high temperature and high substrate concentration. Results revealed that increased viscosity and limited substrate solubility in high-concentration systems could be alleviated by raising the reaction temperature, provided it aligned with the enzyme’s thermostability. Further analysis of enzyme thermostability in real sucrose solutions demonstrates that the enzyme’s thermostability was remarkedly improved at higher sucrose concentrations, evidenced by a 10.3 °C increase in melting temperature (Tm) in an 800 g/L sucrose solution. Building upon these findings, we developed a novel method for enzymatic FOS synthesis at elevated temperatures and high sucrose concentrations. Compared to existing commercial methods, the initial transglycosylation rate and volumetric productivity for FOS synthesis increased by 155.9% and 113.5%, respectively, at 65 °C in an 800 g/L sucrose solution. This study underscores the pivotal role of substrate concentration, incubation temperature, and the enzyme’s actual status in advancing enzyme-catalyzed processes and demonstrates the potential of enzymatic applications in enhancing food processing technologies, providing innovative strategies for the food industry. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

31 pages, 7739 KB  
Review
Nirmatrelvir: From Discovery to Modern and Alternative Synthetic Approaches
by Michela Galli, Francesco Migliano, Valerio Fasano, Alessandra Silvani, Daniele Passarella and Andrea Citarella
Processes 2024, 12(6), 1242; https://doi.org/10.3390/pr12061242 - 17 Jun 2024
Cited by 3 | Viewed by 3066
Abstract
The global urgency in response to the COVID-19 pandemic has catalyzed extensive research into discovering efficacious antiviral compounds against SARS-CoV-2. Among these, Nirmatrelvir (PF-07321332) has emerged as a promising candidate, exhibiting potent antiviral activity by targeting the main protease of SARS-CoV-2, and has [...] Read more.
The global urgency in response to the COVID-19 pandemic has catalyzed extensive research into discovering efficacious antiviral compounds against SARS-CoV-2. Among these, Nirmatrelvir (PF-07321332) has emerged as a promising candidate, exhibiting potent antiviral activity by targeting the main protease of SARS-CoV-2, and has been marketed in combination with ritonavir as the first oral treatment for COVID-19 with the name of PaxlovidTM. This review outlines the synthetic approaches to Nirmatrelvir, ranging from Pfizer’s original method to newer, more sustainable strategies, such as flow chemistry strategies and multicomponent reactions. Each approach’s novelty and contributions to yield and purification processes are highlighted. Additionally, the synthesis of key fragments comprising Nirmatrelvir and innovative optimization strategies are discussed. Full article
(This article belongs to the Special Issue Novel Methodologies for the Synthesis of Bioactive Molecules)
Show Figures

