Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (371)

Search Parameters:
Keywords = TSR-042

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 11851 KB  
Article
Numerical Investigation of Concave-to-Convex Blade Profile Transformation in Vertical Axis Wind Turbines for Enhanced Performance Under Low Reynolds Number Conditions
by Venkatesh Subramanian, Venkatesan Sorakka Ponnappa, Madhan Kumar Gurusamy and Kadhavoor R. Karthikeyan
Fluids 2025, 10(9), 221; https://doi.org/10.3390/fluids10090221 - 25 Aug 2025
Abstract
Vertical axis wind turbines (VAWTs) are increasingly utilized for decentralized power generation in urban and low-wind settings because of their omnidirectional wind capture and compact form. This study numerically investigates the aerodynamic performance of Darrieus-type VAWT blades as their curvature varies systematically from [...] Read more.
Vertical axis wind turbines (VAWTs) are increasingly utilized for decentralized power generation in urban and low-wind settings because of their omnidirectional wind capture and compact form. This study numerically investigates the aerodynamic performance of Darrieus-type VAWT blades as their curvature varies systematically from deeply convex (−50 mm) to strongly concave (+50 mm) across seven configurations. Using steady-state computational fluid dynamics (CFD) with the frozen rotor method, simulations were conducted over a low Reynolds number range of 25 to 300, representative of small-scale and rooftop wind scenarios. The results indicate that deeply convex blades achieve the highest lift-to-drag ratio (Cl/Cd), peaking at 1.65 at Re = 25 and decreasing to 0.76 at Re = 300, whereas strongly concave blades show lower and more stable values ranging from 0.95 to 0.86. The power coefficient (Cp) and torque coefficient (Ct) similarly favor convex shapes, with Cp starting at 0.040 and remaining above 0.030, and Ct sustaining a robust 0.067 at low Re. Convex blades also maintain higher tip speed ratios (TSR), exceeding 1.30 at Re = 300. Velocity and pressure analyses reveal that convex profiles promote stable laminar flows and compact wakes, whereas concave geometries experience early flow separation and fluctuating torque. These findings demonstrate that optimizing the blade curvature toward convexity enhances the start-up, torque stability, and power output, providing essential design guidance for urban VAWTs operating under low Reynolds number conditions. Full article
Show Figures

Figure 1

8 pages, 749 KB  
Communication
Numerical Investigation on the Effect of Smoothing by Spectral Dispersion on Transverse Stimulated Raman Scattering Gain in KDP Crystals
by Xinmin Fan, Chunhong Wang, Yan Wang, Jianxin Zhang, Yong Shang, Shun Li, Fuyong Qin, Zaifa Du and Chunyan Wang
Photonics 2025, 12(9), 843; https://doi.org/10.3390/photonics12090843 - 24 Aug 2025
Abstract
In inertial confinement fusion (ICF) laser drivers, large-aperture high-intensity third-harmonic (3ω, central wavelength 351 nm) laser pulses passing through KDP crystals (potassium dihydrogen phosphate) can produce strong transverse stimulated Raman scattering (TSRS). TSRS not only depletes the energy of the 3ω laser beam [...] Read more.
In inertial confinement fusion (ICF) laser drivers, large-aperture high-intensity third-harmonic (3ω, central wavelength 351 nm) laser pulses passing through KDP crystals (potassium dihydrogen phosphate) can produce strong transverse stimulated Raman scattering (TSRS). TSRS not only depletes the energy of the 3ω laser beam but also damages the KDP crystal, thus significantly limiting the enhancement of ICF laser driver capabilities. Therefore, effectively suppressing TSRS in KDP crystals is a critical issue in the design and construction of ICF laser driver systems. This paper first proposes that SSD has the ability to suppress TSRS through theoretical analysis of the characteristics of SSD beams. Secondly, through numerical simulations, it presents the influence of variations in three key parameters—modulation amplitude, modulation frequency, and grating dispersion coefficient—on the TSRS gain. The results show that the Stokes gain decreases with increasing modulation amplitude and modulation frequency; specifically, the suppression capability of SSD for TSRS gradually strengthens as modulation bandwidth increases. In addition, previous reports have demonstrated that SSD can significantly suppress stimulated rotational Raman scattering (SRRS) in air, which highlights the potential value of applying SSD in large laser facilities such as ICF driver systems. Full article
Show Figures

