Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = Terminalia catappa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2867 KB  
Article
Phenolic-Rich Indian Almond (Terminalia catappa Linn) Leaf Extract Ameliorates Lipid Metabolism and Inflammation in High-Fat Diet (HFD)-Induced Obese Mice
by Opeyemi O. Deji-Oloruntoba, Ji Eun Kim, Hee Jin Song, Ayun Seol, Dae Youn Hwang and Miran Jang
Metabolites 2025, 15(9), 594; https://doi.org/10.3390/metabo15090594 - 8 Sep 2025
Viewed by 467
Abstract
Background: Obesity is a global health issue closely associated with dysregulated lipid metabolism and chronic inflammation. Effective strategies targeting both lipogenesis and inflammation are essential for managing obesity and its related metabolic disorders. Methods: This study evaluated the effects of Terminalia catappa Linn. [...] Read more.
Background: Obesity is a global health issue closely associated with dysregulated lipid metabolism and chronic inflammation. Effective strategies targeting both lipogenesis and inflammation are essential for managing obesity and its related metabolic disorders. Methods: This study evaluated the effects of Terminalia catappa Linn. leaf extract (TCE) on lipogenic and lipolytic pathways in high-fat diet (HFD)-induced obese mice. UPLC-QTOF-MS analysis was conducted to identify and quantify the major phenolic compounds in TCE. Mice were administered low and high doses of TCE, and various metabolic parameters, including lipid profiles, liver function markers, adipokine levels, and gene/protein expressions related to lipid metabolism and inflammation, were assessed. Results: UPLC-QTOF-MS analysis identified four major phenolic compounds in TCE—gallic acid, orientin, vitexin, and ellagic acid—with respective contents of 112.5, 163.3, 184.7, and 295.7 mg/g extract. TCE administration significantly reduced liver and adipose tissue weights, along with hepatic and adipose lipid accumulation. Both low and high doses of TCE markedly lowered serum lipid levels. Liver function was improved, as indicated by reduced levels of AST, ALT, and ALP, while BUN levels remained unchanged. On the molecular level, TCE downregulated adipogenic and lipogenic genes (PPARγ, PPARα, C/EBPα, aP2) and upregulated metabolic regulators, including leptin, adiponectin, p-HSL/HSL, and p-perilipin/perilipin, without affecting ATGL expression. TCE also suppressed pro-inflammatory cytokines such as IL-6, IL-1β, TNF-α, and TGFβ-1. Conclusions: These findings highlight the therapeutic potential of TCE in managing obesity by inhibiting lipogenesis, enhancing lipolysis, and reducing inflammation. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Graphical abstract

14 pages, 2870 KB  
Article
Bioactivity-Guided Isolation of Flavone Glycoside from Terminalia catappa: Evaluating Anti-MRSA and Anti-Dermatophytic Potential
by Tumakuru Nataraj Sowmya, Doddahosuru Mahadevappa Gurudatt and Koteshwar Anandrao Raveesha
Molecules 2025, 30(17), 3595; https://doi.org/10.3390/molecules30173595 - 3 Sep 2025
Viewed by 945
Abstract
Antibiotic resistance is one of the major threats to public health in the twenty-first century. In this line of work, plants represent a priceless source of antimicrobial compounds since they house chemically different metabolites with a wide range of therapeutic applications. This study [...] Read more.
Antibiotic resistance is one of the major threats to public health in the twenty-first century. In this line of work, plants represent a priceless source of antimicrobial compounds since they house chemically different metabolites with a wide range of therapeutic applications. This study reports the bioactivity-guided fractionation, characterization, and evaluation of the efficacy of antimicrobial compounds from leaf acetone extracts of the traditional medicinal plant Terminalia catappa against bacterial clinical isolates and dermatophytes. The acetone extract of T. catappa was subjected to column chromatography for the separation and purification of the phytocompounds. The fractions were analyzed using a thin-layer chromatography–bioautography assay to detect the antimicrobial potency of the eluted compounds. The efficacy of the antimicrobial compounds was evaluated by the minimum inhibitory concentration, minimum bactericidal concentration, and minimum fungicidal concentration. Spectral characterization and structure elucidation of the compound were also achieved. The leaf acetone extract, when subjected to gradient elution by column chromatography, resulted in eight fractions. The fraction Fr-2 was subjected to thin-layer chromatographic elution, which resulted in the elution of phytocompound with Rf value of 0.50 and the phytocompound exhibited antimicrobial activity in the TLC–bioautography assay, and it was isolated in pure form and confirmed as Apigenin 7-O-ß-D-glucopyranoside. The compound exhibited significant inhibition of the clinical isolate Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus 1503 at 9.5 µg/mL. Dermatophytes, viz., Microsporum gypseum and Microsporum canis, were inhibited at 312 µg/mL. The present study successfully achieved the bioactivity-guided isolation and characterization of the flavone compound Apigenin 7-O-ß-D-glucopyranoside from T. catappa. Furthermore, the plant T. catappa represents a promising candidate for the exploration of antimicrobial compounds that could serve as potential plant-derived lead molecules for antimicrobial agents. Full article
Show Figures

