Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = Trichogramma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1180 KB  
Article
Comparative Efficacy of Trichogramma (Hymenoptera: Trichogrammatidae) Species and Strains for Biological Control of the Tomato Leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae): Laboratory-to-Field Assessments
by Gui-Fen Zhang, Chen-Ming Zhao, Yi-Bo Zhang, Dong-Fang Ma, Ping Li, Yong-Wang Guo, Wan-Cai Liu, Yu-Sheng Wang, Cong Huang, Xiao-Qing Xian and Fang-Hao Wan
Horticulturae 2025, 11(9), 1036; https://doi.org/10.3390/horticulturae11091036 - 2 Sep 2025
Viewed by 517
Abstract
Tuta absoluta (Meyrick), a new invasive pest in China, is a major threat to global tomato production. Trichogramma egg parasitoids are an effective approach to controlling this pest. In this study, we examined the potential of seven strains from four Trichogramma species, encompassing [...] Read more.
Tuta absoluta (Meyrick), a new invasive pest in China, is a major threat to global tomato production. Trichogramma egg parasitoids are an effective approach to controlling this pest. In this study, we examined the potential of seven strains from four Trichogramma species, encompassing three native and commercially available representatives in China—namely, Trichogramma chilonis Ishii (strains TC-HN and TC-JL), T. dendrolimi Matsumura (TD-JL), and T. ostriniae Pang and Chen (TO-JL and TO-MY)—and one of South America origin—T. pretiosum Riley (TP-GS and TP-HN), a species commercially available for T. absoluta control but not evaluated in any previous studies in China. The host acceptance of the seven Trichogramma strains by T. absoluta was examined by placing parasitoid females with T. absoluta eggs on cardboard in tubes. The performance (life history traits and lifetable parameters) of four prospective strains, TC-HN, TC-JL, TO-JL, and TP-HN, was tested by using cardboard with T. absoluta eggs. The most promising strains, TC-HN, TC-JL, and TP-HN, were evaluated on a larger scale using cages in the laboratory to assess their parasitism capacity. The most promising strain, TC-JL (and TP-HN), was tested in field cages to assess its control efficiency under cropping conditions. The TC-JL and TC-HN strains of T. chilonis, the TO-JL strain of T. ostriniae, and the TP-HN strain of T. pretiosum showed greater host acceptance; the TP-HN strain of T. pretiosum showed a greater egg-card parasitism rate. Strain TC-JL outperformed other species/strains under laboratory conditions. In field cage tests, the larval population size and percentages of damaged plants and leaves in cages with TC-JL released were significantly reduced by 75.10%, 55.56%, and 64.69%, respectively, compared with those of the non-Trichogramma-release control. Our results indicate that the Asian native T. chilonis (particularly strain TC-JL), a dominant commercial biocontrol agent, should be included in IPM programs targeting T. absoluta in China. T. pretiosum (particularly strain TP-HN) could be a potential candidate for biocontrol of T. absoluta. Full article
(This article belongs to the Special Issue Pest Diagnosis and Control Strategies for Fruit and Vegetable Plants)
Show Figures