Figure 1

19 pages, 3397 KB  
Article
Solid Phase Synthesis and TAR RNA-Binding Activity of Nucleopeptides Containing Nucleobases Linked to the Side Chains via 1,4-Linked-1,2,3-triazole
by Piotr Mucha, Małgorzata Pieszko, Irena Bylińska, Wiesław Wiczk, Jarosław Ruczyński, Katarzyna Prochera and Piotr Rekowski
Biomedicines 2024, 12(3), 570; https://doi.org/10.3390/biomedicines12030570 - 3 Mar 2024
Cited by 1 | Viewed by 1876
Abstract
Nucleopeptides (NPs) represent synthetic polymers created by attaching nucleobases to the side chains of amino acid residues within peptides. These compounds amalgamate the characteristics of peptides and nucleic acids, showcasing a unique ability to recognize RNA structures. In this study, we present the [...] Read more.
Nucleopeptides (NPs) represent synthetic polymers created by attaching nucleobases to the side chains of amino acid residues within peptides. These compounds amalgamate the characteristics of peptides and nucleic acids, showcasing a unique ability to recognize RNA structures. In this study, we present the design and synthesis of Fmoc-protected nucleobase amino acids (1,4-TzlNBAs) and a new class of NPs, where canonical nucleobases are affixed to the side chain of L-homoalanine (Hal) through a 1,4-linked-1,2,3-triazole (HalTzl). Fmoc-protected 1,4-TzlNBAs suitable for HalTzl synthesis were obtained via Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) conjugation of Fmoc-L-azidohomoalanine (Fmoc-Aha) and N1- or N9-propargylated nucleobases or their derivatives. Following this, two trinucleopeptides, HalTzlAAA and HalTzlAGA, and the hexanucleopeptide HalTzlTCCCAG, designed to complement bulge and outer loop structures of TAR (trans-activation response element) RNA HIV-1, were synthesized using the classical solid-phase peptide synthesis (SPPS) protocol. The binding between HalTzls and fluorescently labeled 5′-(FAM(6))-TAR UCU and UUU mutant was characterized using circular dichroism (CD) and fluorescence spectroscopy. CD results confirmed the binding of HalTzls to TAR RNA, which was evident by a decrease in ellipticity band intensity around 265 nm during complexation. CD thermal denaturation studies indicated a relatively modest effect of complexation on the stability of TAR RNA structure. The binding of HalTzls at an equimolar ratio only marginally increased the melting temperature (Tm) of the TAR RNA structure, with an increment of less than 2 °C in most cases. Fluorescence spectroscopy revealed that HalTzlAAA and HalTzlAGA, complementary to UUU or UCU bulges, respectively, exhibited disparate affinities for the TAR RNA structure (with Kd ≈ 30 and 256 µM, respectively). Hexamer HalTzlTCCCAG, binding to the outer loop of TARUCU, demonstrated a moderate affinity with Kd ≈ 38 µM. This study demonstrates that newly designed HalTzls effectively bind the TAR RNA structure, presenting a potential new class of RNA binders and may be a promising scaffold for the development of a new class of antiviral drugs. Full article
(This article belongs to the Special Issue Vaccines and Antivirals against Emerging Viruses)
Show Figures

Figure 1

31 pages, 8503 KB  
Review
TM-Free and TM-Catalyzed Mechanosynthesis of Functional Polymers
by Wahab K. A. Al-Ithawi, Albert F. Khasanov, Igor S. Kovalev, Igor L. Nikonov, Vadim A. Platonov, Dmitry S. Kopchuk, Sougata Santra, Grigory V. Zyryanov and Brindaban C. Ranu
Polymers 2023, 15(8), 1853; https://doi.org/10.3390/polym15081853 - 12 Apr 2023
Cited by 6 | Viewed by 3477
Abstract
Mechanochemically induced methods are commonly used for the depolymerization of polymers, including plastic and agricultural wastes. So far, these methods have rarely been used for polymer synthesis. Compared to conventional polymerization in solutions, mechanochemical polymerization offers numerous advantages such as less or no [...] Read more.
Mechanochemically induced methods are commonly used for the depolymerization of polymers, including plastic and agricultural wastes. So far, these methods have rarely been used for polymer synthesis. Compared to conventional polymerization in solutions, mechanochemical polymerization offers numerous advantages such as less or no solvent consumption, the accessibility of novel structures, the inclusion of co-polymers and post-modified polymers, and, most importantly, the avoidance of problems posed by low monomer/oligomer solubility and fast precipitation during polymerization. Consequently, the development of new functional polymers and materials, including those based on mechanochemically synthesized polymers, has drawn much interest, particularly from the perspective of green chemistry. In this review, we tried to highlight the most representative examples of transition-metal (TM)-free and TM-catalyzed mechanosynthesis of some functional polymers, such as semiconductive polymers, porous polymeric materials, sensory materials, materials for photovoltaics, etc. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

