Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (418)

Search Parameters:
Keywords = UPLC-ESI-MS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1671 KB  
Article
Toxigenic Aspergillus Diversity and Mycotoxins in Organic Spanish Grape Berries
by Clara Melguizo, Andrea Tarazona, Jéssica Gil-Serna, Fernando Mateo, Belén Patiño and Eva María Mateo
Toxins 2025, 17(10), 487; https://doi.org/10.3390/toxins17100487 - 30 Sep 2025
Abstract
Grapes are frequently contaminated by Aspergillus section Nigri fungi and ochratoxin A (OTA), with A. niger also capable of producing substantial fumonisin B2 (FB2) levels. Emerging evidence suggests that aflatoxigenic fungi may eventually replace ochratoxigenic fungi in certain regions due [...] Read more.
Grapes are frequently contaminated by Aspergillus section Nigri fungi and ochratoxin A (OTA), with A. niger also capable of producing substantial fumonisin B2 (FB2) levels. Emerging evidence suggests that aflatoxigenic fungi may eventually replace ochratoxigenic fungi in certain regions due to better adaptation to changes in climatic conditions. However, research on the toxigenic fungal community and mycotoxins in grapes from organic vineyards remains limited. Research on Spanish conventional grapes is also deficient, with most of the available literature being outdated. The present study investigates the diversity of toxigenic fungi and the presence of mycotoxins in organically cultivated grape berries in Spain, which are renowned for their significant oenological tradition. This study employed species-specific PCR protocols for fungal characterization and optimized methods for the analysis of OTA, FB2, and aflatoxin B1 (AFB1) by UPLC–ESI–MS/MS. The most prevalent species present were Aspergillus flavus, A. niger, A. parasiticus, A. steynii, A. carbonarius, and A. westerdijkiae (67.1%, 43.5%, 20.0%, 14.1%, 14.1%, and 11.8% of the samples, respectively). OTA was detected only in 16 samples (19%), averaging 0.48 ng/g and peaking at 0.7 ng/g, which were lower than previously reported for conventional grapes. There was no FB2 or AFB1 detected. This study is pioneering in its exploration of the occurrence of toxigenic mycobiota, beyond Nigri fungi, and subsequent potential for other serious mycotoxins to contaminate Spain’s organic grapes. Full article
Show Figures

Graphical abstract

16 pages, 1643 KB  
Article
Detection of Abscisic Acid and Jasmonates in Stigma Exudates and Their Role in Pollen Germination
by Maria Breygina, Dmitry V. Kochkin, Anna Podobedova, Maria Kushunina, Danil Afonin and Ekaterina Klimenko
Horticulturae 2025, 11(9), 1146; https://doi.org/10.3390/horticulturae11091146 - 21 Sep 2025
Viewed by 320
Abstract
Pollen–stigma interactions have been studied extensively because they play an important role in sexual reproduction and crop yield. The vast majority of studies have focused on dry stigmas, which are typical of many model and agricultural plants; however, the data obtained are difficult [...] Read more.
Pollen–stigma interactions have been studied extensively because they play an important role in sexual reproduction and crop yield. The vast majority of studies have focused on dry stigmas, which are typical of many model and agricultural plants; however, the data obtained are difficult to apply to plants with wet stigmas, such as tomato and tobacco. Pollen germination in this case occurs in a liquid, an exudate, which has a complex, species-specific composition. UPLC-ESI-MS-based hormone screening was carried out for six plant genera belonging to Solanaceae, Bromeliaceae, and Gesneriaceae families and revealed jasmonic acid (JA), abscisic acid (ABA) and/or jasmonoyl-L-isoleucine (IleJA) in stigma exudates of tobacco, tomato, and Streptocarpus sp. To assess the physiological significance of plant hormones in stigma exudate we tested their effect in vitro, finding that JA, IleJA, and MeJa significantly stimulated germination of tobacco pollen, with JA being most effective in accordance with its predominance in the stigma exudate; furthermore, ABA stimulated pollen germination in all tested species including bromeliads despite the lack of this hormone in their exudates. Both JA and ABA had an anti-oxidant effect on germinating pollen. Possible functions of hormones and ROS in exudate as well as ways of implementing the anti-oxidant effect of phytohormones are discussed. Full article
(This article belongs to the Special Issue The Role of Plant Growth Regulators in Horticulture)
Show Figures