Figure 1

12 pages, 1386 KB  
Communication
Variations in Physical and Chemical Characteristics of Terminalia catappa Nuts
by Shahla Hosseini Bai, Bruce Randall, Repson Gama, Basil Gua, Doni Keli, Kim Jones, Brittany Elliott and Helen M. Wallace
Horticulturae 2025, 11(5), 540; https://doi.org/10.3390/horticulturae11050540 - 16 May 2025
Cited by 1 | Viewed by 1004
Abstract
Indigenous forest foods have great potential to diversify cropping systems and increase food security and the resilience of food systems to climate change. Underutilised indigenous tree nuts in particular can provide health benefits to local communities and improve livelihoods when commercialised. However, for [...] Read more.
Indigenous forest foods have great potential to diversify cropping systems and increase food security and the resilience of food systems to climate change. Underutilised indigenous tree nuts in particular can provide health benefits to local communities and improve livelihoods when commercialised. However, for many tree nut species, there is little knowledge of important kernel characteristics. Kernel size and oil composition are important factors for commercialisation and health benefits, respectively. We assessed kernel attributes of Terminalia catappa L. (Combretaceae), a traditional forest food in the Pacific, in the Solomon Islands, Vanuatu and Fiji. We assessed kernel mass and kernel-to-fruit mass ratio, explored the fatty acid profile of oil, and oil stability against oxidation using accelerated ageing at 45 °C for 21 days. The largest kernels were found in the Solomon Islands with an average mass of 1.66 g. Similarly, kernel-to-fruit mass ratios were higher in the Solomon Islands and Vanuatu than in Fiji. Terminalia catappa contained higher concentrations of unsaturated fatty acids than saturated fatty acids. Among the unsaturated fatty acids, oleic acid and linoleic acid were the two most abundant. Kernels incubated at 45 °C exhibited significantly higher hexanal concentrations on day 7 compared to those on day 0 of incubation. This rapid oil oxidation may be associated with high unsaturated fatty acid concentrations in kernels. These findings may have implications for oil shelf life. Our study suggests T. catappa trees from the Solomon Islands exhibit desirable kernel characteristics that make them suitable for selection and commercialization. The commercialization of an underutilised forest food tree like T. catappa will enhance food and nutrition security for local communities. Full article
Show Figures

Graphical abstract

19 pages, 1389 KB  
Article
Terminalia catappa Kernel Flour Characterization as a Functional and Bioactive Ingredient for Cookies Formulation
by Audrey Vingadassalon, Ewa Pejcz, Agata Wojciechowicz-Budzisz, Remigiusz Olędzki, Kristy Groton, Guylene Aurore and Joanna Harasym
Appl. Sci. 2024, 14(23), 11201; https://doi.org/10.3390/app142311201 - 1 Dec 2024
Cited by 3 | Viewed by 2699
Abstract
Terminalia catappa (tropical almond) represents an underutilized resource with potential applications in functional food development. This study investigated the technological properties and bioactive characteristics of T. catappa kernel flour and its application in cookie formulation. The research examined the techno-functional properties, pasting behavior, [...] Read more.
Terminalia catappa (tropical almond) represents an underutilized resource with potential applications in functional food development. This study investigated the technological properties and bioactive characteristics of T. catappa kernel flour and its application in cookie formulation. The research examined the techno-functional properties, pasting behavior, and bioactive profile of T. catappa flour and its blends with different sweeteners (erythritol and cane sugar at 5% and 15% concentrations). Cookies were formulated using optimized ingredients, and their quality parameters were evaluated through physical, chemical, and sensory analyses. T. catappa flour demonstrated significant water holding capacity (4.48 g H2O/g DM) and notable antioxidant activity in both aqueous and ethanolic extracts (DPPH: 1.95–3.35 mg TE/g DM). The addition of sweeteners influenced pasting properties, with higher concentrations generally reducing peak viscosity and pasting temperature. Developed cookies exhibited stable water activity (0.294–0.320) over one month of storage and contained substantial dietary fiber (5.018 g/100 g). Sensory evaluation revealed superior acceptability for thicker (10 mm) cookies, particularly in texture and appearance attributes. This study establishes T. catappa kernel flour as a promising functional ingredient for gluten-free bakery applications, offering both technological functionality and bioactive properties suitable for health-conscious product development. Full article
(This article belongs to the Special Issue New Advances in Functional Foods and Nutraceuticals)
Show Figures