16 pages, 2543 KB  
Article
Evaluation of a Thermophilic, Psychrostable, and Heavy Metal-Resistant Red Sea Brine Pool Esterase
by Shimaa F. Ahmed, Rehab Z. Abdallah and Rania Siam
Mar. Drugs 2022, 20(5), 274; https://doi.org/10.3390/md20050274 - 19 Apr 2022
Cited by 3 | Viewed by 4657
Abstract
Lipolytic enzymes catalyze the hydrolysis and synthesis of ester compounds. They are valuable in the pulp, food, and textile industries. This study aims to comprehensively evaluate the extreme properties of a hormone-sensitive lipase (EstATII-TM) isolated from the Red Sea Atlantis II brine pool. [...] Read more.
Lipolytic enzymes catalyze the hydrolysis and synthesis of ester compounds. They are valuable in the pulp, food, and textile industries. This study aims to comprehensively evaluate the extreme properties of a hormone-sensitive lipase (EstATII-TM) isolated from the Red Sea Atlantis II brine pool. EstATII-TM was cloned, expressed, and its biochemical activities were assessed under different conditions. EstATII-TM catalytic properties and resistance to different metal ions were compared to commercial thermophilic esterases under different temperatures. Phylogenetically, EstATII-TM was assigned to the GDSAG motif subfamily of hormone-sensitive lipase. The optimal enzyme activity was evident at a temperature of 30 °C and pH 7–8. The enzyme retained 84.9% of its activity at 0.5 M NaCl. EstATII-TM maintained 93% to 97% activity at −40 and −20 °C, respectively. EstATII-TM activity was significantly enhanced, up to 10-fold, at temperatures ranging from 45 to 65 °C in the presence of 1 mM Cu2+, Cd2+, Ba2+, Mn2+, and Zn2+. EstATII-TM showed superior catalytic activity and resistance-to/enhancement-by metal ions compared to two commercial thermophilic esterases. The Red Sea Atlantis II brine EstATII-TM is characterized by tolerance to high temperatures, stability to hot and cold conditions, as well as toxic heavy metal contamination, making it an ideal candidate for industrial processes. Full article
Show Figures

Figure 1

11 pages, 1519 KB  
Article
Synthesis, Characterization, and Catalytic Exploration of Mononuclear Mo(VI) Dioxido Complexes of (Z)-1-R-2-(4′,4′-Dimethyl-2′-oxazolin-2′-yl)-eth-1-en-1-ates
by Anna Petrov, Jeanette A. Adjei, Alan J. Lough, R. Stephen Wylie and Robert A. Gossage
Molecules 2022, 27(4), 1309; https://doi.org/10.3390/molecules27041309 - 15 Feb 2022
Cited by 5 | Viewed by 2333
Abstract
The coordination chemistry of the title ligands with Mo metal centers was investigated. Thus, the synthesis and characterization (NMR, X-ray diffraction) of four mononuclear formally Mo(6+) complexes of (Z)-1-R-2-(4′,4′-dimethyl-2′-oxazolin-2′-yl)-eth-1-en-1-ates (L: R = –Ph, –Ph-p-NO2, –Ph- [...] Read more.
The coordination chemistry of the title ligands with Mo metal centers was investigated. Thus, the synthesis and characterization (NMR, X-ray diffraction) of four mononuclear formally Mo(6+) complexes of (Z)-1-R-2-(4′,4′-dimethyl-2′-oxazolin-2′-yl)-eth-1-en-1-ates (L: R = –Ph, –Ph-p-NO2, –Ph-p-OMe and –t-Bu), derived from the part enols (LH), is described. The resulting air-stable MoO2L2 complexes (14) exist, as shown by single-crystal X-ray diffraction experiments, in the cis-dioxido-trans(N)2-N,O-L conformation in the solid state for all four examples. This situation was further probed using semi-empirical PM6(tm) calculations. Complexes 14 represent the first Mo complexes of this ligand class and, indeed, of Group 6 metals in general. Structural and spectroscopic comparisons were made between these and related Mo(6+) compounds. Complex 1 (R = –Ph) was studied for its ability to selectively catalyze the production of poly-norbornene from the monomer in the presence of MAO. This, unfortunately, only resulted in the synthesis of insoluble, presumably highly cross-linked, polymeric and/or oligomeric materials. However, complexes 14 were demonstrated to be highly effective for catalyzing benzoin to benzil conversion using DMSO as the O-transfer agent. This catalysis work is likewise put into perspective with respect to analogous Mo(6+) complexes. Full article
Show Figures

