Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (228)

Search Parameters:
Keywords = Ti/Ce oxides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2180 KB  
Article
Study on Preparation of Nano-CeO2 Modified Aluminized Coating by Low Temperature Pack Aluminizing on γ-TiAl Intermetallic Compound
by Jiahui Song, Yunmei Long, Yifan He, Yichen Li, Dianqi Huang, Yan Gu, Xingyao Wang, Jinlong Wang and Minghui Chen
Coatings 2025, 15(8), 914; https://doi.org/10.3390/coatings15080914 - 5 Aug 2025
Viewed by 565
Abstract
TiAl alloy offers advantages including low density, high specific strength and stiffness, and excellent high-temperature creep resistance. It is widely used in the aerospace, automotive, and chemical sectors, as well as in other fields. However, at temperatures of 800 °C and above, it [...] Read more.
TiAl alloy offers advantages including low density, high specific strength and stiffness, and excellent high-temperature creep resistance. It is widely used in the aerospace, automotive, and chemical sectors, as well as in other fields. However, at temperatures of 800 °C and above, it forms a porous oxide film predominantly composed of TiO2, which fails to provide adequate protection. Applying high-temperature protective coatings is therefore essential. Oxides demonstrating protective efficacy at elevated temperatures include Al2O3, Cr2O3, and SiO2. The Pilling–Bedworth Ratio (PBR)—defined as the ratio of the volume of the oxide formed to the volume of the metal consumed—serves as a critical criterion for assessing oxide film integrity. A PBR value greater than 1 but less than 2 indicates superior film integrity and enhanced oxidation resistance. Among common oxides, Al2O3 exhibits a PBR value within this optimal range (1−2), rendering aluminum-based compound coatings the most extensively utilized. Aluminum coatings can be applied via methods such as pack cementation, thermal spraying, and hot-dip aluminizing. Pack cementation, being the simplest to operate, is widely employed. In this study, a powder mixture with the composition Al:Al2O3:NH4Cl:CeO2 = 30:66:3:1 was used to aluminize γ-TiAl intermetallic compound specimens via pack cementation at 600 °C for 5 h. Subsequent isothermal oxidation at 900 °C for 20 h yielded an oxidation kinetic curve adhering to the parabolic rate law. This treatment significantly enhanced the high-temperature oxidation resistance of the γ-TiAl intermetallic compound, thereby broadening its potential application scenarios. Full article
(This article belongs to the Special Issue Advances in Corrosion, Oxidation, and/or Wear-Resistant Coatings)
Show Figures

Figure 1

25 pages, 15689 KB  
Article
Mineralogical and Chemical Properties and REE Content of Bauxites in the Seydişehir (Konya, Türkiye) Region
by Muazzez Çelik Karakaya and Necati Karakaya
Minerals 2025, 15(8), 798; https://doi.org/10.3390/min15080798 - 29 Jul 2025
Viewed by 512
Abstract
The most important bauxite deposits in Türkiye are located in the Seydişehir (Konya) and Akseki (Antalya) regions, situated along the western Taurus Mountain, with a total reserve of approximately 44 million tons. Some of the bauxite deposits have been exploited for alumina since [...] Read more.
The most important bauxite deposits in Türkiye are located in the Seydişehir (Konya) and Akseki (Antalya) regions, situated along the western Taurus Mountain, with a total reserve of approximately 44 million tons. Some of the bauxite deposits have been exploited for alumina since the 1970s. In this study, bauxite samples, collected from six different deposits were examined to determine their mineralogical and chemical composition, as well as their REE content, with the aim of identifying which bauxite types are enriched in REEs and assessing their economic potential. The samples included massive, oolitic, and brecciated bauxite types, which were analyzed using optical microscopy, X-ray diffraction (XRD), X-ray fluorescence (XRF) and inductive coupled plasma-mass spectrometry (ICP-MS), field emission scanning electron microscopy (FESEM-EDX), and electron probe micro-analysis (EPMA). Massive bauxites were found to be more homogeneous in both mineralogical and chemical composition, predominantly composed of diaspore, boehmite, and rare gibbsite. Hematite is the most abundant iron oxide mineral in all bauxites, while goethite, rutile, and anatase occur in smaller quantities. Quartz, feldspar, kaolinite, dolomite, and pyrite were specifically determined in brecciated bauxites. Average oxide contents were determined as 52.94% Al2O3, 18.21% Fe2O3, 7.04% TiO2, and 2.69% SiO2. Na2O, K2O, and MgO values are typically below 0.5%, while CaO averages 3.54%. The total REE content of the bauxites ranged from 161 to 4072 ppm, with an average of 723 ppm. Oolitic-massive bauxites exhibit the highest REE enrichment. Cerium (Ce) was the most abundant REE, ranging from 87 to 453 ppm (avg. 218 ppm), followed by lanthanum (La), which reached up to 2561 ppm in some of the massive bauxite samples. LREEs such as La, Ce, Pr, and Nd were notably enriched compared to HREEs. The lack of a positive correlation between REEs and major element oxides, as well as with their occurrences in distinct association with Al- and Fe-oxides-hydroxides based on FESEM-EDS and EPMA analyses, suggests that the REEs are present as discrete mineral phases. Furthermore, these findings indicate that the REEs are not incorporated into the crystal structures of other minerals through isomorphic substitution or adsorption. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