Graphical abstract

6 pages, 1408 KB  
Proceeding Paper
Study of Lectin-like Protein from Terminalia catappa (TC) Seeds for Its Physicochemical and Antimicrobial Properties
by Fakeha Mohammed Rehan Shaikh and Ashish Sambhaji Uzgare
Chem. Proc. 2024, 16(1), 75; https://doi.org/10.3390/ecsoc-28-20179 - 14 Nov 2024
Viewed by 775
Abstract
Lectins are a diverse group of proteins crucial in numerous biological activities. They exist in plants, animals, and microorganisms, each with unique structural and functional characteristics. Their ability to exhibit hemagglutination and specifically bind with carbohydrates allows lectins to participate in processes like [...] Read more.
Lectins are a diverse group of proteins crucial in numerous biological activities. They exist in plants, animals, and microorganisms, each with unique structural and functional characteristics. Their ability to exhibit hemagglutination and specifically bind with carbohydrates allows lectins to participate in processes like cell adhesion, immune responses, and intracellular signaling pathways. Lectins are particularly noted for their roles in counteracting viral diseases, regulating blood sugar levels, fending off pathogens, and preventing cancer progression. These natural compounds offer potential therapeutic benefits in various healthcare applications. Terminalia catappa (TC), known as Indian almond, is a large tropical tree containing flavonoids, tannins, saponins, and phytosterols with medicinal values. This research aimed to investigate the partial purification and characterization of lectins from TC seeds. The process involved extracting and partially purifying the lectin, testing it for hemagglutination assay, temperature and pH stability, EDTA dependence, effect of metal ions, specific sugar determination, and antibacterial activity. Hemagglutination activity was observed in human blood group B+. The findings suggest TC seed lectin is remarkably stable within a moderate temperature range and across a broad pH spectrum. The dependence on EDTA for hemagglutination activity indicates a potential metalloprotein nature, with notable interactions with various metal ions, except Hg2⁺. While the initial antimicrobial assessment against common bacteria yielded limited results, further studies hold promise for uncovering the full potential of TC seed lectin in healthcare and therapeutic advancements. Full article
Show Figures

Figure 1

13 pages, 4299 KB  
Article
Indian Almond (Terminalia catappa Linn.) Leaf Extract Extends Lifespan by Improving Lipid Metabolism and Antioxidant Activity Dependent on AMPK Signaling Pathway in Caenorhabditis elegans under High-Glucose-Diet Conditions
by Yebin Kim, Seul-bi Lee, Myogyeong Cho, Soojin Choe and Miran Jang
Antioxidants 2024, 13(1), 14; https://doi.org/10.3390/antiox13010014 - 20 Dec 2023
Cited by 7 | Viewed by 3876
Abstract
This study aimed to evaluate the antioxidant and antiaging effects of Indian almond (Terminalia catappa Linn.) leaf extract (TCE) on high-glucose (GLU)-induced obese Caenorhabditis elegans. Since TCE contains high contents of flavonoids and phenolics, strong radical scavenging activity was confirmed in [...] Read more.
This study aimed to evaluate the antioxidant and antiaging effects of Indian almond (Terminalia catappa Linn.) leaf extract (TCE) on high-glucose (GLU)-induced obese Caenorhabditis elegans. Since TCE contains high contents of flavonoids and phenolics, strong radical scavenging activity was confirmed in vitro. The stress-resistance effect of TCE was confirmed under thermal and oxidative stress conditions at nontoxic tested concentrations (6.25, 12.5, and 25 μg/mL). GLU at 2% caused lipid and reactive oxygen species (ROS) accumulation in C. elegans, and TCE inhibited lipid and ROS accumulation under both normal and 2% GLU conditions in a concentration-dependent manner. In addition, TCE proved to be effective in prolonging the lifespan of C. elegans under normal and 2% GLU conditions. The ROS reduction effect of TCE was abolished in mutants deficient in daf-16/FOXO and skn-1/Nrf-2. In addition, the lifespan-extending effect of TCE in these two mutants disappeared. The lifespan-extending effect was abolished even in atgl-1/ATGL-deficiency mutants. The TCE effect was reduced in aak-1/AMPK-deficient mutants and completely abolished under 2% GLU conditions. Therefore, the effect of prolonging lifespan by inhibiting lipid and ROS accumulation under the high GLU conditions of TCE is considered to be the result of atgl-1, daf-16, and skn-1 being downregulated by aak-1. These results suggest that the physiological potential of TCE contributes to antiaging under metabolic disorders. Full article
Show Figures