Figure 1

13 pages, 1007 KB  
Communication
Phenolic Secondary Metabolites in Aldrovanda vesiculosa L. (Droseraceae)
by Magdalena Wójciak, Ireneusz Sowa, Maciej Strzemski, Marzena Parzymies, Magdalena Pogorzelec, Piotr Stolarczyk and Bartosz J. Płachno
Molecules 2025, 30(18), 3746; https://doi.org/10.3390/molecules30183746 - 15 Sep 2025
Viewed by 595
Abstract
Background: Aldrovanda vesiculosa L. is a small aquatic plant that produces snap traps for capturing zooplankton prey. Aldrovanda belongs to the family Droseraceae, which is well known for the production of secondary metabolites (especially naphthoquinones). However, compared to other species in this family [...] Read more.
Background: Aldrovanda vesiculosa L. is a small aquatic plant that produces snap traps for capturing zooplankton prey. Aldrovanda belongs to the family Droseraceae, which is well known for the production of secondary metabolites (especially naphthoquinones). However, compared to other species in this family (Drosera and Dionaea), A. vesiculosa has been very poorly studied in terms of metabolites. The Aim: To fill this gap in knowledge, we investigated what secondary metabolites are present in the shoots of these plants. A hypothesis was tested stating that there are more metabolites in the younger (apical) parts of the shoots, which protect them from herbivores. Methods: Shoots of A. vesiculosa were collected, and the plant material was extracted with methanol, followed by 80% methanol or pure acetone using the accelerated solvent extraction method. The phytochemical profile was established using UPLC-DAD-(ESI)-MS. Results: A. vesiculosa shoots contained gallic acid and its derivatives, ellagic acid and its derivatives, flavonoids, and naphthoquinones (plumbagin and hydroplumbagin hexoside). A gradient (apical–basal) of gallic acid, ellagic acid, plumbagin, and hydroplumbagin hexoside was observed in the shoots. Meanwhile, the total flavonoid content did not differ between the middle and apical parts but was significantly lower in the basal part. In general, the lowest concentrations of metabolites were found in the basal part and the highest in the apical part, with the exception of total flavonoids. The number of free flavonoid aglycones was significantly higher in the middle part, whereas the apical part was dominated by glycoside derivatives. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

15 pages, 977 KB  
Article
Novel Butyrylcholinesterase Inhibitor Alkaloids from Cannabis sativa Roots: Bioguided Isolation and In Silico Study
by Javier E. Ortiz, Camila W. Adarvez-Feresin, Olimpia Llalla-Cordova, Diego Cristos, Adriana Garro and Gabriela E. Feresin
Compounds 2025, 5(3), 35; https://doi.org/10.3390/compounds5030035 - 8 Sep 2025
Cited by 1 | Viewed by 1203
Abstract
Neurodegenerative diseases, including Alzheimer’s disease (AD), represent one of the main global health challenges. Cannabis sativa synthesizes spermidine-type alkaloids, whose potential biological activities have been little studied. This study aimed to isolate bioactive alkaloids from an alkaloid-enriched extract (AEE) of C. sativa roots [...] Read more.
Neurodegenerative diseases, including Alzheimer’s disease (AD), represent one of the main global health challenges. Cannabis sativa synthesizes spermidine-type alkaloids, whose potential biological activities have been little studied. This study aimed to isolate bioactive alkaloids from an alkaloid-enriched extract (AEE) of C. sativa roots throughout a bioguided approach using conventional chromatographic techniques based on AChE and BuChE inhibitory activities. A qualitative and semiquantitative analysis by UPLC-ESI-MS/MS as well as molecular modeling simulations were performed. In addition, predictive in silico analyses were conducted to assess toxicity properties. The alkaloids cannabisativine (CS) and anhydrocannabisativine (ACS) were isolated, and showed highly selective BuChE inhibitory activity. The molecular modeling study revealed a conserved interaction profile across both alkaloids, indicating the amino acids TRP82, GLU197, TYR440, and HIS438 as the major contributors involved in the complex formation. Finally, CS and ACS exhibited low in silico predictive toxicity values. In conclusion, CS and ACS alkaloids emerge as new selective BuChE inhibitors with therapeutic potential that deserves the attention from the field of pharmacology in neurodegenerative disease research. Additionally, this approach promotes innovation and environmental sustainability through the use of C. sativa roots. Full article
(This article belongs to the Special Issue Organic Compounds with Biological Activity)
Show Figures