Figure 1

22 pages, 1344 KB  
Article
Effect of Nanoclay on the Performance Characteristics of SBS-Modified Asphalt Concrete Mixtures
by Asmat Khan, Sarfraz Ahmed, Naqeeb Ullah Khattak, Menglim Hoy and Chamroeun Se
Coatings 2025, 15(9), 984; https://doi.org/10.3390/coatings15090984 - 22 Aug 2025
Viewed by 184
Abstract
This study examined the synergistic effects of Styrene–Butadiene–Styrene (SBS) polymer and nanoclay on asphalt concrete mixture performance through a systematic experimental program using 4.5% SBS with varying nanoclay concentrations (0–8%). Performance evaluation included Indirect Tensile Strength (ITS), Indirect Tensile Resilient Modulus (ERI [...] Read more.
This study examined the synergistic effects of Styrene–Butadiene–Styrene (SBS) polymer and nanoclay on asphalt concrete mixture performance through a systematic experimental program using 4.5% SBS with varying nanoclay concentrations (0–8%). Performance evaluation included Indirect Tensile Strength (ITS), Indirect Tensile Resilient Modulus (ERI), and Hamburg Wheel Tracking Tests (HWTT), along with novel quantitative analysis of visco-plastic and moisture resistance indices. Results demonstrated that 4.5% SBS with 6% nanoclay (4.5S6N) yielded optimal performance, achieving 38% increase in dry ITS, 68% improvement in wet ITS, and enhanced moisture resistance with Tensile strength Ratio (TSR) improving from 79.53% to 97.14%. The ERI value increased by 39%, while rutting resistance improved by 39.3%. At this optimal concentration, nanoclay’s uniform dispersion and layered silicate structure created an effective reinforcement network, enhancing stress distribution and interfacial bonding with the SBS polymer network and asphalt components. However, exceeding 6% nanoclay content led to performance deterioration due to particle agglomeration. These findings demonstrate that optimized SBS–nanoclay modification effectively addresses both mechanical and moisture-related performance requirements for modern pavement applications. Full article
Show Figures

Figure 1

19 pages, 51881 KB  
Article
Spatiotemporal Analysis and Characterization of Multilayer Buried Cracks in Rails Using Swept-Frequency Eddy-Current-Pulsed Thermal Tomography
by Wei Qiao, Yanghanqi Liu, Jiahao Jiao, Xiaotian Chen and Hengbo Zhang
Appl. Sci. 2025, 15(16), 9069; https://doi.org/10.3390/app15169069 - 18 Aug 2025
Viewed by 266
Abstract
Rolling contact fatigue (RCF)-induced cracks in steel rails exhibit a fish-scale-shaped cluster distribution, and generally form in a layered, overlapping manner. Eddy-current-pulsed thermography (ECPT) has been applied in RCF detection by taking advantage of electromagnetic–thermal execution; however, one still faces challenges in identifying [...] Read more.
Rolling contact fatigue (RCF)-induced cracks in steel rails exhibit a fish-scale-shaped cluster distribution, and generally form in a layered, overlapping manner. Eddy-current-pulsed thermography (ECPT) has been applied in RCF detection by taking advantage of electromagnetic–thermal execution; however, one still faces challenges in identifying and quantifying such layered, overlapping defects. This paper proposes a swept-frequency eddy-current-pulsed thermal tomography (ECPTT) detection method to quantitatively characterize multilayer crack depth and inclination angle in an artificial rail sample. In particular, stimulating frequency modulation is used to guide the induced eddy current and heat to varying depths, and this is combined with principal component analysis (PCA) to identify multilayer defects. Moreover, a thermal signal reconstruction (TSR) algorithm is introduced. TSR features are extracted for analyzing the burial depth and inclination angle of multilayer defects. The results demonstrate that the third principal component (PC3), extracted via PCA, enables layer-count discrimination in multilayer defects. Integrated with gradient magnitude analysis of the second principal component (PC2) under swept-frequency excitation, defect contour localization error can be controlled within 0.5 mm. Building on layer discrimination, multi-frequency thermal response analysis further reveals variations in PC1’s variance contribution, differentiating inclination angles of 10° and 20°, whereas comparative heating- and cooling-rate magnitudes distinguish burial depths of 0.5 mm and 1.0 mm. The research verifies that the ECPTT system can accurately detect the layer number, inclination angle, and depth of buried RCF defects, substantially enhancing the accuracy of defect contour reconstruction. Full article
(This article belongs to the Special Issue Smart Sensing Technologies in Industry Applications)
Show Figures