Graphical abstract

11 pages, 315 KB  
Article
Potential Benefits and Side Effects of Sophora flavescens to Control Rachiplusia nu
by Geraldo Matheus de Lara Alves, Adeney de Freitas Bueno, Gabriel Siqueira Carneiro, Guilherme Julião Zocolo, Taynara Cruz dos Santos, Rafael Stempniak Iasczczaki, Letícia Carolina Chiampi Munhoz, Nicole de Oliveira Vilas Boas and Isabel Roggia
Agronomy 2025, 15(8), 1787; https://doi.org/10.3390/agronomy15081787 - 24 Jul 2025
Viewed by 682
Abstract
There is a global demand for reducing the adoption of traditional chemical insecticides in agriculture. Among the most promising alternatives, botanical insecticides have been increasingly gaining attention due to their efficacy combined with a more environmentally safe impact. Among the different botanical insecticides [...] Read more.
There is a global demand for reducing the adoption of traditional chemical insecticides in agriculture. Among the most promising alternatives, botanical insecticides have been increasingly gaining attention due to their efficacy combined with a more environmentally safe impact. Among the different botanical insecticides commercially available, oxymatrine is an alkaloid found in the roots of Sophora flavescens which exhibits wide insecticide activity. However, their side-effects on non-target organisms have not been extensively evaluated. Therefore, this study aimed to investigate in laboratory conditions the insecticidal potential of a commercial botanical insecticide (Matrine®) based on ethanolic extract of S. flavescens roots at 0.2; 0.6; 1.0; 1.4; 1.8; and 2.2 L of commercial product per hectare to control third-instar larvae of Rachiplusia nu and its selectivity in the egg parasitoid Trichogramma pretiosum. Overall, our results showed that the ethanolic extract of S. flavescens is an efficient tool to control R. nu from 0.6 to 2.2 L/ha, with similar R. nu mortality at 48 and 72 h after spraying (close to 100% mortality) associated with no impact to pupae and minimum impact to adults (slightly harmful) of the egg parasitoid. The botanical insecticide was classified as harmless to the pupae and slightly harmful to the adults of T. pretiosum according to the International Organization for Biological Control (IOBC) protocols. Thus, the use of the ethanolic extract of S. flavescens emerges as a relevant alternative to control R. nu, which needs to be confirmed in future field trials. Full article
(This article belongs to the Section Pest and Disease Management)
12 pages, 507 KB  
Article
Unfertilized and Washed Eri Silkworm Eggs as Superior Hosts for Mass Production of Trichogramma Parasitoids
by Yue-Hua Zhang, Ji-Zhi Xue, He-Ying Qian, Qing-Rong Bai, Tian-Hao Li, Jian-Fei Mei, Lucie S. Monticelli, W. M. W. W. Kandegama and Lian-Sheng Zang
Insects 2025, 16(8), 751; https://doi.org/10.3390/insects16080751 - 22 Jul 2025
Viewed by 497
Abstract
Trichogramma wasps are highly effective biological control agents, offering an environmentally sustainable solution for pest management through their parasitism of insect eggs. This study evaluates the parasitism performance of six Trichogramma species—T. dendrolimi, T. chilonis, T. leucaniae, T. ostriniae, T. japonicum, and [...] Read more.
Trichogramma wasps are highly effective biological control agents, offering an environmentally sustainable solution for pest management through their parasitism of insect eggs. This study evaluates the parasitism performance of six Trichogramma species—T. dendrolimi, T. chilonis, T. leucaniae, T. ostriniae, T. japonicum, and T. pretiosum—on five treatments of Eri silkworm (ES) eggs, a potential alternative to the large eggs of Antheraea pernyi for mass rearing. The ES egg treatments included the following: manually extracted, unfertilized, and washed eggs (MUW); naturally laid, unfertilized, and washed eggs (NUW); naturally laid, unfertilized, and unwashed eggs (NUUW); naturally laid, fertilized, and washed eggs (NFW); and naturally laid, fertilized, and unwashed eggs (NFUW). The results demonstrate that all Trichogramma species, except T. japonicum, successfully parasitized ES eggs across all treatments. Notably, washed eggs consistently supported higher parasitism and emergence rates compared to unwashed eggs, while unfertilized eggs outperformed fertilized eggs in these metrics. Among the treatments, unfertilized and washed eggs (MUW and NUW) exhibited the shortest pre-emergence time and the highest number of emerged adults, with no significant differences in female progeny ratios across most species. A striking exception was T. dendrolimi, which showed a significantly higher female offspring ratio in the MUW treatment. These findings highlight that MUW eggs of ES are a highly suitable alternative host for the mass production of Trichogramma wasps. This study provides critical insights for optimizing host egg treatments to enhance the efficiency of Trichogramma-based biological control programs. Full article
(This article belongs to the Special Issue Diapause Regulation and Biological Control of Natural Enemy Insects)
Show Figures