Graphical abstract

20 pages, 1924 KB  
Article
Widely Targeted Metabolomic Analysis of Two Chinese Traditional Herbal Imperial Chrysanthemum Teas and In Vitro Evaluation of Their Hyperglycemia and Inflammation Enzyme Inhibitory Activities
by Yang Liu, Di Wang, Liqing Mei, Jiaying Liang, Yuqin Xu and Jie Teng
Foods 2025, 14(17), 3142; https://doi.org/10.3390/foods14173142 - 8 Sep 2025
Viewed by 462
Abstract
Imperial chrysanthemum teas ‘Wuyuan Huangju’ (WYHJ) and ‘Jinsi Huangju’ (JSHJ), dried from the flowers of Chrysanthemum morifolium cv. Huangju, are traditional and popular herbal teas in China. However, their metabolite profiles and bioactivities remain unclear. In this study, we aimed to comprehensively elucidate [...] Read more.
Imperial chrysanthemum teas ‘Wuyuan Huangju’ (WYHJ) and ‘Jinsi Huangju’ (JSHJ), dried from the flowers of Chrysanthemum morifolium cv. Huangju, are traditional and popular herbal teas in China. However, their metabolite profiles and bioactivities remain unclear. In this study, we aimed to comprehensively elucidate the non-volatile and volatile metabolites of these two imperial chrysanthemum teas and assess their antioxidant activities and inhibitory effects on hyperglycemia and inflammation enzymes. Thus, we employed a widely targeted metabolomics approach based on UPLC-ESI-MS/MS and GC-MS/MS to characterize metabolite profiles of the two teas. In total, 1971 non-volatile and 1039 volatile metabolites were explored, and among these, 744 differential non-volatiles (classified into 11 categories) and 517 differential volatiles (classified into 12 categories) were identified. Further, 474 differential non-volatiles were upregulated in WYHJ, particularly flavonoids, terpenoids, and phenolic acids. In contrast, JSHJ exhibited a greater number of upregulated differential volatiles compared to WYHJ, contributing primarily to its sweet, fruity, and floral aroma. The results of scavenging activities towards DPPH·, ABTS·+, OH·, and reducing power demonstrated that both imperial chrysanthemum teas, especially WYHJ, displayed high antioxidant capacity. We also noted that WYHJ exhibited stronger α-amylase, α-glucosidase, xanthine oxidase, and lipoxygenase inhibitory effects owing to its high active substance content. Therefore, this study provides insights into the metabolites of Chinese traditional medicinal herbal teas and highlights strategies for the comprehensive development and utilization of these traditional plant resources. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

21 pages, 4267 KB  
Article
Chemometric Differentiation of Organic Honeys from Southeastern Türkiye Based on Free Amino Acid and Phenolic Profiles
by Semra Gürbüz and Şeyda Kıvrak
Foods 2025, 14(17), 3105; https://doi.org/10.3390/foods14173105 - 5 Sep 2025
Viewed by 723
Abstract
Verifying the geographical origin of honey is crucial for its market value and for preventing fraudulent practices. This study aimed to characterize the chemical profiles of organic honeys from three distinct regions in Southeastern Türkiye—Şırnak Faraşin, Siirt Merkez, and Siirt Pervari—to establish a [...] Read more.
Verifying the geographical origin of honey is crucial for its market value and for preventing fraudulent practices. This study aimed to characterize the chemical profiles of organic honeys from three distinct regions in Southeastern Türkiye—Şırnak Faraşin, Siirt Merkez, and Siirt Pervari—to establish a robust method for geographical authentication. A total of 51 multifloral honey samples were analyzed. The concentrations of 20 free amino acids (FAAs) and 16 phenolic compounds were quantified using (UPLC-ESI-MS/MS). The resulting data were subjected to both an unsupervised (PCA, CA) and supervised (PLS-DA, RF, SVM) chemometric analysis to identify biochemical markers for each region. The results revealed a distinct chemical fingerprint for each region. Based on the FAA profiles, the PLS-DA method provided the best overall classification, achieving an excellent discrimination with a total accuracy of 94.1% in the Şırnak Faraşin honeys. For the phenolic compound profiles, the RF method achieved the highest correct classification rate for Şırnak Faraşin honeys at 88.2%. This study demonstrates that an integrated approach, combining FAA and phenolic profiles with supervised chemometric methods, provides a successful and reliable model for determining the geographical origin of these multifloral honeys. Full article
Show Figures