Figure 1

27 pages, 40090 KB  
Article
Spatiotemporal Super-Resolution of Satellite Sea Surface Salinity Based on a Progressive Transfer Learning-Enhanced Transformer
by Zhenyu Liang, Senliang Bao, Weimin Zhang, Huizan Wang, Hengqian Yan, Juan Dai and Peikun Xiao
Remote Sens. 2025, 17(15), 2735; https://doi.org/10.3390/rs17152735 - 7 Aug 2025
Viewed by 371
Abstract
Satellite sea surface salinity (SSS) products suffer from coarse spatiotemporal resolution, limiting their utility for mesoscale ocean monitoring. To address this, we proposed the Transformer-based satellite SSS super-resolution (SR) model (TSR) coupled with a progressive transfer learning (PTL) strategy. TSR improved the resolution [...] Read more.
Satellite sea surface salinity (SSS) products suffer from coarse spatiotemporal resolution, limiting their utility for mesoscale ocean monitoring. To address this, we proposed the Transformer-based satellite SSS super-resolution (SR) model (TSR) coupled with a progressive transfer learning (PTL) strategy. TSR improved the resolution of the salinity satellite SMOS from 1/4° and 10 days to 1/12° and daily. Leveraging Transformer, TSR captured long-range dependencies critical for reconstructing fine-scale structures. PTL effectively balanced structural detail acquisition and local accuracy correction by combining the gridded reanalysis products with scattered in situ observations as training labels. Validated against independent in situ measurements, TSR outperformed existing L3 salinity satellite products, as well as convolutional neural network and generative adversarial network-based SR models, particularly reducing the root mean square error (RMSE) by 33% and the mean bias (MB) by 81% compared to the SMOS input. More importantly, TSR demonstrated an enhanced capability in resolving mesoscale eddies, which were previously obscured by noise in salinity satellite products. Compared to training with a single label type or switching label types non-progressively, PTL achieved a 3%–66% lower RMSE and a 73–92% lower MB. TSR enables higher-resolution satellite monitoring of SSS, contributing to the study of ocean dynamics and climate change. Full article
(This article belongs to the Special Issue Artificial Intelligence and Big Data for Oceanography (2nd Edition))
Show Figures

Figure 1

24 pages, 3254 KB  
Article
Ghost-YOLO-GBH: A Lightweight Framework for Robust Small Traffic Sign Detection via GhostNet and Bidirectional Multi-Scale Feature Fusion
by Jingyi Tang, Bu Xu, Jue Li, Mengyuan Zhang, Chao Huang and Feng Li
Eng 2025, 6(8), 196; https://doi.org/10.3390/eng6080196 - 7 Aug 2025
Viewed by 279
Abstract
Traffic safety is a significant global concern, and traffic sign recognition (TSR) is essential for the advancement of intelligent transportation systems. Traditional YOLO11s-based methods often struggle to balance detection accuracy and processing speed, particularly in the context of small traffic signs within complex [...] Read more.
Traffic safety is a significant global concern, and traffic sign recognition (TSR) is essential for the advancement of intelligent transportation systems. Traditional YOLO11s-based methods often struggle to balance detection accuracy and processing speed, particularly in the context of small traffic signs within complex environments. To address these challenges, this study presents Ghost-YOLO-GBH, an innovative lightweight model that incorporates three key enhancements: (1) the integration of a GhostNet backbone, which substitutes the conventional YOLO11s architecture and utilizes Ghost modules to exploit feature redundancy, resulting in a 40.6% reduction in computational load while ensuring effective feature extraction for small targets; (2) the development of a HybridFocus module that combines large separable kernel attention with multi-scale pooling, effectively minimizing background interference and improving contextual feature aggregation by 4.3% in isolated tests; and (3) the implementation of a Bidirectional Dynamic Multi-Scale Feature Pyramid Network (BiDMS-FPN) that allows for bidirectional cross-stage feature fusion, significantly enhancing the accuracy of small target detection. Experimental results on the TT100K dataset indicate that Ghost-YOLO-GBH achieves an impressive 81.10% mean Average Precision (mAP) at a threshold of 0.5, along with an 11.7% increase in processing speed (45 FPS) and an 18.2% reduction in model parameters (7.74 M) compared to the baseline YOLO11s. Overall, Ghost-YOLO-GBH effectively balances accuracy, efficiency, and lightweight deployment, demonstrating superior performance in real-world applications characterized by small signs and cluttered backgrounds. This research provides a novel framework for resource-constrained TSR applications, contributing to the evolution of intelligent transportation systems. Full article
(This article belongs to the Special Issue Artificial Intelligence for Engineering Applications, 2nd Edition)
Show Figures