Figure 1

20 pages, 1390 KB  
Article
Performance of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) Strains on Eggs from Different Populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)
by Alessandro Bandeira Dalbianco, Diego Fernando Daniel, Dirceu Pratissoli, Daniel de Lima Alvarez, Nadja Nara Pereira da Silva, Daniel Mariano Santos, Santino Seabra Júnior and Regiane Cristina de Oliveira
Agronomy 2025, 15(7), 1692; https://doi.org/10.3390/agronomy15071692 - 13 Jul 2025
Viewed by 860
Abstract
Tomato is the most widely cultivated fruit–vegetable worldwide, and the tomato leafminer (Tuta absoluta) is the primary pest of this crop. In this context, biological control using parasitoids belonging to the genus Trichogramma is crucial. This study aimed to evaluate the [...] Read more.
Tomato is the most widely cultivated fruit–vegetable worldwide, and the tomato leafminer (Tuta absoluta) is the primary pest of this crop. In this context, biological control using parasitoids belonging to the genus Trichogramma is crucial. This study aimed to evaluate the biological characteristics of T. pretiosum strains collected from different locations and exposed to eggs from various T. absoluta populations/generations, using parameters such as parasitism capacity, viability (percentage of emergence), sex ratio, and female longevity. The presence of endosymbionts in the T. absoluta populations was also assessed. The experiment followed a randomized design, with treatments consisting of eggs from T. absoluta populations collected in different years (2019, 2020, 2021, 2022, and 2023) and different strains of T. pretiosum. We used 20 replicates, with one female per replicate in each treatment, organized in a 5 × 4 factorial scheme (five populations of T. absoluta × four strains of T. pretiosum). The S2 strain of T. pretiosum was found to be the most efficient in terms of biological characteristics for parasitism of T. absoluta eggs, especially in T. absoluta populations collected in recent years (2022 and 2023). These results suggest that S2 is the preferred strain for future studies aimed at using this parasitoid as a control agent to combat T. absoluta. The endosymbionts Arsenophonus and Serratia were identified in T. absoluta populations collected in 2019–2020 and 2020–2021, respectively. These findings highlight the presence of these microorganisms in pest populations in different years. Full article
(This article belongs to the Special Issue Biological Pest Control in Agroecosystems—2nd Edition)
Show Figures

Figure 1

13 pages, 1419 KB  
Article
Acetamiprid-Induced Toxicity Thresholds and Population Sensitivity in Trichogramma dendrolimi: Implications for Pesticide Risk Assessment
by Yan Zhang, Jiameng Ren and Shenhang Cheng
Insects 2025, 16(7), 698; https://doi.org/10.3390/insects16070698 - 7 Jul 2025
Viewed by 1394
Abstract
Trichogramma dendrolimi, a key egg parasitoid for lepidopteran pest control, faces potential risks from neonicotinoid insecticides like acetamiprid used in integrated pest management (IPM). This study evaluated acetamiprid’s acute and sublethal toxicity to T. dendrolimi and assessed population-level risks via species sensitivity [...] Read more.
Trichogramma dendrolimi, a key egg parasitoid for lepidopteran pest control, faces potential risks from neonicotinoid insecticides like acetamiprid used in integrated pest management (IPM). This study evaluated acetamiprid’s acute and sublethal toxicity to T. dendrolimi and assessed population-level risks via species sensitivity distribution (SSD). Acute toxicity assays using glass-vial residues revealed a 24 h LC50 of 0.12 mg a.i. L−1 for adults, three orders of magnitude below the maximum field rate (100 mg a.i. L−1). Sublethal exposure (1/2–1/100 LC50) significantly reduced parasitism and emergence rates (NOEC = 2.3 μg a.i. L−1) but did not affect offspring survival. Acetamiprid also shortened offspring development at 11.5–57.5 μg a.i. L−1. SSD analysis identified T. dendrolimi as the most sensitive parasitoid to acetamiprid (HC5/HC50) = 0.11/5.88 mg a.i. L−1), with field rates (30–100 mg a.i. L−1) indicating a potentially affected fraction (PAF) of 76.8–97.9%. These findings underscore the need to integrate sublethal effects into pesticide regulations to conserve parasitoid-mediated ecosystem services. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 2174 KB  
Article
Development of a Stage- and Species-Specific RNAi System for Molecular Insights in Trichogramma Wasps
by Zelong Yang, Yan Lu, Zhuo Jiang, Xilin Jiao, Han Lin, Wanning Jiang, Wenmei Du, Xue Zhang, Zhao Peng, Junjie Zhang, Xiao Wang and Ying Hu
Insects 2025, 16(7), 673; https://doi.org/10.3390/insects16070673 - 27 Jun 2025
Viewed by 681
Abstract
Trichogramma wasps, egg parasitoids widely used to control lepidopteran pests, have long eluded in-depth molecular mechanistic studies due to their minute size and genetic tool scarcity. While previous RNAi efforts were restricted to T. dendrolimi, we developed the first cross-species RNAi system [...] Read more.
Trichogramma wasps, egg parasitoids widely used to control lepidopteran pests, have long eluded in-depth molecular mechanistic studies due to their minute size and genetic tool scarcity. While previous RNAi efforts were restricted to T. dendrolimi, we developed the first cross-species RNAi system for both T. dendrolimi and the previously intractable T. ostriniae. Temporal expression profiling identified white and laccase 2 as stage-specific RNAi targets, peaking during prepupal/pupal stages, which were tested across species and developmental stages using microinjection and soaking dsRNA delivery methods. Survival analysis prioritized soaking for T. dendrolimi prepupae/pupae, while microinjection was essential for T. ostriniae to bypass prepupal mortality during soaking. Concentration-dependent RNAi targeting the white gene achieved 85.61% transcript reduction in T. dendrolimi via soaking and 89.36% in T. ostriniae via microinjection at 2000 ng/μL, correlating with 64.06% and 32.09% white-eyed pupae, causing a significant reduction in eye pigments. For the laccase 2 gene, soaking at 2000 ng/μL induced 88.35% transcript reduction in T. dendrolimi and 73.31% in T. ostriniae, leading to incomplete cuticle tanning and sclerotization. This study resolves the long-standing challenge of genetic manipulation in Trichogramma wasps, providing a universally applicable framework to decipher parasitoid–host interactions at the molecular scale, which is useful for sustainable pest management strategies. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Figure 1