23 pages, 25056 KB  
Article
Mineral Chemistry and Whole-Rock Analysis of Magnesian and Ferroan Granitic Suites of Magal Gebreel, South Eastern Desert: Clues for Neoproterozoic Syn- and Post-Collisional Felsic Magmatism
by El Saeed R. Lasheen, Gehad M. Saleh, Amira El-Tohamy, Farrage M. Khaleal, Mabrouk Sami, Ioan V. Sanislav and Fathy Abdalla
Minerals 2025, 15(7), 751; https://doi.org/10.3390/min15070751 - 17 Jul 2025
Viewed by 468
Abstract
The article provides a comprehensive analysis of the Magal Gebreel granitic suites (MGGs) using petrological (fieldwork, petrography, mineral chemistry, and bulk rock analysis) aspects to infer their petrogenesis and emplacement setting. Our understanding of the development of the northern portion of the Arabian [...] Read more.
The article provides a comprehensive analysis of the Magal Gebreel granitic suites (MGGs) using petrological (fieldwork, petrography, mineral chemistry, and bulk rock analysis) aspects to infer their petrogenesis and emplacement setting. Our understanding of the development of the northern portion of the Arabian Nubian Shield is significantly improved by the Neoproterozoic granitic rocks of the seldom studied MGGs in Egypt’s south Eastern Desert. According to detailed field, mineralogical, and geochemical assessments, they comprise syn-collision (granodiorites) and post-collision (monzogranites, syenogranites, and alkali feldspar rocks). Granodiorite has strong positive Pb, notable negative P, Ti, and Nb anomalies, and is magnesian in composition. They have high content of LREEs (light rare-earth elements) compared to HREEs (heavy rare-earth elements) and clear elevation of LFSEs (low-field strength elements; K Rb, and Ba) compared to HFSEs (high-field strength elements; Zr and Nb), which are in accord with the contents of I-type granites from the Eastern Desert. In this context, the granodiorites are indicative of an early magmatic phase that probably resulted from the partial melting of high K-mafic sources in the subduction zone. Conversely, the post-collision rocks have low contents of Mg#, CaO, P2O5, MgO, Fe2O3, Sr, and Ti, and high SiO2, Fe2O3/MgO, Nb, Ce, and Ga/Al, suggesting A-type features with ferroan affinity. Their P, Nb, Sr, Ba, and Ti negative anomalies are in accord with the findings for Eastern Desert granites of the A2-type. Furthermore, they exhibit a prominent negative anomaly in Eu and a small elevation of LREEs in relation to HREEs. The oxygen fugacity (fO2) for the rocks under investigation can be calculated using the biotite chemistry. The narrow Fe/(Fe + Mg) ratio range (0.6–0.75) indicates that they crystallized under moderately oxidizing conditions between ~QFM +0.1 and QFM +1. The A-type rocks were formed by the partial melting of a tonalite source (underplating rocks) in a post-collisional environment during the late period of extension via slab delamination. The lithosphere became somewhat impregnated with particular elements as a result of the interaction between the deeper crust and the upwelling mantle. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