Figure 1

12 pages, 1206 KB  
Article
Resistance Mechanisms to Glyphosate in Lamarckia aurea (L.) Moench Found in Southern Spain
by José Alfredo Domínguez-Valenzuela, Javid Gherekhloo, Candelario Palma-Bautista, Saeid Hassanpour-bourkheili, Guido Plaza, Antonia M. Rojano-Delgado and Rafael De Prado
Agronomy 2025, 15(8), 1804; https://doi.org/10.3390/agronomy15081804 - 26 Jul 2025
Viewed by 391
Abstract
Glyphosate has been used for roadside weed control in southern Spain for over 40 years, and most populations of goldentop (Lamarckia aurea L.) Moench have putatively developed resistance to this active ingredient. The physiological and biochemical basis for glyphosate resistance in this [...] Read more.
Glyphosate has been used for roadside weed control in southern Spain for over 40 years, and most populations of goldentop (Lamarckia aurea L.) Moench have putatively developed resistance to this active ingredient. The physiological and biochemical basis for glyphosate resistance in this weed has been investigated. Dose–response studies indicated that the resistant biotype (R) was almost 13 times more resistant to glyphosate compared to a known susceptible biotype (S). Studies of foliar glyphosate retention and 14C-glyphosate uptake/translocation showed no significant differences between both L. aurea biotypes. Basal 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity (µmol µg−1TSP min−1) showed similar values between R (0.82 ± 0.04) and S (0.75 ± 0.05) biotypes. On the other hand, the resistance factor (I50R/I50S) did not show a difference between the two biotypes. Therefore, it was concluded that target-site (TSR) resistance mechanisms are not involved in glyphosate resistance in this weed species. The metabolism of glyphosate to form the non-toxic metabolites aminomethylphosphonic acid (AMPA), glyoxylate, and sarcosine was greater and faster in the R compared to the S biotype; thus, glyphosate resistance is due to non-target-site resistance (NTSR) mechanisms. This paper is the first report of glyphosate resistance in L. aurea in the world. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

14 pages, 9728 KB  
Article
Combined Model of Tumor–Stroma Ratio and Tumor Budding Are Not Associated with Tumor Recurrence or Metastasis in Oral Squamous Cell Carcinoma Patients
by Drago Boščić, Emili Dragaš, Andro Košec, Goran Geber, Čedna Tomasović-Lončarić and Davor Vagić
Diagnostics 2025, 15(15), 1844; https://doi.org/10.3390/diagnostics15151844 - 22 Jul 2025
Viewed by 393
Abstract
Histopathological grading of oral squamous cell carcinoma is currently based on differentiation of cells, while additional histological parameters, such as the tumor–stroma ratio (TSR), tumor budding (TB), or the combined TSR/tumor budding model could better assess tumor biological behavior and monitoring of patients. [...] Read more.
Histopathological grading of oral squamous cell carcinoma is currently based on differentiation of cells, while additional histological parameters, such as the tumor–stroma ratio (TSR), tumor budding (TB), or the combined TSR/tumor budding model could better assess tumor biological behavior and monitoring of patients. Background/Objectives: To integrate risk factors associated with tumor progression: the TSR, TB and TSR/tumor budding model, whose prognostic significance in oral cancer has not yet been evaluated. Methods: An observational cohort retrospective study assembled according to STROBE guidelines on histological materials from 196 patients with invasive squamous cell carcinoma of the oral cavity. The goal of the analysis was to evaluate the association between the tumor stroma ratio, tumor budding, and the combined model of TSR/TB with the clinical and pathologic features of patients with squamous cell carcinoma of the oral cavity and to determine the prognostic value of this model in relation to disease-free survival (DFS) Results: The analysis did not show that the tumor stroma ratio (TSR), tumor budding, and the combined model of TSR/tumor budding were statistically significantly associated with the occurrence of metastatic disease at the start of treatment or during postoperative follow-up, but confirmed the value of depth-of-invasion (DOI) as a negative prognostic factor (HR 15.3, p < 0.001). Conclusions: The TSR, TB, and the combined TSR/TB model were not found to be statistically significant predictors for the disease progression in the Cox regression survival analysis but were found to have a significant correlation with known negative prognostic factors: DOI, neural invasion, and T category. Full article
(This article belongs to the Special Issue Advances in Diagnosis and Management of Oral Disorders)
Show Figures