17 pages, 2427 KB  
Article
Mitogenomic Characterization and Comparative Analysis of Three Egg Parasitoid Wasps Parasitizing Nilaparvata lugens (Stål)
by Wei He, Tingting Li, Liyang Wang, Hongxuan Wu, Jie Wang and Qiang Zhou
Insects 2025, 16(5), 543; https://doi.org/10.3390/insects16050543 - 20 May 2025
Viewed by 694
Abstract
This study reports the first complete mitochondrial genomes of three egg parasitoid wasps parasitizing Nilaparvata lugensPseudoligosita nephotetticum, Anagrus frequens, and Anagrus nilaparvatae. Genome sizes ranged from 15,429 to 15,889 bp, with all three mitogenomes displaying strong A + [...] Read more.
This study reports the first complete mitochondrial genomes of three egg parasitoid wasps parasitizing Nilaparvata lugensPseudoligosita nephotetticum, Anagrus frequens, and Anagrus nilaparvatae. Genome sizes ranged from 15,429 to 15,889 bp, with all three mitogenomes displaying strong A + T bias, standard gene content, and characteristic strand asymmetries. While A. frequens and A. nilaparvatae exhibited conserved gene orders, extensive gene rearrangements, including multiple inversions in both protein-coding genes (PCGs) and tRNAs, were observed in P. nephotetticum. Codon usage analyses revealed a preference for codons ending in A or U. The non-synonymous (Ka) to synonymous (Ks) substitution ratio analysis identified signs of positive selection in multiple PCGs, particularly in atp8, nad6, and nad3, suggesting possible adaptive evolution related to host-searching behavior. Secondary structure analyses showed the loss of trnL1 in all Anagrus species, while trnS1 and trnR lacked the DHU arm, indicating possible derived traits in Mymaridae. Phylogenetic analysis was the first time to describe the relationship of the genus Anagrus within Mymaridae from the perspective of 13 protein genes. Furthermore, the grouping of (Pseudoligosita + Megaphragma) + Trichogramma was supporting the distinct evolutionary lineage of Pseudoligosita. This work provides new molecular resources and phylogenetic insight for Chalcidoidea, with implications for parasitoid evolution and biological control strategies. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Graphical abstract

16 pages, 3313 KB  
Article
Entomopathogenic Fungus Treatment Affects Trophic Interactions by Altering Volatile Emissions in Tomato
by Asim Munawar, Haonan Zhang, Jinyi Zhang, Xiangfen Zhang, Xiao-Xiao Shi, Xuan Chen, Zicheng Li, Xiaoli He, Jian Zhong, Zengrong Zhu, Yaqiang Zheng and Wenwu Zhou
Agronomy 2025, 15(5), 1161; https://doi.org/10.3390/agronomy15051161 - 9 May 2025
Viewed by 999
Abstract
Entomopathogenic fungi (EPFs) can influence plant–insect interactions through complex molecular and chemical mechanisms. This study investigates how EPF treatment of tomato plants modulates volatile organic compound (VOC) emissions and subsequent trophic interactions between tomato plants, the herbivorous pest Phthorimaea absoluta, and the [...] Read more.
Entomopathogenic fungi (EPFs) can influence plant–insect interactions through complex molecular and chemical mechanisms. This study investigates how EPF treatment of tomato plants modulates volatile organic compound (VOC) emissions and subsequent trophic interactions between tomato plants, the herbivorous pest Phthorimaea absoluta, and the parasitic wasp, Trichogramma chilonis. Our results demonstrate that EPF-treated plants exhibited reduced attractiveness to adult P. absoluta moths, which were actively repelled by EPF-induced VOCs. Conversely, these same plants showed enhanced recruitment of the parasitoid T. chilonis, which demonstrated positive chemotaxis toward the modified VOC profile. Chemical analysis revealed significantly elevated emissions of key VOCs in EPF-treated plants, particularly (E)-β-Caryophyllene, β-phellandrene, and α-Phellandrene. This increase is correlated with enhanced production of defense-related phytohormones, including JA, SA, and JA-Ile, which may regulate VOC biosynthesis pathways. Behavioral response studies using synthetic VOCs and electroantennogram (EAG) measurements confirmed that these EPF-induced VOCs elicited strong olfactory responses in both insect species. To summarize, EPF treatment reshapes multitrophic interactions by strategically modulating plant VOC emissions and activating defense signaling pathways in tomato plants, providing new insights for potential applications in sustainable pest management strategies. Full article
(This article belongs to the Special Issue Pests, Pesticides, Pollinators and Sustainable Farming)
Show Figures