Figure 1

1 pages, 3790 KB  
Article
Secondary Metabolites of the Marine Sponge-Derived Fungus Aspergillus subramanianii 1901NT-1.40.2 and Their Antimicrobial and Anticancer Activities
by Olga O. Khmel, Anton N. Yurchenko, Phan Thi Hoai Trinh, Ngo Thi Duy Ngoc, Vo Thi Dieu Trang, Huynh Hoang Nhu Khanh, Alexandr S. Antonov, Konstantin A. Drozdov, Roman S. Popov, Natalya Y. Kim, Dmitrii V. Berdyshev, Ekaterina A. Chingizova, Ekaterina S. Menchinskaya and Ekaterina A. Yurchenko
Mar. Drugs 2025, 23(9), 353; https://doi.org/10.3390/md23090353 - 30 Aug 2025
Viewed by 1110
Abstract
The aim of this study was to investigate the metabolites in Aspergillus subramanianii 1901NT-1.40.2 extract using UPLC-MS, isolate and elucidate the structure of individual compounds, and study the antimicrobial and cytotoxic activities of the isolated compounds. The structures of two previously unreported ergostane [...] Read more.
The aim of this study was to investigate the metabolites in Aspergillus subramanianii 1901NT-1.40.2 extract using UPLC-MS, isolate and elucidate the structure of individual compounds, and study the antimicrobial and cytotoxic activities of the isolated compounds. The structures of two previously unreported ergostane triterpenoid aspersubrin A (1) and pyrazine alkaloid ochramide E (2) were established using NMR and HR ESI-MS. The absolute configuration of 1 was determined using quantum chemical calculations. Moreover, the known polyketides sclerolide (3) and sclerin (4); the indolediterpene alkaloid 10,23-dihydro-24,25-dehydroaflavinine (5); the bis-indolyl benzenoid alkaloids kumbicin D (6), asterriquinol D dimethyl ether (7), petromurin C (8); and the cyclopentenedione asterredione (9) were isolated. The effects of compounds 3-9 on the growth and biofilm formation of the yeast-like fungus Candida albicans and the bacteria Staphylococcus aureus and Escherichia coli were investigated. Compounds 5 and 6 inhibited C. albicans growth and biofilm formation at an IC50 of 7–10 µM. Moreover, the effects of compounds 3-9 on non-cancerous H9c2 cardiomyocytes, HaCaT keratinocytes, MCF-10A breast epithelial cells, and breast cancer MCF-7 and MDA-MB-231 cells were also investigated. Compound 8 (10 µM) significantly decreased the viability of MCF-7 cells, inhibited colony formation, and arrested cell cycle progression and proliferation in monolayer culture. Moreover, 8 significantly decreased the area of MCF-7 3D spheroids by approximately 30%. A competitive test with 4-hydroxytamoxyfen and molecular docking showed that estrogen receptors (ERβ more than ERα) were involved in the anticancer effect of petromurin C (8). Full article
(This article belongs to the Collection Marine Compounds and Cancer)
Show Figures