32 pages, 7693 KB  
Article
Genesis and Evolution of the Qieliekeqi Siderite Deposit in the West Kunlun Orogen: Constraints from Geochemistry, Zircon U–Pb Geochronology, and Carbon–Oxygen Isotopes
by Yue Song, Liang Li, Yuan Gao and Yang Luo
Minerals 2025, 15(7), 699; https://doi.org/10.3390/min15070699 - 30 Jun 2025
Viewed by 409
Abstract
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper [...] Read more.
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper water, exhibit average Al2O3/TiO2 ratios of 29.14, δEu of 2.69, and δCe of 0.83, indicating hydrothermal fluid dominance with limited seawater mixing. Banded samples from shallower settings show an average Al2O3/TiO2 of 17.07, δEu of 3.18, and δCe of 0.94, suggesting stronger seawater interaction under oxidizing conditions. Both types are enriched in Mn, Co, and Ba, with low Ti and Al contents. Stable isotope results (δ13CPDB = −6.0‰ to −4.6‰; δ18OSMOW = 16.0‰ to 16.9‰) point to seawater-dominated fluids with minor magmatic and meteoric contributions, formed under open-system conditions at avg. temperatures of 53 to 58 °C. Zircon U–Pb dating yields an age of 211.01 ± 0.82 Ma, with an average εHf(t) of −3.94, indicating derivation from the partially melted ancient crust. These results support a two-stage model involving Late Cambrian hydrothermal sedimentation and Late Triassic magmatic overprinting. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

13 pages, 3851 KB  
Article
Ce/Mn Co-Doping Induces Synergistic Effects for Low-Temperature NH3-SCR over Ba2Ti5O12 Catalysts
by Wei Zhao, Wang Zhao, Haiwen Wang, Dingwen Zhang, Qian Wang, Aijian Wang, Danhong Shang and Qin Zhong
Catalysts 2025, 15(6), 593; https://doi.org/10.3390/catal15060593 - 15 Jun 2025
Viewed by 662
Abstract
To develop eco-friendly low-temperature NH3-SCR catalysts for the non-electric industry, a series of CeMn-modified Ba2Ti5O12 catalysts were synthesized using the sol-gel method to achieve denitrification. Activity tests revealed that Ce-Mn-modified Ba2Ti5O12 [...] Read more.
To develop eco-friendly low-temperature NH3-SCR catalysts for the non-electric industry, a series of CeMn-modified Ba2Ti5O12 catalysts were synthesized using the sol-gel method to achieve denitrification. Activity tests revealed that Ce-Mn-modified Ba2Ti5O12 catalysts exhibit excellent low-temperature denitrification performance with a broad operational temperature window. Characterization through XRD, XPS, BET, NH3-TPD, and EPR indicated that Ce-Mn modification enhances surface oxygen chemisorption and increases acidity, significantly improving NOx reduction. Notably, the optimal catalyst achieved NOx conversion rates exceeding 90% within the temperature range of 90 to 240 °C under a gas hourly space velocity (GHSV) of 28,000 h−1. In particular, the coexistence of Ce and Mn species promotes the oxidation of NO to NO2, facilitating the “fast SCR” reaction. The abundance of valence states further enhances the catalyst’s ultra-low-temperature NH3-SCR denitration performance. Full article
Show Figures

Figure 1

22 pages, 3206 KB  
Article
CO2 Reforming of Methane over Ru Supported Catalysts Under Mild Conditions
by Alexandros K. Bikogiannakis, Andriana Lymperi, Paraskevas Dimitropoulos, Kyriakos Bourikas, Alexandros Katsaounis and Georgios Kyriakou
Molecules 2025, 30(10), 2135; https://doi.org/10.3390/molecules30102135 - 12 May 2025
Viewed by 775
Abstract
The CO2 (Dry) Reforming of Methane (DRM) is a key process for reducing CO2 and CH4 emissions while producing syngas with an H2/CO ratio of 1, ideal for Fischer–Tropsch synthesis. This study explores DRM and the Reverse Water [...] Read more.
The CO2 (Dry) Reforming of Methane (DRM) is a key process for reducing CO2 and CH4 emissions while producing syngas with an H2/CO ratio of 1, ideal for Fischer–Tropsch synthesis. This study explores DRM and the Reverse Water Gas Shift (RWGS) reaction under mild conditions using Ru-based catalysts supported on CeO2, YSZ, TiO2, and SiO2, with three reactant ratios: (i) stoichiometric, PCO2 = 1 kPa, PCH4 = 1 kPa, (ii) oxidizing, PCO2 = 2 kPa, PCH4 = 1 kPa, and (iii) reducing, PCO2 = 1 kPa, PCH4 = 4 kPa. The results highlight the importance of redox support for catalyst stability, with mobile lattice oxygen aiding carbon gasification. While Ru/CeO2 is stable at high temperatures, it rapidly deactivates at low temperatures, emphasizing the need for precise metal particle size control. This work demonstrates the necessity of fine-tuning catalyst properties for more sustainable DRM, offering insights for next-generation CO2 utilization catalysts. Full article
(This article belongs to the Special Issue New Insight in Catalysis and Electrocatalysis for CO2 Conversion)
Show Figures