Figure 1

16 pages, 1900 KB  
Article
Harmful to Parents, Harmless to Offspring: Lethal and Transgenerational Effects of Botanical and Synthetic Insecticides on the Egg Parasitoid Trichogramma atopovirilia
by Emile Dayara Rabelo Santana, Leonardo Vinicius Thiesen, Leandro do Prado Ribeiro, Tamara Akemi Takahashi, José Roberto Postali Parra and Pedro Takao Yamamoto
Insects 2025, 16(5), 493; https://doi.org/10.3390/insects16050493 - 5 May 2025
Cited by 1 | Viewed by 872
Abstract
This study investigated the lethal and transgenerational effects of botanical and synthetic insecticides on the egg parasitoid Trichogramma atopovirilia, an important natural enemy of Spodoptera frugiperda in Brazil and beyond. The treatments were assessed for their impact on parasitism, emergence, sex ratio, [...] Read more.
This study investigated the lethal and transgenerational effects of botanical and synthetic insecticides on the egg parasitoid Trichogramma atopovirilia, an important natural enemy of Spodoptera frugiperda in Brazil and beyond. The treatments were assessed for their impact on parasitism, emergence, sex ratio, and flight capacity of adults exposed to contaminated eggs. The botanical insecticide ESAM (ethanolic seed extract of Annona mucosa) significantly reduced the parasitism in the F0 generation by 99.76%, categorizing it as toxic. Anosom® [acetogenins (annonin as a major component)] and Azamax® [limonoids (azadirachtin + 3-tigloilazadirachtol)] also caused substantial reductions (99.13% and 92.36%, respectively) in the parasitism rate. EFAMON (ethanolic leaf extract of Annona montana) reduced the parasitism by 62%, while the synthetic insecticide Premio® (chlorantraniliprole) resulted in a 28.21% reduction. In the F1 generation, emergence rates for EFAMON, Azamax®, and Premio® exceeded 70%, showing no significant differences from the negative control (82%), while Anosom® resulted in a lower emergence rate of 61.39%. No significant effects were observed on sex ratio or parasitism in the F1 and F2 generations. Most adults reached high flight capacity (above 80%). These results indicate that while ESAM was toxic, the other treatments showed no transgenerational effects. Our findings contribute to understanding insecticide selectivity and highlight the importance of such studies for the sustainable management of S. frugiperda within integrated pest management programs. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 806 KB  
Article
Biological Solutions for Higher Maize Yield and Reduced Stalk Damage Caused by the European Corn Borer, Ostrinia nubilalis (Hübner)
by Filip Franeta, Anja Đurić, Dušan Dunđerski, Dušan Stanisavljević, Aleksandra Konjević, Aleksandar Ivezić, Tamara Popović and Željko Milovac
Agronomy 2025, 15(4), 764; https://doi.org/10.3390/agronomy15040764 - 21 Mar 2025
Viewed by 1085
Abstract
Maize (Zea mays L.) is one of the most important agricultural crops in the world; however, its production is often threatened by several harmful insects, one of which is the European corn borer, Ostrinia nubilalis (Hübner). This study aimed to examine the [...] Read more.
Maize (Zea mays L.) is one of the most important agricultural crops in the world; however, its production is often threatened by several harmful insects, one of which is the European corn borer, Ostrinia nubilalis (Hübner). This study aimed to examine the efficacy of several biological control methods against this pest. A randomized block design was used in the study, which included three treatments: parasitic wasps (Trichogramma brassicae), common green lacewings (Chrysoperla carnea), a combination of both agents and a control. The results showed that the treatment with T. brassicae wasps, as well as their combination with C. carnea predators, significantly improved the maize grain yield over the control treatment. The same combined treatment significantly improved the yield over treatments with only Trichogramma and only C. carnea predators, suggesting a higher efficacy of the combination of both agents in improving grain yield. Fewer tunnels and larvae in stalks, compared to other treatments, including the control, were also observed in this treatment. The reduced number of tunnels and larvae in stalks directly enabled plants to allocate more resources into grain development, which contributed to improved grain yield. In light of the growing focus on minimizing insecticide applications to mitigate environmental impacts, a combination of parasitic wasp and lacewings predator could be a suitable biological alternative to the use of chemical insecticides. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