Figure 1

18 pages, 4110 KB  
Article
Characterization of Asphalt Binder and Mixture for Enhanced Railway Applications
by Ilho Na, Hyemin Park, Jihyeon Yun, Ju Dong Park and Hyunhwan Kim
Materials 2025, 18(14), 3265; https://doi.org/10.3390/ma18143265 - 10 Jul 2025
Viewed by 291
Abstract
Although asphalt mixtures can be applied to railway tracks due to their viscoelastic properties, caution is required, as their ductility and brittleness are highly sensitive to temperature variations. In recent years, interest in the application of asphalt in railway infrastructure has increased, driven [...] Read more.
Although asphalt mixtures can be applied to railway tracks due to their viscoelastic properties, caution is required, as their ductility and brittleness are highly sensitive to temperature variations. In recent years, interest in the application of asphalt in railway infrastructure has increased, driven by the development of modified mixtures and the broader availability of performance-enhancing additives. Additionally, evaluation methods for railway tracks should be adapted to account for the distinct loading mechanisms involved, which differ from those of conventional roadways. In this study, the comprehensive properties of asphalt binders, mixtures, and testing methods—including physical and engineering characteristics—were assessed to improve the performance of asphalt concrete layers for potential applications in railroad infrastructure. The results of this study indicate that (1) the higher the performance grade (PG), the higher the indirect tensile strength (ITS) value achieved by the 13 mm mixture using PG76-22, which is higher than that of the PG64-22 mixture. This indicates that higher PG grades and modification contribute to improved tensile strength, beneficial for upper layers subjected to dynamic railroad loads. (2) The tensile strength ratio (TSR) increased from the unmodified mixture to over 92% in mixtures containing crumb rubber modifier (CRM) and styrenic thermoplastic elastomer (STE), demonstrating enhanced durability under freeze–thaw conditions. (3) Wheel tracking test results showed that modified mixtures exhibited more than twice the rutting resistance compared to PG64-22. The 13 mm aggregate mixtures also generally performed better than the 19 mm mixtures, indicating reduced permanent deformation under repeated loading. (4) It was concluded that asphalt is a suitable material for railroads, as its overall characteristics comply with standard specifications. Full article
Show Figures

Figure 1

26 pages, 17582 KB  
Article
Effect Analysis of the V-Angle and Straight Edge Length on the Performance of V-Shaped Blades for a Savonius Hydrokinetic Turbine
by Bohan Wang, Xu Bai, Guoqiang Lei, Wen Zhang and Renwei Ji
J. Mar. Sci. Eng. 2025, 13(7), 1240; https://doi.org/10.3390/jmse13071240 - 27 Jun 2025
Cited by 1 | Viewed by 366
Abstract
This study investigated the performance of Savonius hydrokinetic turbine blades through three-dimensional computational fluid dynamics simulations conducted at a fixed tip speed ratio of 0.87. A multi-factor experimental design was employed to construct 45 V-shaped rotor blade models, systematically examining the effects of [...] Read more.
This study investigated the performance of Savonius hydrokinetic turbine blades through three-dimensional computational fluid dynamics simulations conducted at a fixed tip speed ratio of 0.87. A multi-factor experimental design was employed to construct 45 V-shaped rotor blade models, systematically examining the effects of a V-angle (30–140°) and straight-edge length (0.24 L–0.62 L) on hydrodynamic performance, where L = 25.46 mm (the baseline length of the straight edge). The results indicate that, as the V-angle and the straight-edge length vary independently, the performance of each blade first increases and then decreases. At TSR = 0.87, the maximum power coefficient (CP) of 0.2345 is achieved by the blade with a 70° V-Angle and a straight edge length of 0.335 L. Pressure and velocity field analyses reveal that appropriate geometric adjustments can optimize the high-pressure zone on the advancing blade and suppress negative torque on the returning blade, thereby increasing net output. The influence mechanisms of the V-angle and straight-edge length variations on blade performance were further explored and summarized through a comparative analysis of the vorticity characteristics. This study established a detailed performance dataset, providing theoretical and empirical support for V-shaped rotor blade design studies and offering engineering guidance for the effective use of low-flow hydropower. Full article
(This article belongs to the Special Issue Advances in Marine Engineering Hydrodynamics)
Show Figures