Graphical abstract

25 pages, 4788 KB  
Article
Insight into the Oxygen-Sensing Mechanisms of TiO2–CeO2 Mixed Oxides Treated in a High-Energy Ball Mill: An XPS Analysis
by Jelena N. Stevanović, Ana G. Silva, Nenad Bundaleski, Dana Vasiljević-Radović, Milija Sarajlić, Orlando M. N. D. Teodoro and Srđan P. Petrović
Inorganics 2025, 13(5), 159; https://doi.org/10.3390/inorganics13050159 - 9 May 2025
Viewed by 813
Abstract
This study explored the oxygen-sensing mechanism of CeO2 modified with TiO2 via high-energy ball milling at different speeds. Different characterization techniques were employed to investigate the obtained materials. Quantitative surface analysis by X-ray photoelectron spectroscopy was conducted to elucidate their sensitivity [...] Read more.
This study explored the oxygen-sensing mechanism of CeO2 modified with TiO2 via high-energy ball milling at different speeds. Different characterization techniques were employed to investigate the obtained materials. Quantitative surface analysis by X-ray photoelectron spectroscopy was conducted to elucidate their sensitivity mechanisms and assess the impact of the introduction of TiO2. A comparable concentration of oxygen vacancies was found in the samples milled at 350 and 450 rpm. Electrical measurements conducted at temperatures lower than required for semiconductor gas sensors revealed the higher sensitivity of these two samples in comparison to pure CeO2 at an oxygen concentration above 10%. In contrast, the samples derived from precursors milled at the highest speed exhibited the lowest sensitivity. This may be linked to a slight decrease in the vacancy concentration and the presence of a differentially charged carbon-containing phase. Eventually, the C 1s line provided significant insight into the surface characteristics of the materials. The uniform and non-uniform charging found for pure TiO2 and CeO2, respectively, along with the high charging of CeO2, suggest that TiO2 promotes the contact between the sensing layer and the overlayer. Sensor testing showed the significantly lower resistance of mixed oxides in comparison to CeO2, which increases the utility of metal oxide-based sensors. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 3rd Edition)
Show Figures

Graphical abstract

36 pages, 14723 KB  
Article
Late Neoproterozoic Rare-Metal Pegmatites with Mixed NYF-LCT Features: A Case Study from the Egyptian Nubian Shield
by Mustafa A. Elsagheer, Mokhles K. Azer, Hilmy E. Moussa, Ayman E. Maurice, Mabrouk Sami, Moustafa A. Abou El Maaty, Adel I. M. Akarish, Mohamed Th. S. Heikal, Mohamed Z. Khedr, Ahmed A. Elnazer, Heba S. Mubarak, Amany M. A. Seddik, Mohamed O. Ibrahim and Hadeer Sobhy
Minerals 2025, 15(5), 495; https://doi.org/10.3390/min15050495 - 7 May 2025
Viewed by 879
Abstract
The current work records for the first time the rare-metal pegmatites with mixed NYF-LCT located at Wadi Sikait, south Eastern Desert of the Egyptian Nubian Shield. Most of the Sikait pegmatites are associated with sheared granite and are surrounded by an alteration zone [...] Read more.
The current work records for the first time the rare-metal pegmatites with mixed NYF-LCT located at Wadi Sikait, south Eastern Desert of the Egyptian Nubian Shield. Most of the Sikait pegmatites are associated with sheared granite and are surrounded by an alteration zone cross-cutting through greisen bodies. Sikait pegmatites show zoned and complex types, where the outer wall zones are highly mineralized (Nb, Ta, Y, Th, Hf, REE, U) than the barren cores. They consist essentially of K-feldspar, quartz, micas (muscovite, lepidolite, and zinnwaldite), and less albite. They contain a wide range of accessory minerals, including garnet, columbite, fergusonite-(Y), cassiterite, allanite, monazite, bastnaesite (Y, Ce, Nd), thorite, zircon, beryl, topaz, apatite, and Fe-Ti oxides. In the present work, the discovery of Li-bearing minerals for the first time in the Wadi Sikait pegmatite is highly significant. Sikait pegmatites are highly mineralized and yield higher maximum concentrations of several metals than the associated sheared granite. They are strongly enriched in Li (900–1791 ppm), Nb (1181–1771 ppm), Ta (138–191 ppm), Y (626–998 ppm), Hf (201–303 ppm), Th (413–685 ppm), Zr (2592–4429 ppm), U (224–699 ppm), and ∑REE (830–1711 ppm). The pegmatites and associated sheared granite represent highly differentiated peraluminous rocks that are typical of post-collisional rare-metal bearing granites. They show parallel chondrite-normalized REE patterns, enriched in HREE relative to LREE [(La/Lu)n = 0.04–0.12] and strongly negative Eu anomalies [(Eu/Eu*) = 0.03–0.10]. The REE patterns show an M-type tetrad effect, usually observed in granites that are strongly differentiated and ascribed to hydrothermal fluid exchange. The pegmatite has mineralogical and geochemical characteristics of the mixed NYF-LCT family and shows non-CHARAC behavior due to a hydrothermal effect. Late-stage metasomatism processes caused redistribution, concentrated on the primary rare metals, and drove the development of greisen and quartz veins along the fracture systems. The genetic relationship between the Sikait pegmatite and the surrounding sheared granite was demonstrated by the similarities in their geochemical properties. The source magmas were mostly derived from the juvenile continental crust of the Nubian Shield through partial melting and subsequently subjected to a high fractional crystallization degree. During the late hydrothermal stage, the exsolution of F-rich fluids transported some elements and locally increased their concentrations to the economic grades. The investigated pegmatite and sheared granite should be considered as a potential resource to warrant exploration for REEs and other rare metals. Full article
Show Figures