11 pages, 925 KB  
Article
Reproductive Success of Trichogramma ostriniae over Trichogramma dendrolimi in Multi-Generational Rearing on Corn Borer Eggs
by Yu Wang, Asim Iqbal, Kanwer Shahzad Ahmed, Yuan-Yuan Zhou and Chen Zhang
Insects 2025, 16(3), 297; https://doi.org/10.3390/insects16030297 - 12 Mar 2025
Cited by 1 | Viewed by 1134
Abstract
In China, the Asian corn borer (ACB), Ostrinia furnacalis (Guenee) (Lepidoptera: Pyralidae), is the most significant economic insect pest of corn, causing losses ranging from six to nine million tons annually by feeding on all parts of maize, including damaging ears and leaves [...] Read more.
In China, the Asian corn borer (ACB), Ostrinia furnacalis (Guenee) (Lepidoptera: Pyralidae), is the most significant economic insect pest of corn, causing losses ranging from six to nine million tons annually by feeding on all parts of maize, including damaging ears and leaves and making tunnels in stems. In China, since the 1970s, the Trichogramma species have extensively mass-reared from factitious hosts to control ACB and support integrated pest management programs. The Trichogramma dendrolimi Matsumura and T. ostriniae Pang and Chen are the most efficient biocontrol agents for controlling ACB among the available Trichogramma species. To evaluate the reproductive success of Trichogramma dendrolimi and T. ostriniae, we assessed the impact of varying parasitoid ratios (5:1, 3:1, 1:1, 1:3, and 1:5 representing T. dendrolimi and T. ostriniae, respectively) on adult offspring emergence and mortality from ACB eggs over multiple generations (from first (F1) to third (F3) generations). We discovered that both Trichogramma species’ offspring emergence was significantly influenced by the parasitoid generations, parasitoid ratios, and their interactions. The offspring mortality in both Trichogramma species was significantly affected by parasitoid generations but was not significantly influenced by parasitoid ratios or interaction between parasitoid generations and parasitoid ratios. Furthermore, at parasitoid ratios of 5:1, 3:1, and 1:1, the emergence rate of the F1 generation of T. dendrolimi was significantly higher compared to the ratios of 1:3 and 1:5. However, in the F2 generation, the emergence of T. dendrolimi decreased considerably, and no emergence was observed in the F3 generation. A contrasting trend was observed in the emergence of T. ostriniae offspring. Overall, regardless of the parasitoid ratios, the offspring emergence of T. ostriniae in all three generations was significantly higher than that of T. dendrolimi. After assessing the offspring mortality in our research by dissecting the unhatched eggs, we found an inverse relationship between the T. dendrolimi generations and their mortality across different parasitoid ratios. Notably, mortality exhibited a significant decline with an increasing number of generations. A positive correlation was observed between the number of T. ostriniae generations and their mortality across different parasitoid ratios, indicating that mortality increased with successive generations. Overall, across all parasitoid ratios and generations, the offspring mortality of T. ostriniae was considerably greater than that of T. dendrolimi. These results suggest that mortality is a crucial empirical measure that validates T. ostriniae’s superiority over T. dendrolimi. These findings highlight the importance of selecting suitable parasitoid species when implementing Trichogramma for pest management. Full article
(This article belongs to the Special Issue Diapause Regulation and Biological Control of Natural Enemy Insects)
Show Figures