Figure 1

13 pages, 314 KB  
Article
Cuticular Waxes and Cutin in Terminalia catappa Leaves from the Equatorial São Tomé and Príncipe Islands
by Helena Pereira, Rita Simões and Isabel Miranda
Molecules 2023, 28(17), 6365; https://doi.org/10.3390/molecules28176365 - 31 Aug 2023
Cited by 2 | Viewed by 1896
Abstract
This study presents for the first time an analysis of the content and chemical composition of the cuticular waxes and cutin in the leaves of the widespread and important tropical species Terminalia catappa. The leaves were collected in the equatorial Atlantic islands [...] Read more.
This study presents for the first time an analysis of the content and chemical composition of the cuticular waxes and cutin in the leaves of the widespread and important tropical species Terminalia catappa. The leaves were collected in the equatorial Atlantic islands of São Tomé and Príncipe, in the Gulf of Guinea. The epicuticular and intracuticular waxes were determined via dichloromethane extraction and their chemical composition via GC-MS analysis, and the content and monomeric composition of cutin were determined after depolymerization via methanolysis. The leaves contained an epidermal cuticular coverage of 52.8 μg cm−2 of the cuticular waxes (1.4% of mass) and 63.3 μg cm−2 (1.5% of mass) of cutin. Cuticular waxes include mainly n-alkanols and fatty acids, with a substantial proportion of terpenes in the more easily solubilized fraction, and sterols in the more embedded waxes. Cutin is mostly constituted by C16 fatty acids and dihydroxyacids, also including aromatic monomers, suggesting a largely linear macromolecular arrangement. The high proportion of triacontanol, α-amyrin, β-amyrin, germanicol, and lupeol in the easily solubilized cuticular fraction may explain the bioactive properties attributed to the T. catappa leaves via the popular medicine, which allows us to consider them as a potential source for the extraction of these compounds. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

16 pages, 2568 KB  
Article
Trees Diversity and Species with High Ecological Importance for a Resilient Urban Area: Evidence from Cotonou City (West Africa)
by Assouhan Jonas Atchadé, Madjouma Kanda, Fousseni Folega, Hounnankpon Yédomonhan, Marra Dourma, Kperkouma Wala and Koffi Akpagana
Climate 2023, 11(9), 182; https://doi.org/10.3390/cli11090182 - 30 Aug 2023
Cited by 4 | Viewed by 3228
Abstract
Rapid urbanization and climate change effects may cause dramatic changes in ecosystem functions in cities, thereby inevitably affecting the growth performance of old trees. Few studies have explored species diversity and spatial differentiation in Benin urban areas. This study aims to explore this [...] Read more.
Rapid urbanization and climate change effects may cause dramatic changes in ecosystem functions in cities, thereby inevitably affecting the growth performance of old trees. Few studies have explored species diversity and spatial differentiation in Benin urban areas. This study aims to explore this dimension of urban ecology in order to build resilience to climate change in the city of Cotonou. Its objective was to determine the predominant level of tree diversity in the city’s land use units. The urban green frame was subdivided into six land use units, namely, establishments, residences, green spaces, commercial areas, administrative areas, and roads. The forest inventories were carried out in 149 plots with surfaces evaluated at 2500 m2 each. The IVI, an index that highlights the relative density, relative dominance, and relative frequency of species, has been used to characterize the place occupied by each species in relation to all species in urban ecosystems. This shows ecological importance through the diversity and quality of ecosystems, communities, and species. A total of 62 tree species in 55 genera and 27 families were recorded. The results show that the flora of the city of Cotonou is characterized by a strong preponderance of exotic species with some differences in species presence. The most abundant species with high ecological importance (IVI) in the different types of land use of the city are Terminalia catappa (IVI = 121.47%), Terminalia mantaly (IVI = 90.50%), Mangifera indica (IVI = 64.06%), and Khaya senegalensis (IVI = 151.16%). As the use of ecosystem services is recommended to tackle urban climate hazards, this study shows that direct development of this urban vegetation could improve the resilience of urban life to climate hazards through the provision of urban ecosystem services, potential ecological infrastructure foundations, and urban nature-based solutions. Full article
(This article belongs to the Special Issue Climate System Uncertainty and Biodiversity Conservation)
Show Figures