Scheme 1

20 pages, 21729 KB  
Article
Methods for Predicting Ethylene/Cyclic Olefin Copolymerization Rates Promoted by Single-Site Metallocene: Kinetics Is the Key
by Amjad Ali, Ahmad Naveed, Tahir Rasheed, Tariq Aziz, Muhammad Imran, Ze-Kun Zhang, Muhammad Wajid Ullah, Ameer Ali Kubar, Aziz Ur Rehman, Zhiqiang Fan and Li Guo
Polymers 2022, 14(3), 459; https://doi.org/10.3390/polym14030459 - 24 Jan 2022
Cited by 9 | Viewed by 3911
Abstract
In toluene at 50 °C, the vinyl addition polymerization of 4-vinyl-cyclohexene (VCH) comonomers with ethylene is investigated using symmetrical metallocene (rac-Et(Ind)2ZrCl2) combined with borate/TIBA. To demonstrate the polymerizations’ living character, cyclic VCH with linear-exocyclicπ and endocyclic [...] Read more.
In toluene at 50 °C, the vinyl addition polymerization of 4-vinyl-cyclohexene (VCH) comonomers with ethylene is investigated using symmetrical metallocene (rac-Et(Ind)2ZrCl2) combined with borate/TIBA. To demonstrate the polymerizations’ living character, cyclic VCH with linear-exocyclicπ and endocyclicπ bonds produces monomodal polymers, but the dispersity (Ɖ) was broader. The copolymers obtained can be dissolved in conventional organic solvent and have excellent thermal stability and crystalline temperature (ΔHm), and their melting temperature (Tm) varies from 109 to 126 °C, and ΔHm ranges from 80 to 128 (J/g). Secondly, the distribution of polymeric catalysts engaged in polymer chain synthesis and the nature of the dormant state are two of the most essential yet fundamentally unknown aspects. Comprehensive and exhaustive kinetics of E/VCH have shown numerous different kinetic aspects that are interpreted as manifestations of polymeric catalysts or of the instability of several types of active center [Zr]/[C*] fluctuations and formation rates of chain propagation RpE, RpVCH, and propagation rate constants kpE and kpVCH, the quantitative relationship between RpE, RpVCH and kpE, kpVCH and catalyst structures, their constituent polymer Mw, and their reactivity response to the endocyclic and exocyclic bonds of VCH. The kinetic parameters RpE, RpVCH, kpE, and kpVCH, which are the apparent rates for the metallocene-catalyzed E/VCH, RpE, and kpE values, are much more significant than RpVCH and kpVCH at 120 s, RpE and RpVCH 39.63 and 0.78, and the kpE and kpVCH values are 6461 and 93 L/mol·s, respectively, and minor diffusion barriers are recommended in the early stages. Compared with previously reported PE, RpE and kpE values are 34.2 and 7080 L/mol·s. VCH increases the RpE in the initial stage, as we are expecting; this means that the exocyclic bond of VCH is more active at the initial level, and that the chain transfer reaction of cyclic internal π double is increased with the reaction time. The tp versus Rp, kp, and [Zr]/[C*] fraction count may be fitted to a model that invokes deactivation of growing polymer chains. At tp 120–360 s higher, the incorporation rate of VCH suppresses E insertion, resulting in reduced molecular weight. Full article
(This article belongs to the Topic Sustainable Polymer Technologies)
Show Figures