Figure 1

11 pages, 1169 KB  
Article
Impact of Oviposition Sequence and Host Egg Density on Offspring Emergence and Interspecific Competition in Two Species of Trichogramma Parasitoids
by Yu Wang, Asim Iqbal, Kanwer Shahzad Ahmed, Zheng-Kun Zhang, Juan Cui and Chen Zhang
Insects 2025, 16(2), 214; https://doi.org/10.3390/insects16020214 - 15 Feb 2025
Cited by 1 | Viewed by 880
Abstract
Asian corn borer (ACB), Ostrinia furnacalis Guenee (Lepidoptera: Crambidae) and the rice moth (RM), Corycyra cephalonica Stainton (Lepidoptera: Pyralidae) are economically significant insect pests that threaten the agricultural products worldwide. Trichogramma parasitoids are successfully mass-reared using artificial host eggs, RM, and are often [...] Read more.
Asian corn borer (ACB), Ostrinia furnacalis Guenee (Lepidoptera: Crambidae) and the rice moth (RM), Corycyra cephalonica Stainton (Lepidoptera: Pyralidae) are economically significant insect pests that threaten the agricultural products worldwide. Trichogramma parasitoids are successfully mass-reared using artificial host eggs, RM, and are often managed by economically important lepidopterous pests, such as ACB in China. Trichogramma ostriniae Pang and Chen (To) and T. dendrolimi Matsumura (Td) (Hymenoptera: Trichogrammatidae) are two important parasitoids of ACB. To determine the influence of interspecific competition between To and Td on their offspring’s emergence. We determine the emergence of wasp progeny from two distinct hosts (ACB and RM eggs) of varying densities (10, 20, 30, and 100) by examining the effect of three distinct oviposition sequences (To-Td, Td-To, and To+Td) by two Trichogramma species. We discovered that the progeny emergence rate of To and Td from the host was substantially influenced by the parasitoid types, host types, oviposition sequences, and host densities, and their two-, three-, and four-factor interactions while investigating the ACB and RM eggs after oviposition. Additionally, the progeny of Td emerged from 10, 20, and 30 ACB host eggs under three oviposition sequences, which was significantly higher than that of ACB eggs of 100 densities. Nevertheless, the optimum emergence rate of Td progeny was also observed in ACB eggs with a density of 100 under all oviposition sequences. The most suitable oviposition sequences for both wasp species are To-Td and Td-To, as they have the highest rate of progeny emergence. The progeny emergence of both Trichogramma species from RM eggs of varying densities was observed to be significantly different. Nevertheless, the most influential density is 100 RM eggs, as a result of the maximal emergence rate of To and Td. Overall, it is concluded that host eggs with a density of 100 are adequate to meet the oviposition requirements of both wasps in all oviposition orders, thereby limiting their interspecific competition. These findings provide insights into optimizing host density and oviposition strategies for mass-rearing Trichogramma species, which can enhance their efficacy in biological control programs. Future research should explore field-level applications to validate these laboratory findings under natural conditions. Full article
(This article belongs to the Special Issue Diapause Regulation and Biological Control of Natural Enemy Insects)
Show Figures

Figure 1

15 pages, 2947 KB  
Article
Neem and Gliricidia Plant Leaf Extracts Improve Yield and Quality of Leaf Mustard by Managing Insect Pests’ Abundance Without Harming Beneficial Insects and Some Sensory Attributes
by Rowland Maganizo Kamanga, Salifu Bhikha, Felix Dalitso Kamala, Vincent Mgoli Mwale, Yolice Tembo and Patrick Alois Ndakidemi
Insects 2025, 16(2), 156; https://doi.org/10.3390/insects16020156 - 3 Feb 2025
Cited by 2 | Viewed by 2226
Abstract
Production and consumption of vegetable crops has seen a sharp increase in the recent past owing to an increasing recognition of their nutraceutical benefits. In tandem, there has been unwarranted application of agrochemicals such as insecticides to enhance productivity and vegetable quality, at [...] Read more.
Production and consumption of vegetable crops has seen a sharp increase in the recent past owing to an increasing recognition of their nutraceutical benefits. In tandem, there has been unwarranted application of agrochemicals such as insecticides to enhance productivity and vegetable quality, at the cost of human health, and fundamental environmental and ecosystem functions and services. This study was conducted to evaluate the efficacy of neem and gliricidia botanical extracts in managing harmful insect pest populations in leaf mustard. Our results report that neem and gliricidia plant extracts enhance the yield and quality of leaf mustard by reducing the prevalence and feeding activity of harmful insect pests in a manner similar to synthetic insecticides. Some of the key insect pests reduced were Lipaphis erysimi, Pieris oleracea, Phyllotreta Cruciferae, Melanoplus sanguinipes, and Murgantia histrionica. However, compared to synthetic insecticides, neem and gliricidia plant extracts were able to preserve beneficial insects such as the Coccinellidae spp., Trichogramma minutum, Araneae spp., Lepidoptera spp., and Blattodea spp. Furthermore, plant extracts did not significantly alter sensory attributes, especially taste and odor, whereas the visual appearance of leaf mustard was greater in plants sprayed with neem and synthetic insecticides. Physiologically, plant extracts were also able to significantly lower leaf membrane damage as shown through the electrolyte leakage assay. Therefore, these plant extracts represent promising pesticidal plant materials and botanically active substances that can be leveraged to develop environmentally friendly commercial pest management products. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