Figure 1

31 pages, 8190 KB  
Article
Sustainable MnO2/MgO Bimetallic Nanoparticles Capped with Sword Fern Methanol Extract Attain Antioxidant/Anti-Biofilm Potential: A UPLC-ESI/LC/MS and Network Pharmacology-Supported Study
by Esraa A. Elhawary, Raya Soltane, Mohamed H. Moustafa, Amer Morsy Abdelaziz, Mohamed A. Said and Eman Maher Zahran
Pharmaceuticals 2025, 18(9), 1262; https://doi.org/10.3390/ph18091262 - 25 Aug 2025
Viewed by 764
Abstract
Background: Nephrolepis exaltata (sword fern) possesses a considerable amount of phytochemicals and different biological activities. The current study investigates the anti-biofilm potential of greenly synthesized bimetallic nanoparticles of Nephrolepis exaltata leaf methanol extract (NEME-MnO2-MgO BNPs). Methods: The NEME was [...] Read more.
Background: Nephrolepis exaltata (sword fern) possesses a considerable amount of phytochemicals and different biological activities. The current study investigates the anti-biofilm potential of greenly synthesized bimetallic nanoparticles of Nephrolepis exaltata leaf methanol extract (NEME-MnO2-MgO BNPs). Methods: The NEME was subjected to UPLC/MS analysis, followed by characterization of its NPs by size, zeta potential, FTIR, entrapment efficiency, and release. Then, antioxidant, antimicrobial and antibiofilm assays were employed, followed by in silico studies. Results: The UPLC/MS analysis of NEME led to the tentative identification of 27 metabolites, mostly phenolics. The MnO2-MgO BNPs presented a uniform size and distribution and exhibited IC50 values of 350 and 215.6 μg/mL, in the DPPH and ABTS assays, respectively. Moreover, the NPs exhibited antimicrobial and anti-biofilm efficacies against Pseudomonas aeruginosa, Klebsiella pneumonia (ATCC-9633), Staphylococcus aureus (ATCC-6538), Escherichia coli, Bacillus cereus, and C. albicans, with MIC values of 250–500 μg/mL. The MnO2-MgO BNPs inhibited Candida albicans biofilms with a % inhibition of 66.83 ± 2.45% at 1/2 MIC. The network pharmacology highlighted epigallocatechin and hyperoside to be the major compounds responsible for the anti-biofilm potential. The ASKCOS facilitated the prediction of the redox transformations that occurred in the green synthesis, while the docking analysis revealed enhanced binding affinities of the oxidized forms of both compounds towards the outer membrane porin OprD of P. aeruginosa, with binding scores of −4.6547 and −5.7701 kcal/mol., respectively. Conclusions: The greenly synthesized Nephrolepis exaltata bimetallic nanoparticles may provide a promising, eco-friendly, and sustainable source for antimicrobial agents of natural origin with potential biofilm inhibition. Full article
Show Figures

Graphical abstract

18 pages, 8882 KB  
Article
Development and Validation of QuEChERS Extraction Coupled with Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry for the Detection of Nine Macrolides in Fish Products
by Changhua Sun, Yue Ma, Jia Yang, Xubin Lu, Shuai Wang, Xiangfeng Zheng, Zhenquan Yang, Li Xu and Bo Wang
Foods 2025, 14(16), 2768; https://doi.org/10.3390/foods14162768 - 8 Aug 2025
Viewed by 658
Abstract
Veterinary drug residues in aquatic products are often overlooked, yet they pose significant environmental risks and potential threats to human health. In this study, a rapid and sensitive analytical method was developed for the simultaneous determination of nine commonly used macrolide antibiotics in [...] Read more.
Veterinary drug residues in aquatic products are often overlooked, yet they pose significant environmental risks and potential threats to human health. In this study, a rapid and sensitive analytical method was developed for the simultaneous determination of nine commonly used macrolide antibiotics in largemouth bass (Micropterus salmoides) muscle using ultrahigh-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS). Sample extraction was performed using 80% acetonitrile in water, followed by purification with Cleanert MAS-Q cartridges. Chromatographic separation was achieved on a Waters ACQUITY UPLC BEH C18 column (50 mm × 2.1 mm; 1.7 μm), equipped with a Waters VanGuardTM BEH C18 guard column (1.7 μm), using a mobile phase consisting of 0.1% formic acid in water and 0.1% formic acid in acetonitrile. Mass spectrometric detection was conducted in positive electrospray ionization mode (ESI+) using multiple reaction monitoring (MRM). The method demonstrated excellent linearity in the concentration range of 0.2–30 ng/mL, with determination coefficients (R2) exceeding 0.9980 for all analytes. Average recoveries ranged from 89.3% to 108.4%, with intraday and interday relative standard deviations (RSDs) of 2.9–11.6% and 4.1–12.5%, respectively. The limits of detection (LOD) and quantification (LOQ) for largemouth bass muscle were determined to be 0.4 μg/kg and 2.0 μg/kg, respectively. The decision limits (CCα) and detection capabilities (CCβ) ranged from 2.13 to 215.71 μg/kg and 2.22 to 231.42 μg/kg, respectively. The developed method was successfully applied to the quantitative analysis of macrolide residues in 20 largemouth bass samples collected from local markets. Full article
Show Figures