Figure 1

14 pages, 1718 KB  
Article
In Vitro Antioxidant and Antitrypanosomal Activities of Extract and Fractions of Terminalia catappa
by Sandra Alves de Araújo, Aldilene da Silva Lima, Cláudia Quintino da Rocha, Henrique Previtalli-Silva, Daiana de Jesus Hardoim, Noemi Nosomi Taniwaki, Kátia da Silva Calabrese, Fernando Almeida-Souza and Ana Lucia Abreu-Silva
Biology 2023, 12(7), 895; https://doi.org/10.3390/biology12070895 - 22 Jun 2023
Cited by 4 | Viewed by 3006
Abstract
Chagas disease is a severe infectious and parasitic disease caused by the protozoan Trypanosoma cruzi and considered a public health problem. Chemotherapeutics are still the main means of control and treatment of the disease, however with some limitations. As an alternative treatment, plants [...] Read more.
Chagas disease is a severe infectious and parasitic disease caused by the protozoan Trypanosoma cruzi and considered a public health problem. Chemotherapeutics are still the main means of control and treatment of the disease, however with some limitations. As an alternative treatment, plants have been pointed out due to their proven pharmacological properties. Many studies carried out with Terminalia catappa have shown several biological activities, but its effect against T. cruzi is still unknown. The objective of this work is to evaluate the therapeutic potential of extracts and fractions obtained from T. catappa on the parasite T. cruzi, in addition to analyzing its antioxidant activity. T. catappa ethyl acetate fraction were produced and submitted the chemical characterization by Liquid Chromatography Coupled to Mass Spectrometry (LC-MS). From all T. catappa extracts and fractions evaluated, the ethyl acetate and the aqueous fraction displayed the best antioxidant activity by the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging method (IC50 of 7.77 ± 1.61 and 5.26 ± 1.26 µg/mL respectively), and by ferric ion reducing (FRAP) method (687.61 ± 0.26 and 1009.32 ± 0.13 µM of Trolox equivalent/mg extract, respectively). The ethyl acetate fraction showed remarkable T. cruzi inhibitory activity with IC50 of 8.86 ± 1.13, 24.91 ± 1.15 and 85.01 ± 1.21 µg/mL against epimastigotes, trypomastigotes and intracellular amastigotes, respectively, and showed no cytotoxicity for Vero cells (CC50 > 1000 µg/mL). The treatment of epimastigotes with the ethyl acetate fraction led to drastic ultrastructural changes such as the loss of cytoplasm organelles, cell disorganization, nucleus damage and the loss of integrity of the parasite. This effect could be due to secondary compounds present in this extract, such as luteolin, kaempferol, quercetin, ellagic acid and derivatives. The ethyl acetate fraction obtained from T. catappa leaves can be an effective alternative in the treatment and control of Chagas disease, and material for further investigations. Full article
Show Figures