Figure 1

19 pages, 5650 KB  
Article
Study of Operational Parameters on Indium Electrowinning Using a Ti Cathode
by Carla Lupi, Erwin Ciro and Alessandro Dell’Era
Materials 2025, 18(9), 2089; https://doi.org/10.3390/ma18092089 - 2 May 2025
Cited by 1 | Viewed by 506
Abstract
Indium, widely used as indium-tin oxide (ITO), has been recognized as a strategical metal for audiovisual, optoelectronic systems, semiconductors and photovoltaic fields. An increasing shortage and unflexible mineral supply have led indium to be recovered from secondary sources, such as waste electrical and [...] Read more.
Indium, widely used as indium-tin oxide (ITO), has been recognized as a strategical metal for audiovisual, optoelectronic systems, semiconductors and photovoltaic fields. An increasing shortage and unflexible mineral supply have led indium to be recovered from secondary sources, such as waste electrical and electronic equipment (WEEE). The main step for indium hydrometallurgical recovery from WEEE is the electrowinning process using sulfate baths, giving lower environmental impact and improved workplace safety conditions. In this investigation, a titanium cathode has been employed for the study of the indium electrowinning process in a sulfate-based bath. This study was focused on analyzing current efficiency (CE), specific energy consumption (SEC) and deposit morphology and structure as the temperature, current density, pH and electrolyte composition were varied. Prior to conducting electrowinning tests, a conventional three-electrode cell was used to perform cyclic voltametric assessments of the electrodeposition reactions on the Ti electrode at room temperature. The indium electrowinning tests on Ti cathodes presented CE values higher than 90%, with low energy consumption at low current densities, showing a negligible influence of additive agents in the bath, different from results obtained with other cathodes in other works. Moreover, the increase of the current density beyond 75 A/m2 produced significant effects by etching the electrode surface with 1M HF. In particular, at the conclusion of this investigation, good results are obtained without additives, by etching the titanium cathode and operating at higher current density between 100 and 200 A/m2 at pH 2.3 and different temperatures (40 °C and 60 °C). Finally, indium deposits were analyzed by XRD and SEM in order to determine the influence of operative conditions on the structure and surface morphology. Full article
(This article belongs to the Special Issue Advances in Electronic and Photonic Materials)
Show Figures