Figure 1

23 pages, 11933 KB  
Article
Combined Metabolomics and Network Pharmacology to Reveal Anti-Diabetic Mechanisms and Potential Pharmacological Components of Synsepalum dulcificum
by Yong Huang, Shiyu Wang, Rong Ding and Shaohua Wu
Plants 2025, 14(14), 2132; https://doi.org/10.3390/plants14142132 - 10 Jul 2025
Viewed by 734
Abstract
The plant Synsepalum dulcificum is notable for its considerable edible and medicinal value, with a longstanding history as a folk remedy for diabetes. Its chemical constituents are rich and structurally diverse. However, there is limited information regarding the metabolic basis of these characteristics, [...] Read more.
The plant Synsepalum dulcificum is notable for its considerable edible and medicinal value, with a longstanding history as a folk remedy for diabetes. Its chemical constituents are rich and structurally diverse. However, there is limited information regarding the metabolic basis of these characteristics, and the biological activities and mechanisms underlying its blood glucose-lowering effects remain incompletely understood. In this study, we conducted a widely targeted metabolomics analysis of the stems, leaves, and fruits of S. dulcificum using UPLC-ESI-MS/MS to compare the differences in metabolite profiles among these three tissue types. Our analysis identified a total of 2544 secondary metabolites, primarily consisting of flavonoids and triterpenes, categorized into thirteen distinct compound classes. We selected differential metabolites through multivariate statistical analysis, revealing significant differences among the metabolite profiles of the three tissue types, with flavonoids being the most abundant compounds. Furthermore, we investigated the anti-diabetic mechanisms and potential pharmacological components of S. dulcificum utilizing network pharmacology and molecular docking techniques. Finally, the α-glucosidase inhibitory activity of the potential active components was evaluated using in vitro experiments. These findings establish a foundation for the future application of S. dulcificum in the prevention and treatment of diabetes. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

16 pages, 7688 KB  
Article
Targeted Isolation of ω-3 Polyunsaturated Fatty Acids from the Marine Dinoflagellate Prorocentrum lima Using DeepSAT and LC-MS/MS and Their High Activity in Promoting Microglial Functions
by Chang-Rong Lai, Meng-Xing Jiang, Dan-Mei Tian, Wei Lu, Bin Wu, Jin-Shan Tang, Yi Zou, Song-Hui Lv and Xin-Sheng Yao
Mar. Drugs 2025, 23(7), 286; https://doi.org/10.3390/md23070286 - 10 Jul 2025
Viewed by 1038
Abstract
In this study, we integrated HSQC-based DeepSAT with UPLC-MS/MS to guide the isolation of omega-3 polyunsaturated fatty acid derivatives (PUFAs) from marine resources. Through this approach, four new (14) and nine known (513) PUFA analogues [...] Read more.
In this study, we integrated HSQC-based DeepSAT with UPLC-MS/MS to guide the isolation of omega-3 polyunsaturated fatty acid derivatives (PUFAs) from marine resources. Through this approach, four new (14) and nine known (513) PUFA analogues were obtained from large-scale cultures of the marine dinoflagellate Prorocentrum lima, with lipidomic profiling identifying FA18:5 (5), FA18:4 (7), FA22:6 (8), and FA22:6 methyl ester (11) as major constituents of the algal oil extract. Structural elucidation was achieved through integrated spectroscopic analyses of IR, 1D and 2D NMR, and HR-ESI-MS data. Given the pivotal role of microglia in Alzheimer’s disease (AD) pathogenesis, we further evaluated the neuroprotective potential of these PUFAs by assessing their regulatory effects on critical microglial functions in human microglia clone 3 (HMC3) cells, including chemotactic migration and amyloid-β42 (Aβ42) phagocytic clearance. Pharmacological evaluation demonstrated that FA20:5 butanediol ester (1), FA18:5 (5), FA18:4 (7), FA22:6 (8), and (Z)-10-nonadecenoic acid (13) significantly enhanced HMC3 migration in a wound-healing assay. Notably, FA18:4 (7) also significantly promoted Aβ42 phagocytosis by HMC3 microglia while maintaining cellular viability and avoiding pro-inflammatory activation at 20 μM. Collectively, our study suggests that FA18:4 (7) modulates microglial function in vitro, indicating its potential to exert neuroprotective effects. Full article
Show Figures