Graphical abstract

28 pages, 4047 KB  
Article
Enzymes in the Cholesterol Synthesis Pathway: Interactomics in the Cancer Context
by Pavel Ershov, Leonid Kaluzhskiy, Yuri Mezentsev, Evgeniy Yablokov, Oksana Gnedenko and Alexis Ivanov
Biomedicines 2021, 9(8), 895; https://doi.org/10.3390/biomedicines9080895 - 26 Jul 2021
Cited by 39 | Viewed by 7076
Abstract
A global protein interactome ensures the maintenance of regulatory, signaling and structural processes in cells, but at the same time, aberrations in the repertoire of protein–protein interactions usually cause a disease onset. Many metabolic enzymes catalyze multistage transformation of cholesterol precursors in the [...] Read more.
A global protein interactome ensures the maintenance of regulatory, signaling and structural processes in cells, but at the same time, aberrations in the repertoire of protein–protein interactions usually cause a disease onset. Many metabolic enzymes catalyze multistage transformation of cholesterol precursors in the cholesterol biosynthesis pathway. Cancer-associated deregulation of these enzymes through various molecular mechanisms results in pathological cholesterol accumulation (its precursors) which can be disease risk factors. This work is aimed at systematization and bioinformatic analysis of the available interactomics data on seventeen enzymes in the cholesterol pathway, encoded by HMGCR, MVK, PMVK, MVD, FDPS, FDFT1, SQLE, LSS, DHCR24, CYP51A1, TM7SF2, MSMO1, NSDHL, HSD17B7, EBP, SC5D, DHCR7 genes. The spectrum of 165 unique and 21 common protein partners that physically interact with target enzymes was selected from several interatomic resources. Among them there were 47 modifying proteins from different protein kinases/phosphatases and ubiquitin-protein ligases/deubiquitinases families. A literature search, enrichment and gene co-expression analysis showed that about a quarter of the identified protein partners was associated with cancer hallmarks and over-represented in cancer pathways. Our results allow to update the current fundamental view on protein–protein interactions and regulatory aspects of the cholesterol synthesis enzymes and annotate of their sub-interactomes in term of possible involvement in cancers that will contribute to prioritization of protein targets for future drug development. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

25 pages, 3196 KB  
Article
Solid-State Polymerization of Poly(Ethylene Furanoate) Biobased Polyester, III: Extended Study on Effect of Catalyst Type on Molecular Weight Increase
by Yosra Chebbi, Nejib Kasmi, Mustapha Majdoub, George Z. Papageorgiou, Dimitris S. Achilias and Dimitrios N. Bikiaris
Polymers 2019, 11(3), 438; https://doi.org/10.3390/polym11030438 - 6 Mar 2019
Cited by 31 | Viewed by 7589
Abstract
In this study, the synthesis of poly(ethylene furanoate) (PEF), catalyzed by five different catalysts—antimony acetate (III) (Sb Ac), zirconium (IV) isopropoxide isopropanal (Zr Is Ip), antimony (III) oxide (Sb Ox), zirconium (IV) 2,4-pentanedionate (Zr Pe) and germanium (IV) oxide (Ge Ox)—via an industrially [...] Read more.
In this study, the synthesis of poly(ethylene furanoate) (PEF), catalyzed by five different catalysts—antimony acetate (III) (Sb Ac), zirconium (IV) isopropoxide isopropanal (Zr Is Ip), antimony (III) oxide (Sb Ox), zirconium (IV) 2,4-pentanedionate (Zr Pe) and germanium (IV) oxide (Ge Ox)—via an industrially common combination of melt polymerization and subsequent solid-state polymerization (SSP) is presented. In all reactions, proper amounts of 2,5-dimethylfuran-dicarboxylate (DMFD) and ethylene glycol (EG) in a molar ratio of DMFD/EG= 1/2 and 400 ppm of catalyst were used. Polyester samples were subjected to SSP procedure, under vacuum application, at different reaction times (1, 2, 3.5, and 5 h) and temperatures of 190, 200, and 205 °C. Carboxyl end-groups concentration (–COOH), intrinsic viscosity (IV), and thermal properties, via differential scanning calorimetry (DSC), were measured for all resultant polymers to study the effect of the used catalysts on the molecular weight increase of PEF during SSP process. As was expected, it was found that with increasing the SSP time and temperature, the intrinsic viscosity and the average molecular weight of PEF steadily increased. In contrast, the number of carboxyl end-groups content showed the opposite trend as intrinsic viscosity, that is, gradually decreasing during SSP time and temperature increase. It is worthy to note that thanks to the SSP process an obvious and continuous enhancement in the thermal properties of the prepared PEF samples was attained, in which their melting temperatures (Tm) and degree of crystallinity (Xc) increase progressively with increasing of reaction time and temperature. To predict the time evolution of polymers IV, as well as the hydroxyl and carboxyl content of PEF polyesters during the SSP, a simple kinetic model was developed. From both the theoretical simulation results and the experimental measurements, it was demonstrated that surely the Zr Is Ip catalyst shows the best catalytic characteristics compared to all other used catalysts herein, that is, leading in reducing—in a spectacular way—the activation energy of the involved both transesterification and esterification reactions during SSP. Full article
(This article belongs to the Special Issue Biodegradable and Biobased Polyesters)
Show Figures