Figure 1

30 pages, 6834 KB  
Article
Silver-Based Catalysts on Metal Oxides for Diesel Particulate Matter Oxidation: Insights from In Situ DRIFTS
by Punya Promhuad, Boonlue Sawatmongkhon, Thawatchai Wongchang, Ekarong Sukjit, Nathinee Theinnoi and Kampanart Theinnoi
ChemEngineering 2025, 9(3), 42; https://doi.org/10.3390/chemengineering9030042 - 22 Apr 2025
Viewed by 635
Abstract
Diesel particulate matter (DPM) represents a deleterious environmental contaminant that necessitates the development of effective catalytic oxidation methodologies. This research delineates a comparative analysis of silver-supported metal oxide catalysts (Ag/Al2O3, Ag/TiO2, Ag/ZnO, and Ag/CeO2), with [...] Read more.
Diesel particulate matter (DPM) represents a deleterious environmental contaminant that necessitates the development of effective catalytic oxidation methodologies. This research delineates a comparative analysis of silver-supported metal oxide catalysts (Ag/Al2O3, Ag/TiO2, Ag/ZnO, and Ag/CeO2), with an emphasis on the effects of silver distribution and the metal-support interaction on the oxidation of DPM. An array of characterization techniques including XRD, HRTEM, XPS, H2-TPR, TEM, GC-MS, TGA, and in situ DRIFTS was employed. The novelty of this study resides in elucidating the oxidation mechanism through a tripartite pathway and recognizing Ag0 as the predominant active species involved in soot oxidation. The Ag/Al2O3 catalyst demonstrated superior catalytic performance, achieving a reduction in the ignition temperature by more than 50 °C, attributable to the optimal dispersion of Ag nanoparticles and a balanced metal-support interaction. Conversely, an excessive interaction observed in Ag/ZnO resulted in diminished catalytic activity. The oxidation of DPM transpires through the volatilization of VOCs (<300 °C), the oxidation by reactive oxygen species, and the combustion of soot (>300 °C). This investigation offers significant contributions to the formulation of highly efficient silver-based catalysts for emissions control, with a particular focus on optimizing Ag dispersion and support interactions to enhance catalytic efficacy. Full article
Show Figures

Graphical abstract

21 pages, 22568 KB  
Article
Properties Evaluation of a Novel Entropy-Stabilized Ceramic (La0.25Ce0.25Nd0.25Sm0.25)Ti2Al9O19 with Enhanced CMAS Corrosion Resistance for Thermal Barrier Coating Applications
by Fuxing Ye, Ziqi Song, Fanwei Meng and Sajid Ali
Materials 2025, 18(8), 1778; https://doi.org/10.3390/ma18081778 - 13 Apr 2025
Viewed by 561
Abstract
In this work, a novel potential thermal barrier coating material entropy-stabilized titanium–aluminum oxide (La0.25Ce0.25Nd0.25Sm0.25)Ti2Al9O19 (META) was successfully synthesized by the solid-state reaction method, and its thermophysical properties, phase stability, infrared [...] Read more.
In this work, a novel potential thermal barrier coating material entropy-stabilized titanium–aluminum oxide (La0.25Ce0.25Nd0.25Sm0.25)Ti2Al9O19 (META) was successfully synthesized by the solid-state reaction method, and its thermophysical properties, phase stability, infrared emissivity, mechanical properties, and CMAS corrosion resistance were systematically investigated. The results demonstrated that META exhibits low thermal conductivity at 1100 °C (1.84 W·(m·K)−1), with a thermal expansion coefficient (10.50 × 10−6 K−1, 1000–1100 °C) comparable to yttria-stabilized zirconia (YSZ). Furthermore, META displayed desirable thermal stability, high emissivity within the wavelength range of 2.5–10 μm, and improved mechanical properties. Finally, META offers superior corrosion resistance due to its excellent infiltration inhibiting. The bi-layer structure on the corrosion surface prevents the penetration of the molten CMAS. Additionally, doping small-radius rare-earth elements thermodynamically stabilizes the reaction layer. The results of this study indicate that (La0.25Ce0.25Nd0.25Sm0.25)Ti2Al9O19 has the potential to be a promising candidate for thermal barrier coating materials. Full article
Show Figures