Figure 1

49 pages, 38906 KB  
Review
Diabetes Mellitus Management: An Extensive Review of 37 Medicinal Plants
by Khwaja Zohura Zanzabil, Md. Sabbir Hossain and Md. Kamrul Hasan
Diabetology 2023, 4(2), 186-234; https://doi.org/10.3390/diabetology4020019 - 12 Jun 2023
Cited by 17 | Viewed by 23287
Abstract
Plants have been used as sources of medicine since ancient times. Natural products have been used extensively in Chinese, ayurvedic and folk medicine. In addition, a significant portion of the world’s population still utilizes herbal medicine. Diabetes is a common ailment affecting almost [...] Read more.
Plants have been used as sources of medicine since ancient times. Natural products have been used extensively in Chinese, ayurvedic and folk medicine. In addition, a significant portion of the world’s population still utilizes herbal medicine. Diabetes is a common ailment affecting almost 463 million people in the world. However, current medications exert harmful after-effects on patients, while herbal medicines have fewer adverse effects. Plants possess secondary metabolites, such as alkaloids, flavonoids, tannins, steroids, etc., which exert numerous beneficial effects on health. Extensive research has been conducted over the years investigating and proving the hypoglycemic potential of various plants. The present paper reviews 37 such plants that are rich in phytoconstituents that possess a variety of pharmacological activities and have been experimentally proven to possess potentially hypoglycemic properties in animal models: Ficus racemosa, Agremone mexicana, Bombax ceiba, Cajanus cajan, Coccinia cordifolia, Momordica charantia, Syzygium cumini, Neolamarckia cadamba, Mangifera indica, Cocos nucifera, Tamarindus indica, Punica granatum, Azadirachta indica, Costus speciosus, Moringa oleifera, Andrographis paniculata, Ficus benghalensis, Anacardium occidentale, Annona squamosa, Boerhaavia diffusa, Catharanthus roseus, Cocculus hirsutus, Ficus hispida, Terminalia chebula, Terminalia catappa, Amaranthus tricolor, Blumea lacera, Piper betle leaves, Achyranthes aspera, Kalanchoe pinnata, Nelumbo nucifera, Mikania cordata, Wedelia chinensis, Murraya koenigii, Aloe barbadensis, Bryophyllum pinnatum and Asparagus racemosus. These 37 plant extracts exhibit antidiabetic activities through different mechanisms, including α-amylase and α-glucosidase inhibition, increases in glucose uptake and the stimulation of insulin secretion. Full article
Show Figures

Graphical abstract

12 pages, 1043 KB  
Article
Comparative Analysis of Traditional Oriental Herbal Fruits as Potential Sources of Polyphenols and Minerals for Nutritional Supplements
by José Javier Quesada-Granados, José Ángel Rufián-Henares, Suryakant Chakradhari, Pravin Kumar Sahu, Yaman Kumar Sahu and Khageshwar Singh Patel
Molecules 2023, 28(6), 2682; https://doi.org/10.3390/molecules28062682 - 16 Mar 2023
Cited by 7 | Viewed by 3571
Abstract
There are a plethora of plant species in India, which have been widely used in vegetable dishes, soups, desserts and herbal medicine. In addition to these traditional uses, today there is the extra possibility of also being able to use these plants in [...] Read more.
There are a plethora of plant species in India, which have been widely used in vegetable dishes, soups, desserts and herbal medicine. In addition to these traditional uses, today there is the extra possibility of also being able to use these plants in the nutritional supplements industry due to their favorable antioxidant and mineral composition. In this sense, thirteen vegetable species—Chanania lanzan, Ziziphus mauritiana, Nilumbo nucifera, Terminalia catappa, Terminalia arjuna, Terminalia bellirica, Terminalia chebula, Lagenaria siceraria, Luffa aegyptiaca, Praecitrullus fistulosus, Benincasa hispida, Citrullus lanatus var. lanatus and Cucurbita maxima—have been analyzed. In this paper we discuss the distribution of polyphenols and minerals (Na, K, Mg, Ca, Al, P, S, Cr, Mn, Fe, Cu, Zn, Mo, As and Pb) in different seed parts (the rhizome, pericarp, carpel, seed coat and kernel) of the above species and their possible use in the nutritional supplements industry. The concentrations of total polyphenols, flavonoids and minerals ranged from 407 to 3144 mg rutin hydrate/100 g, 24 to 3070 mg quercetin/100 g and 1433 to 7928 mg/100 g, respectively. K, Ca, P and S were abundant in these herbal fruits. In two species of herbal fruits, Terminalia arjuna and Terminalia chebula, only part of the seed structure was suitable for use in nutritional supplements. Full article
(This article belongs to the Special Issue Nutrition and Sensory Analysis of Food)
Show Figures