Graphical abstract

11 pages, 3813 KB  
Article
Highly Active Non-PGM Catalysts Prepared from Metal Organic Frameworks
by Heather M. Barkholtz, Lina Chong, Zachary B. Kaiser, Tao Xu and Di-Jia Liu
Catalysts 2015, 5(2), 955-965; https://doi.org/10.3390/catal5020955 - 11 Jun 2015
Cited by 34 | Viewed by 8639
Abstract
Finding inexpensive alternatives to platinum group metals (PGMs) is essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs). Numerous materials have been investigated as potential replacements of Pt, of which the transition metal and nitrogen-doped carbon composites (TM/Nx/C) [...] Read more.
Finding inexpensive alternatives to platinum group metals (PGMs) is essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs). Numerous materials have been investigated as potential replacements of Pt, of which the transition metal and nitrogen-doped carbon composites (TM/Nx/C) prepared from iron doped zeolitic imidazolate frameworks (ZIFs) are among the most active ones in catalyzing the oxygen reduction reaction based on recent studies. In this report, we demonstrate that the catalytic activity of ZIF-based TM/Nx/C composites can be substantially improved through optimization of synthesis and post-treatment processing conditions. Ultimately, oxygen reduction reaction (ORR) electrocatalytic activity must be demonstrated in membrane-electrode assemblies (MEAs) of fuel cells. The process of preparing MEAs using ZIF-based non-PGM electrocatalysts involves many additional factors which may influence the overall catalytic activity at the fuel cell level. Evaluation of parameters such as catalyst loading and perfluorosulfonic acid ionomer to catalyst ratio were optimized. Our overall efforts to optimize both the catalyst and MEA construction process have yielded impressive ORR activity when tested in a fuel cell system. Full article
(This article belongs to the Special Issue Electrocatalysis in Fuel Cells)
Show Figures

Figure 1

9 pages, 69 KB  
Article
Syntheses of Calix[4]Pyrroles by Amberlyst-15 Catalyzed Cyclocondensations of Pyrrole with Selected Ketones
by Shive Murat Singh Chauhan, Bhaskar Garg and Tanuja Bisht
Molecules 2007, 12(11), 2458-2466; https://doi.org/10.3390/12112458 - 9 Nov 2007
Cited by 28 | Viewed by 11507
Abstract
A facile and efficient protocol is reported for the synthesis of calix[4]pyrrolesand N-confused calix[4]pyrroles in moderate to excellent yields by reaction of dialkyl orcycloalkyl ketones with pyrrole catalyzed by reusable AmberlystTM-15 under eco-friendlyconditions. Full article
Show Figures

Figure 1

Back to TopTop