Figure 1

11 pages, 3790 KB  
Article
Effects of the Doping of La and Ce in the Pt/B-TiO2 Catalyst in Selective Oxidation Reaction of Glycerol
by Zhihui Wang, Xueqiong Zhang, Bo Hai, Hao Zhang and Lijun Ding
Crystals 2025, 15(4), 301; https://doi.org/10.3390/cryst15040301 - 25 Mar 2025
Viewed by 319
Abstract
The increased production of biodiesel results in a corresponding rise in the production of glycerol (GLY) as a by-product. The selective oxidation of glycerol can yield relatively simple products under mild reaction conditions, offering high added value and positioning it as one of [...] Read more.
The increased production of biodiesel results in a corresponding rise in the production of glycerol (GLY) as a by-product. The selective oxidation of glycerol can yield relatively simple products under mild reaction conditions, offering high added value and positioning it as one of the most promising methods for industrialization. In this study, we employed black titanium dioxide (B-TiO2) as a support and deposited platinum (Pt) to create a noble metal-supported catalyst. Lanthanum (La) or cerium (Ce) was doped into B-TiO2 to enhance the concentration of oxygen vacancies in the support, thereby improving catalyst activity. Throughout the research process, we also investigated the impact of varying amounts of La or Ce doping on catalyst performance. Analysis of the catalytic experimental data revealed that Pt/30%Ce-B-TiO2 exhibited the highest catalytic performance. Structural analysis of the catalysts showed that the synergistic effect between Pt0 and oxygen vacancies contributed to enhancing catalyst activity. Full article
(This article belongs to the Special Issue Advances and Perspectives in Noble Metal Nanoparticles)
Show Figures

Graphical abstract

16 pages, 8657 KB  
Article
Effect of Ce-Y Composite Addition on the Inclusion Evolution in T91 Heat-Resistant Steel
by Jun Liu, Gen Li, Chengbin Shi, Zhengxin Tang, Lei Jia, Yu Zhao, Shijun Wang and Xikou He
Materials 2025, 18(7), 1459; https://doi.org/10.3390/ma18071459 - 25 Mar 2025
Viewed by 454
Abstract
This study investigates the influence of rare earth elements Ce and Y on the evolution of inclusions in T91 steel by melting experimental steels with varying Ce-Y contents in a vacuum induction melting furnace. The results show that the inclusions in the steel [...] Read more.
This study investigates the influence of rare earth elements Ce and Y on the evolution of inclusions in T91 steel by melting experimental steels with varying Ce-Y contents in a vacuum induction melting furnace. The results show that the inclusions in the steel without rare earth are mainly composed of Mg-Al-O oxides, (Nb, V, Ti)(C, N) carbonitrides, and composite inclusions formed by carbonitrides coated oxides, and all of them have obvious edges and corners. Upon the addition of different concentrations of Ce and Y, the oxygen content in the steel significantly decreased, and the inclusions were modified into spherical rare earth oxides, sulfides, and oxy-sulfides. Additionally, no large-sized primary carbonitrides were observed. The average size of the inclusions was reduced from 2.8 μm in the non-rare-earth-added steel to 1.7 μm and 1.9 μm with rare earth addition. Thermodynamic analysis indicates that the possible inclusions precipitated in the steel with varying Ce contents include Ce2O3, Ce2O2S, Y2O3, Y2S3, and CeS. With the increase in Ce content, the rare earth inclusions Y2S3, Y2O3, and CeS can be transformed into Ce2O2S and Ce2O3. There are two kinds of reactions in the process of high-temperature homogenization: one is the internal transformation reaction of inclusions, which makes Y easier to aggregate in the inner layer, and the other is the reaction of Y2S3→CeS and Y2O3 + Y2S3→Ce2O2S due to the diffusion of Ce in the matrix to the inclusions. Combined with the mismatch analysis, it can be seen that Al2O3 has the best effect on the heterogeneous nucleation of carbonitrides during the solidification of molten steel. Among the rare earth inclusions, only Ce2O3 may become the nucleation core of carbonitrides, and the rest are more difficult to form heterogeneous nucleation. Therefore, by Ce-Y composite addition, increasing the Y/Ce ratio can reduce the formation of Ce2O3, which can avoid the precipitation of primary carbonitride and ultimately improve the dispersion strengthening effect. This study is of great significance for understanding the mechanism of rare earth elements in steel and provides theoretical guidance for the composition design and industrial trial production of rare earth steel. Full article
Show Figures