Figure 1

20 pages, 2732 KB  
Article
Understanding the Seasonal Effect of Metabolite Production in Terminalia catappa L. Leaves through a Concatenated MS- and NMR-Based Metabolomics Approach
by Ana C. Zanatta, Natália Carolina Vieira, Renato Dantas-Medeiros, Wagner Vilegas and RuAngelie Edrada-Ebel
Metabolites 2023, 13(3), 349; https://doi.org/10.3390/metabo13030349 - 27 Feb 2023
Cited by 10 | Viewed by 3068
Abstract
Terminalia catappa L. (Combretaceae) is a medicinal plant that is part of the Brazilian biodiversity; this plant is popularly used for the treatment of a wide range of diseases. To better understand the chemical composition of T. catappa in different seasons, we conducted [...] Read more.
Terminalia catappa L. (Combretaceae) is a medicinal plant that is part of the Brazilian biodiversity; this plant is popularly used for the treatment of a wide range of diseases. To better understand the chemical composition of T. catappa in different seasons, we conducted a thorough study using LC-MS and NMR data analysis techniques. The study helped obtain a chemical profile of the plant ethanolic extracts in different seasons of the year (spring, summer, autumn, and winter). The dereplication of LC-HRMS data allowed the annotation of 90 compounds in the extracts of T. catappa (hydrolyzable tannins, ellagic acid derivatives, and glycosylated flavonoids). Triterpenes and C-glycosyl flavones were the compounds that significantly contributed to differences observed between T. catappa plant samples harvested in autumn/winter and spring, respectively. The variations observed in the compound composition of the plant leaves may be related to processes induced by environmental stress and leaf development. Data fusion applied in the metabolomic profiling study allowed us to identify metabolites with greater confidence, and provided a better understanding regarding the production of specialized metabolites in T. catappa leaves under different environmental conditions, which may be useful to establish appropriate quality criteria for the standardization of this medicinal plant. Full article
(This article belongs to the Special Issue Plant Metabolomics III)
Show Figures

Graphical abstract

13 pages, 1177 KB  
Article
Analyzing the Effects of Urban Photopollution on Photosynthetic Efficiency of Certain Trees through Chlorophyll Fluorescence OJIP Transient
by Deepak Kumar, Hanwant Singh, Upma Bhatt and Vineet Soni
Stresses 2022, 2(4), 437-449; https://doi.org/10.3390/stresses2040030 - 23 Nov 2022
Cited by 7 | Viewed by 2919
Abstract
Trees in urban areas provide important ecosystem services and are an essential element of urban green space. The constant increase in artificial light from anthropogenic activities around the world creates photopollution that affects the phenology and physiology of plants. Here we conducted a [...] Read more.
Trees in urban areas provide important ecosystem services and are an essential element of urban green space. The constant increase in artificial light from anthropogenic activities around the world creates photopollution that affects the phenology and physiology of plants. Here we conducted a field study to investigate the anthropogenic impacts on six urban trees (Saraca asoca, Terminalia catappa, Bauhinia variegata, Holoptelea integrifolia, Ficus benjamina and Thevetia peruviana) using chlorophyll fluorescence analysis. OJIP curve, maximum quantum yield of primary photochemistry (ΦPo), quantum yield of electron transport (ΦEo), probability that an absorbed photon will be dissipated (ΦDo), photosynthetic performance index (PIcsm) and reaction center photochemistry were assessed. According to the results, various parameters of chlorophyll fluorescence showed significant and important effects on different tree species. T. peruviana and F. benjamina were found to be tolerant to street lighting, while on the other hand, S. asoca, T. catappa, B. variegata and H. integrifolia were found to be sensitive to artificial light induced by street lamps. This study clearly indicates that chlorophyll fluorescence analysis is a potent method for screening the tolerance of tree species to photopollution induced by artificial lights. Full article
(This article belongs to the Special Issue Physiological and Molecular Mechanisms of Plant Stress Tolerance)
Show Figures

