Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = TMS320F28379D board

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 42940 KB  
Article
Enhancing Electric Vehicle Charger Performance with Synchronous Boost and Model Predictive Control for Vehicle-to-Grid Integration
by Youness Hakam, Ahmed Gaga, Mohamed Tabaa and Benachir El hadadi
Energies 2024, 17(7), 1787; https://doi.org/10.3390/en17071787 - 8 Apr 2024
Cited by 10 | Viewed by 1921
Abstract
This paper investigates optimizing the power exchange between electric vehicles (EVs) and the grid, with a specific focus on the DC-DC converters utilized in vehicle-to-grid (V2G) systems. It specifically explores using model predictive control (MPC) in synchronous boost converters to enhance efficiency and [...] Read more.
This paper investigates optimizing the power exchange between electric vehicles (EVs) and the grid, with a specific focus on the DC-DC converters utilized in vehicle-to-grid (V2G) systems. It specifically explores using model predictive control (MPC) in synchronous boost converters to enhance efficiency and performance. Through experiments and simulations, this paper shows that replacing diodes with SIC MOSFETs in boost converters significantly improves efficiency, particularly in synchronous mode, by minimizing the deadtime of SIC MOSFETs during switching. Additionally, this study evaluates MPC’s effectiveness in controlling boost converters, highlighting its advantages over traditional control methods. Real-world validations further validate the robustness and applicability of MPC in V2G systems. This study utilizes TMS320F28379D, one of Texas Instruments’ leading digital signal processors, enabling the implementation of MPC with a high PWM frequency of up to 200 MHz. This processor features dual 32-bit CPUs and a 16-bit ADC, allowing for high-resolution readings from sensors. Leveraging digital signal processing technologies and advanced electronic circuits, this study advances the development of high-performance boost converters, achieving power outputs of up to 48 watts and output voltages of 24 volts. Electronic circuits (PCB boards) have been devised, implemented, and evaluated to showcase their significance in advancing efficient V2G integration. Full article
Show Figures

Figure 1

17 pages, 9271 KB  
Article
State-Plane Trajectory-Based Duty Control of a Resonant Bidirectional DC/DC Converter with Balanced Capacitors Stress
by Abd Ur Rehman, Minsung Kim and Jin-Woo Jung
Mathematics 2023, 11(14), 3222; https://doi.org/10.3390/math11143222 - 22 Jul 2023
Cited by 1 | Viewed by 1926
Abstract
This paper presents the design, analysis, and control of a dual transformer-based bidirectional DC/DC resonant converter featuring balanced voltage stress across all the resonant capacitors. Compared to existing topologies, the proposed converter has a dual-rectifier structure on the secondary side, which allows operation [...] Read more.
This paper presents the design, analysis, and control of a dual transformer-based bidirectional DC/DC resonant converter featuring balanced voltage stress across all the resonant capacitors. Compared to existing topologies, the proposed converter has a dual-rectifier structure on the secondary side, which allows operation over a wide load range with balanced voltage stress across all resonant components. The transformer stress is greatly reduced by employing two small transformers, thus greatly lowering thermal as well electrical stresses on the transformers’ windings. Furthermore, by operating the primary-side interleaved converter at a fixed 50% duty, input current ripples are significantly reduced. The proposed controller consists of a feedforward control part for effective system uncertainty compensation and a feedback control part for the convergence of system error dynamics. Notably, state-plane trajectory theory is employed to derive accurate feedforward compensation terms. Additionally, the effect of resonant elements’ parameter mismatch is analyzed in detail. The designed controller was implemented using the TI TMS320F28377D DSP on a 3.3 kW prototype hardware board. Detailed experimental investigations under tough, practical operating conditions corroborate an effective bidirectional power transfer operation with a balanced voltage stress distribution in each resonant element. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

15 pages, 3989 KB  
Article
Design and Implementation of a Low-Cost Real-Time Control Platform for Power Electronics Applications
by José Aravena, Dante Carrasco, Matias Diaz, Matias Uriarte, Felix Rojas, Roberto Cardenas and Juan Carlos Travieso
Energies 2020, 13(6), 1527; https://doi.org/10.3390/en13061527 - 24 Mar 2020
Cited by 26 | Viewed by 6269
Abstract
In recent years, different off-the-shelf solutions for the rapid control prototyping of power electronics converters have been commercialised. The main benefits of those systems are based on a fast and easy-to-use environment due to high-level programming. However, most of those systems are very [...] Read more.
In recent years, different off-the-shelf solutions for the rapid control prototyping of power electronics converters have been commercialised. The main benefits of those systems are based on a fast and easy-to-use environment due to high-level programming. However, most of those systems are very expensive and are closed software and hardware solutions. In this context, this paper presents the design and implementation of a control platform targeting at the segment in between expensive off-the-shelf control platforms and low-cost controllers. The control platform is based on the Launchpad TMS320F28379D from Texas Instruments, and it is equipped with an expansion board that provide analogue-to-digital measurements, switching signals and hardware protections. The performance of the control platform is experimentally tested on a 20 kVA power converter. Full article
(This article belongs to the Special Issue Control Strategies for Power Conversion Systems)
Show Figures

Figure 1

Back to TopTop