21 pages, 1791 KB  
Review
Floral Resource Integration: Enhancing Biocontrol of Tuta absoluta Within Sustainable IPM Frameworks
by Moazam Hyder, Inzamam Ul Haq, Muhammad Younas, Muhammad Adeel Ghafar, Muhammad Rehan Akhtar, Zubair Ahmed, Aslam Bukero and Youming Hou
Plants 2025, 14(3), 319; https://doi.org/10.3390/plants14030319 - 22 Jan 2025
Cited by 2 | Viewed by 2340
Abstract
The tomato leaf miner, Tuta absoluta, is a pest threatening global tomato production. This pest’s adaptability and resistance to chemical insecticides have necessitated integrated pest management (IPM) strategies prioritizing sustainable alternatives. This review explores the role of biological control agents (BCAs) in [...] Read more.
The tomato leaf miner, Tuta absoluta, is a pest threatening global tomato production. This pest’s adaptability and resistance to chemical insecticides have necessitated integrated pest management (IPM) strategies prioritizing sustainable alternatives. This review explores the role of biological control agents (BCAs) in managing T. absoluta populations, emphasizing the integration of floral resources to enhance their efficacy. Predatory mirids such as Macrolophus pygmaeus and Nesidiocoris tenuis and parasitoids such as N. artynes and Trichogramma spp. are pivotal in pest suppression; however, their performance depends on nutritional and habitat support. Floral resources provide essential sugars and proteins, improving the longevity, fecundity, and predation efficiency of these BCAs. This review synthesizes case studies highlighting the benefits of selected flowering plants, such as Lobularia maritima and Fagopyrum esculentum, in supporting predator and parasitoid populations while minimizing advantages to T. absoluta. Mechanisms such as nectar quality, floral accessibility, and spatial–temporal resource availability are explored in detail. Additionally, the challenges of selective floral attraction, microbial impacts on nectar composition, and the unintended support of non-target organisms are discussed. This review proposes targeted floral management strategies to optimize BCA performance within IPM systems by integrating ecological and chemical insights. This approach offers a pathway toward reducing chemical pesticide reliance, fostering sustainable agriculture, and mitigating the economic impacts of T. absoluta infestations. Full article
(This article belongs to the Special Issue Integrated Pest Management—from Chemicals to Green Management)
Show Figures

Figure 1

14 pages, 2362 KB  
Article
Heat and Cold Shocks Decrease the Incidence of Diapause in Trichogramma telengai Larvae
by Natalia D. Voinovich and Sergey Y. Reznik
Insects 2025, 16(1), 54; https://doi.org/10.3390/insects16010054 - 8 Jan 2025
Viewed by 949
Abstract
Insect diapause and response to thermal stress are similar in the variety of manifestations. However, the influence of thermal shocks on the incidence of insect diapause has not been sufficiently studied. Our laboratory experiments showed that both cold (−10 °C) and heat (43 [...] Read more.
Insect diapause and response to thermal stress are similar in the variety of manifestations. However, the influence of thermal shocks on the incidence of insect diapause has not been sufficiently studied. Our laboratory experiments showed that both cold (−10 °C) and heat (43 °C) shocks experienced for at least 20–30 min significantly reduced the incidence of facultative larval winter diapause in the insect egg parasitoid Trichogramma telengai. However, the patterns of these responses were substantially different. In particular, the peaks of the sensitivity to diapause-averting effects of heat and of cold shocks fell, correspondingly, on middle-stage (5 days of development at 15 °C) and late-stage (9–11 days of development at 15 °C) larvae. Heat shocks influence the incidence of diapause mostly via the changes in the initial proportions of diapause-destined and non-diapause-destined individuals, whereas the effect of cold shocks is mostly based on differential mortality (i.e., the difference in mortality among treatments of the same experiment) with better survival of non-diapause-destined individuals. These results elucidate the peculiarities of the interaction between stress and diapause, allowing us to specify the methods for Trichogramma mass rearing and storage. Full article
(This article belongs to the Special Issue Diapause Regulation and Biological Control of Natural Enemy Insects)
Show Figures

Figure 1

Back to TopTop