Figure 1

21 pages, 3945 KB  
Article
Improvement of Modified Rotor on Aerodynamic Performance of Hybrid Vertical Axis Wind Turbine
by Shaohua Chen, Chenguang Song, Zhong Qian, Aihua Wu, Yixian Zhu, Jianping Xia, Jian Wang, Yuan Yang, Xiang Chen, Yongfei Yuan, Chao Chen and Yang Cao
Energies 2025, 18(13), 3357; https://doi.org/10.3390/en18133357 - 26 Jun 2025
Cited by 1 | Viewed by 379
Abstract
In this paper, the aerodynamic performance of an improved hybrid vertical-axis wind turbine is investigated, and the performance of the hybrid turbine at high tip–speed ratios is significantly enhanced by adding a spoiler at the end of the inner rotor. The improved design [...] Read more.
In this paper, the aerodynamic performance of an improved hybrid vertical-axis wind turbine is investigated, and the performance of the hybrid turbine at high tip–speed ratios is significantly enhanced by adding a spoiler at the end of the inner rotor. The improved design increases the average torque coefficient by 7.4% and the peak power coefficient by 32.4%, which effectively solves the problem of power loss due to the negative torque of the inner rotor in the conventional hybrid turbine at high TSR; the spoiler improves the performance of the outer rotor in the wake region by optimizing the airflow distribution, reducing the counter-pressure differential, lowering the inner rotor drag and at the same time attenuating the wake turbulence intensity. The study verifies the validity of the design through 2D CFD simulation, and provides a new idea for the optimization of hybrid wind turbines, which is especially suitable for low wind speed and complex terrain environments, and is of great significance for the promotion of renewable energy technology development. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

18 pages, 3896 KB  
Article
The Contribution of Meteosat Third Generation–Flexible Combined Imager (MTG-FCI) Observations to the Monitoring of Thermal Volcanic Activity: The Mount Etna (Italy) February–March 2025 Eruption
by Carolina Filizzola, Giuseppe Mazzeo, Francesco Marchese, Carla Pietrapertosa and Nicola Pergola
Remote Sens. 2025, 17(12), 2102; https://doi.org/10.3390/rs17122102 - 19 Jun 2025
Viewed by 739
Abstract
The Flexible Combined Imager (FCI) instrument aboard the Meteosat Third Generation (MTG-I) geostationary satellite, launched in December 2022 and operational since September 2024, by providing shortwave infrared (SWIR), medium infrared (MIR) and thermal infrared (TIR) data, with an image refreshing time of 10 [...] Read more.
The Flexible Combined Imager (FCI) instrument aboard the Meteosat Third Generation (MTG-I) geostationary satellite, launched in December 2022 and operational since September 2024, by providing shortwave infrared (SWIR), medium infrared (MIR) and thermal infrared (TIR) data, with an image refreshing time of 10 min and a spatial resolution ranging between 500 m in the high-resolution (HR) and 1–2 km in the normal-resolution (NR) mode, may represent a very promising instrument for monitoring thermal volcanic activity from space, also in operational contexts. In this work, we assess this potential by investigating the recent Mount Etna (Italy, Sicily) eruption of February–March 2025 through the analysis of daytime and night-time SWIR observations in the NR mode. The time series of a normalized hotspot index retrieved over Mt. Etna indicates that the effusive eruption started on 8 February at 13:40 UTC (14:40 LT), i.e., before information from independent sources. This observation is corroborated by the analysis of the MIR signal performed using an adapted Robust Satellite Technique (RST) approach, also revealing the occurrence of less intense thermal activity over the Mt. Etna area a few hours before (10.50 UTC) the possible start of lava effusion. By analyzing changes in total SWIR radiance (TSR), calculated starting from hot pixels detected using the preliminary NHI algorithm configuration tailored to FCI data, we inferred information about variations in thermal volcanic activity. The results show that the Mt. Etna eruption was particularly intense during 17–19 February, when the radiative power was estimated to be around 1–3 GW from other sensors. These outcomes, which are consistent with Multispectral Instrument (MSI) and Operational Land Imager (OLI) observations at a higher spatial resolution, providing accurate information about areas inundated by the lava, demonstrate that the FCI may provide a relevant contribution to the near-real-time monitoring of Mt. Etna activity. The usage of FCI data, in the HR mode, may further improve the timely identification of high-temperature features in the framework of early warning contexts, devoted to mitigating the social, environmental and economic impacts of effusive eruptions, especially over less monitored volcanic areas. Full article
Show Figures