Figure 1

2 pages, 192 KB  
Abstract
Composition, Physicochemical and Antioxidant Properties of Tropical Almond (Terminalia catappa L.) Oil as a Novel Source of Lipids
by Pramod Bandara, Anura Jayasooriya and Mahinda Senevirathne
Biol. Life Sci. Forum 2022, 18(1), 34; https://doi.org/10.3390/Foods2022-12956 - 30 Sep 2022
Cited by 1 | Viewed by 1520
Abstract
The demand for edible fats and oils has sparked interest in alternative vegetable oil sources with a focus on health benefits and new industrial applications. Therefore, this study aimed to assess the potential of using underutilized tropical almond (TA) (Terminalia catappa) [...] Read more.
The demand for edible fats and oils has sparked interest in alternative vegetable oil sources with a focus on health benefits and new industrial applications. Therefore, this study aimed to assess the potential of using underutilized tropical almond (TA) (Terminalia catappa) nut oil as a source of novel dietary lipids. The fatty acid profile of the screw-pressed TA oil was analyzed by a gas chromatography-flame ionization detector. Physicochemical properties, total phenolics, total flavonoids, and antioxidant properties were evaluated and compared with coconut and almond oils extracted under similar conditions. Thermal behavior and shelf life of TA oil were comparatively analyzed using differential scanning calorimetry and Schaal’s oven test respectively. Interestingly the yield of TA oil (48.67 ± 1.76%) was significantly higher than the almond oil (39.0 ± 0.57%). The TA oil contained more than 56% of unsaturated fatty acids, particularly 31.3% oleic and 24.9% linoleic being the predominant fatty acids. Palmitic acid was the predominant (38.9%) saturated fatty acid. The melting and the crystallization temperatures of TA oil were 14.29 °C and (−0.75 °C) respectively while the melting points of almond and coconut oil were −10.63 °C and 24.8 °C. The physicochemical properties including specific gravity, refractive index, peroxide, acid value, and iodine value were comparable with coconut oil, and they were consistent with the CODEX and SLS standards. The estimated shelf life of TA oil was more than nine months. Moreover, TA oil showed significantly higher phenolic content (2.26 ± 0.08 mg GAE/100 g) and flavonoid content (10.46 ± 1.47 mg QE/100 g) than almond and coconut oils. Further, TA oil showed antioxidant activity with an IC50 of 1574.93 ± 3.44 mg/mL for DPPH, 340.28 ± 1.23 mg/mL for ABTS, and a reducing power of 4.68 ± 0.33 mM Trolox eq/100 g in FRAP assays. Hence, TA oil possessed excellent physicochemical and functional properties suitable to be used as a novel, healthy edible oil. Full article
12 pages, 1930 KB  
Article
Nitrogen Rather Than Phosphorus Limits the Productivity of the Dominant Tree Species at Mine-Disturbed Ultramafic Areas in the Southern Philippines
by Honey B. Goloran, Archie A. Along, Christina Y. Loquere, Meljan T. Demetillo, Romell A. Seronay and Johnvie B. Goloran
Nitrogen 2022, 3(3), 502-513; https://doi.org/10.3390/nitrogen3030032 - 22 Aug 2022
Cited by 2 | Viewed by 3694
Abstract
Understanding the stoichiometry of nitrogen (N) and phosphorus (P) plays a pivotal role in the ecological restoration of degraded landscapes. Here, the N and P limitation and stoichiometry of dominant tree species in mine-disturbed ultramafic areas in the Southern Philippines are reported. Field [...] Read more.
Understanding the stoichiometry of nitrogen (N) and phosphorus (P) plays a pivotal role in the ecological restoration of degraded landscapes. Here, the N and P limitation and stoichiometry of dominant tree species in mine-disturbed ultramafic areas in the Southern Philippines are reported. Field surveys revealed that out of a total of 1491 trees/shrubs recorded from all quadrats, comprising 22 native and 9 non-native species, there were six tree species (native: Alstonia macrophylla Wallich., Buchanania arborescens Blume., Syzygium sp., and non-native: Casuarina equisetifolia L., Terminalia catappa L. and Acacia mangium Wild.) that were found dominant, having >10% relative abundance. Significant differences (p < 0.01) in the leaf N and leaf P content among these species were observed, where C.equisetifolia (due to N fixation ability) and T. catappa had the highest values, respectively. These did not, however, translate to statistical differences in the leaf N:P ratios either in individual species or when grouped by origin (native or non-native). Interestingly, all dominant tree species revealed very low leaf N:P ratios (<4), suggesting that N rather than P limits the productivity in mine-disturbed ultramafic areas, which is also confirmed by low levels of leaf N (<2.0%). Results further revealed a poor correlation between leaf N and leaf N:P ratios (r = 0.13; p = 0.60), while leaf P (r = 0.49; p < 0.05) revealed otherwise, reinforcing that P is not a limiting factor as also shown in high levels of leaf P (>0.20%). Despite the N-limitation, B. arborescens, C. equisetifolia, and T. catappa had the highest leaf N and P content, suggesting their higher suitability for revegetation of the sites. These findings warrant further verification taking into account the plant physiology, phenology, and soil nutrient availability in natural, degraded, and rehabilitated ultramafic environments. Full article
Show Figures

Figure 1

Back to TopTop