Figure 1

17 pages, 6216 KB  
Article
Efficient Electro-Catalytic Oxidation of Ultra-High-Concentration Organic Dye with Ce-Doped Titanium-Based Composite Electrode
by Chunyang Ni, Yan Zhao, Qiao Li, Zhihui Wang, Shumei Dou, Wei Wang and Feng Zhang
Coatings 2025, 15(3), 276; https://doi.org/10.3390/coatings15030276 - 26 Feb 2025
Cited by 1 | Viewed by 942
Abstract
Removing high-concentration organic dye from wastewater is of great concern because the hazards can cause serious damage to the environment and human health. In this study, the hybrid dimensionally stable anode (DSA) with a Ce-doped and SnO2-Sb2O5 intermediate [...] Read more.
Removing high-concentration organic dye from wastewater is of great concern because the hazards can cause serious damage to the environment and human health. In this study, the hybrid dimensionally stable anode (DSA) with a Ce-doped and SnO2-Sb2O5 intermediate layer was fabricated and used for the electro-catalytic oxidation of three kinds of ultra-high-concentration organic dyes. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) confirmed the denser surface structure and morphology of the composite Ti/SnO2-Sb2O5/Ce-PbO2 electrode. Moreover, the electrode exhibited an excellent oxygen evolution potential of 1.58 V. The effect on the removal efficiencies of high concentrations of up to 1 g/L of methyl orange, methylene blue, and neutral red solutions with the above composite electrode was investigated. The research results illustrated that target molecules in the three different dye solutions were rapidly decolorized and decomposed by electro-catalytic oxidation in less than 35 min. Additionally, the degradation process still followed pseudo-first-order kinetics for high-concentration dye solutions. The removal efficiency of Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD) for the three dye solutions was more than 98%, and the results of the gas chromatography–mass spectrometry (GC-MS) analysis showed that it had the best degradation effects for neutral red, which decomposed more thoroughly. More than 80 h of accelerated life also revealed excellent performance of the composite electrode in the face of high-concentration dye solution degradation. Considering these results, the Ti/SnO2-Sb2O5/Ce-PbO2 anode could be utilized to treat wastewater containing high-concentration dyes with high efficiency. Full article
Show Figures

Figure 1

25 pages, 17504 KB  
Article
The Influence of Rare Earth Metals on the Microstructure and Mechanical Properties of 220 and 356.1 Alloys for Automotive Industry
by Herbert W. Doty, Shimaa El-Hadad, Ehab Samuel, Agnes M. Samuel and Fawzy H. Samuel
Materials 2025, 18(5), 941; https://doi.org/10.3390/ma18050941 - 21 Feb 2025
Cited by 1 | Viewed by 630
Abstract
Application of rare earths (RE) as grain refiners is well-known in the technology of aluminum alloys for the automotive industry. In the current study, Al-2.4%Cu-0.4%Mg alloy (coded 220) and Al-7.5%Si-0.35%Mg alloy (coded 356.1), were prepared by melting each alloy in a resistance furnace. [...] Read more.
Application of rare earths (RE) as grain refiners is well-known in the technology of aluminum alloys for the automotive industry. In the current study, Al-2.4%Cu-0.4%Mg alloy (coded 220) and Al-7.5%Si-0.35%Mg alloy (coded 356.1), were prepared by melting each alloy in a resistance furnace. Strontium (Sr) was used as a modifier, while titanium boride (TiB2) was added as a grain refiner. Measured amounts of Ce and La were added to both alloys (max. 1 wt.%). The alloy melts were poured in a preheated metallic mold. The main part of the study was conducted on tensile testing at room temperature. The results show that although RE would cause grain refining to be about 30–40% through the constitutional undercooling mechanism, grain refining with TiB2 would lead to approximately 90% refining (heterogenous nucleation mechanism). The addition of high purity Ce or La (99.9% purity) has no modification effect regardless of the alloy composition or the concentration of RE. Depending on the alloy ductility, the addition of 0.2 wt.%RE has a hardening effect that causes precipitation of RE in the form of dispersoids (300–700 nm). However, this increase vanishes with the decrease in alloy ductility, i.e., with T6 treatment, due to intensive precipitation of ultra-fine coherent Mg2Si-phase particles. There is no definite distinction in the behavior of Ce or La in terms of their high affinity to interact with other transition elements in the matrix, particularly Ti, Fe, Cu, and Sr. When the melt was properly degassed using high-purity argon and filtered using a 20 ppi ceramic foam filter, prior to pouring the liquid metal into the mold sprue, no measurable number of RE oxides was observed. In conclusion, the application of RE to aluminum castings would only lead to formation of a significant volume fraction of brittle intermetallics. In Ti-free alloys, identification of Ce- or La-intermetallics is doubtful due to the fairly thin thickness of the precipitated platelets (about 1 µm) and the possibility that most of the reported Al, Si, and other elements make the reported values for RE rather ambiguous. Full article
Show Figures

Figure 1

Back to TopTop