Figure 1

16 pages, 7677 KB  
Article
Evaluating the Booster Grant’s Impact on YouthMappers’ Climate Activism and Climate Education in Sri Lanka
by Ibra Lebbe Mohamed Zahir, Suthakaran Sundaralingam, Meerasa Lewai Fowzul Ameer, Sriram Sindhuja and Atham Lebbe Iyoob
Youth 2025, 5(2), 61; https://doi.org/10.3390/youth5020061 - 19 Jun 2025
Viewed by 1009
Abstract
YouthMappers chapters, utilizing OpenStreetMap (OSM), play a pivotal role in tackling climate challenges through education and activism. This study investigates the influence of a booster grant project on enhancing Climate Activism and Education efforts through YouthMappers chapters in Sri Lanka. Through a geometric [...] Read more.
YouthMappers chapters, utilizing OpenStreetMap (OSM), play a pivotal role in tackling climate challenges through education and activism. This study investigates the influence of a booster grant project on enhancing Climate Activism and Education efforts through YouthMappers chapters in Sri Lanka. Through a geometric approach, the research integrates measurable survey data from OSM platform data from 223 YouthMappers chapter respondents at four (04) universities in Sri Lanka to evaluate five critical factors/dimensions: Capacity Building and Funding Support (CBFS), Climate Activism and Education (CAE), Community Engagement and Collaboration (CEC), Technical Skills and Resources (TSR), and Sustainability and Policy Integration (SPI). The Friedman test confirmed statistically significant differences across all factors’ variables (p < 0.001), highlighting strengths in technical competence and educational integration, with gaps identified in community engagement and sustainability. A Radial Basis Function (RBF) model revealed moderate predictive accuracy, excelling in variables like CAE and TSR but indicating higher error rates in SPI and CEC. Practical outcomes include flood risk maps, curriculum-integrated teaching schemes, and localized mapping workshops. These results underscore the booster grant’s role in enabling impactful, youth-led geospatial initiatives. However, challenges such as internet access, training gaps, and language barriers remain. This study recommends expanding student and community participation, refining training strategies, and integrating OSM into university curricula. These scalable interventions offer valuable insights for replication in other vulnerable regions, enhancing climate resilience through community-driven, data-informed youth engagement. Full article
Show Figures

Figure 1

23 pages, 4024 KB  
Article
Influence of Coal Bottom Ash as Fine Aggregate Replacement on the Mechanical Properties of Stone Mastic Asphalt
by Syakirah Afiza Mohammed, Suhana Koting, Ali Mohammed Babalghaith, Mohd Hafizan Md. Isa and Faridah Hanim Khairuddin
Appl. Sci. 2025, 15(12), 6826; https://doi.org/10.3390/app15126826 - 17 Jun 2025
Viewed by 583
Abstract
Coal bottom ash (CBA) is a waste produced by burning coal that presents possible hazards to human well-being and the environment. Rapid economic expansion has increased the utilisation of CBA, resulting in a crisis concerning the disposal of this waste. By employing waste [...] Read more.
Coal bottom ash (CBA) is a waste produced by burning coal that presents possible hazards to human well-being and the environment. Rapid economic expansion has increased the utilisation of CBA, resulting in a crisis concerning the disposal of this waste. By employing waste as a replacement for natural materials, it is possible to achieve sustainable and environmentally friendly construction. This study assesses the effects of utilising CBA waste as a replacement for fine aggregate in stone mastic asphalt (SMA) pavement. Seven asphalt mixture proportions were designed, each of which employed a different percentage of CBA (0%, 10%, 20%, 30%, 50%, 70%, and 100%) as a fine aggregate replacement. The performance tests conducted in this research were the Cantabro durability test, resilient modulus test, dynamic creep test, and moisture susceptibility test. The findings showed an improvement in the durability and resistance to permanent deformation of the SMA mixtures with 30% and 50% CBA replacement, respectively. However, further increases in the CBA content caused a decrease in the durability and resistance to permanent deformation. Meanwhile, the stiffness and tensile strength ratio (TSR) value decrease with the use of CBA replacement at any percentage. However, the TSR value of the SMA mixtures with 50% or less CBA replacement was more than 80%, which meets the minimum requirement set by JKR. In conclusion, incorporating CBA into SMA mixture has a positive effect on certain mechanical properties, particularly its durability and resistance to permanent deformation at optimal replacement levels, highlighting its potential to be used as a sustainable material in asphalt pavement construction. Full article
(This article belongs to the Special Issue Sustainable Materials for Asphalt Pavements)
Show Figures

Figure 1

20 pages, 7353 KB  
Reply
Early Cretaceous Zn-Pb (Ba±Ag±Cu±Fe±Mn) Deposits of Iran: Irish Type or Mississippi Valley Type? Reply to Nejadhadad et al. Comment on “Rajabi et al. Barite Replacement as a Key Factor in the Genesis of Sediment-Hosted Zn-Pb±Ba and Barite-Sulfide Deposits: Ore Fluids and Isotope (S and Sr) Signatures from Sediment-Hosted Zn-Pb±Ba Deposits of Iran. Minerals 2024, 14, 671”
by Abdorrahman Rajabi, Pouria Mahmoodi, Pura Alfonso, Carles Canet, Colin J. Andrew, Reza Nozaem, Saeideh Azhdari, Somaye Rezaei, Zahra Alaminia, Somaye Tamarzadeh, Ali Yarmohammadi, Ghazaleh Khan Mohammadi, Negin Kourangi and Rasoul Saeidi
Minerals 2025, 15(6), 635; https://doi.org/10.3390/min15060635 - 11 Jun 2025
Viewed by 680
Abstract
This study critically examines the early Cretaceous carbonate-hosted Zn-Pb (±Ba±Cu) deposits of the Malayer-Esfahan (MEMB) and Yazd-Anarak (YAMB) metallogenic belts in Iran, which have been inaccurately classified as Mississippi Valley type (MVT) deposits by Nejadhadad et al. (2025). Our findings reveal significant differences [...] Read more.
This study critically examines the early Cretaceous carbonate-hosted Zn-Pb (±Ba±Cu) deposits of the Malayer-Esfahan (MEMB) and Yazd-Anarak (YAMB) metallogenic belts in Iran, which have been inaccurately classified as Mississippi Valley type (MVT) deposits by Nejadhadad et al. (2025). Our findings reveal significant differences in mineralogy, fluid inclusion characteristics, and geochemical signatures compared to typical MVT deposits. These deposits are more akin to Irish-type Zn-Pb mineralization and formed in extensional and passive margin environments around the Nain–Baft back-arc basin. The normal faults in this back-arc rift can transform significantly during inversion and compressional tectonics, reactivating to behave as reverse faults and leading to new geological structures and landscapes. Our study highlights barite replacement as a crucial factor in forming sediment-hosted Zn-Pb (±Ba±Cu) and barite-sulfide deposits. Based on textural evidence, fluid inclusion data, and sulfur isotope analyses, we propose that barite plays a fundamental role in controlling subsequent Zn-Pb (±Ba±Cu) mineralization by serving as both a favorable host and a significant sulfur source. Furthermore, diagenetic barite may act as a precursor to diverse types of sediment-hosted Zn-Pb (±Ba±Cu) mineralization, refining genetic models for these deposits. Sulfur isotope analyses of Irish-type deposits show a broad δ34S range (−28‰ to +5‰), indicative of bacterial sulfate reduction (BSR). Nevertheless, more positive δ34S values (+1‰ to +36‰) and textural evidence in shale-hosted massive sulfide (SHMS) deposits suggest a greater role for thermochemical sulfate reduction (TSR) in sulfide mineralization. Full article
Show Figures

Graphical abstract

Back to TopTop