Graphical abstract

22 pages, 3291 KB  
Article
Matrix Interference Removal Using Fe3O4@SiO2-PSA-Based Magnetic Dispersive Solid-Phase Extraction for UPLC-MS/MS Analysis of Diazepam in Aquatic Products
by Mengqiong Yang, Guangming Mei, Daoxiang Huang, Xiaojun Zhang, Pengfei He and Si Chen
Foods 2025, 14(14), 2421; https://doi.org/10.3390/foods14142421 - 9 Jul 2025
Viewed by 495
Abstract
A sensitive method was developed for detecting diazepam residues in aquatic products using magnetic dispersive solid-phase extraction (MDSPE) coupled with ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Samples extracted with 1% ammonia–acetonitrile were purified using synthesized Fe3O4@SiO2-PSA nanoparticles [...] Read more.
A sensitive method was developed for detecting diazepam residues in aquatic products using magnetic dispersive solid-phase extraction (MDSPE) coupled with ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Samples extracted with 1% ammonia–acetonitrile were purified using synthesized Fe3O4@SiO2-PSA nanoparticles via MDSPE before UPLC-MS/MS analysis. Separation was performed on a C18 column with gradient elution using 0.1% formic acid–2 mM ammonium acetate/methanol. Detection employed positive electrospray ionization (ESI+) in multiple reaction monitoring (MRM) mode. Characterization confirmed Fe3O4@SiO2-PSA’s mesoporous structure with excellent adsorption capacity and magnetic properties. The method showed good linearity (0.1–10 μg/L, r > 0.99) with an LOD and LOQ of 0.20 μg/kg and 0.50 μg/kg, respectively. Recoveries at 0.5–15.0 µg/kg spiking levels were 74.9–109% (RSDs 1.24–11.6%). This approach provides rapid, accurate, and high-precision analysis of diazepam in aquatic products, meeting regulatory requirements. Full article
Show Figures

Figure 1

27 pages, 1578 KB  
Article
Biorefining of Walnut Shells into Polyphenol-Rich Extracts Using Ultrasound-Assisted, Enzyme-Assisted, and Pressurized Liquid Extraction Coupled with Chemometrics
by Busra Acoglu Celik, Muhammed Alpgiray Celik, Laura Jūrienė, Jovita Jovaišaitė, Rita Kazernavičiūtė, Erturk Bekar, Perihan Yolci Omeroglu, Petras Rimantas Venskutonis and Senem Kamiloglu
Foods 2025, 14(13), 2245; https://doi.org/10.3390/foods14132245 - 25 Jun 2025
Viewed by 912
Abstract
Walnut (Juglans regia L.) shells are valuable agro-industrial by-products rich in polyphenols. This study investigated traditional (maceration) and advanced extraction techniques—ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), pressurized liquid extraction (PLE), and combined ultrasound–enzyme extraction (US-EAE)—to recover bioactive compounds from walnut shells. Extraction [...] Read more.
Walnut (Juglans regia L.) shells are valuable agro-industrial by-products rich in polyphenols. This study investigated traditional (maceration) and advanced extraction techniques—ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), pressurized liquid extraction (PLE), and combined ultrasound–enzyme extraction (US-EAE)—to recover bioactive compounds from walnut shells. Extraction efficiency, total phenolic content (TPC), antioxidant capacity (ABTS•+, DPPH•), and polyphenol composition were evaluated. UPLC-ESI-MS/MS identified key polyphenols including ellagic acid, 4-hydroxybenzoic acid, vanillin, taxifolin, and quercitrin. The highest TPC (5625 mg GAE/100 g dw) was found in extracts subjected to US-EAE, in which ultrasound pretreatment (200 W, 10 min) was followed by enzymatic extraction using 0.06 mL/g Viscozyme® L at pH 3.5 and 45 °C. Under the same extraction conditions, UAE alone yielded the second highest TPC (4129 mg GAE/100 g dw). The highest ABTS•+ scavenging activity (14,478 mg TE/100 g dw) and enhanced DPPH• activity (45.38 mg TE/100 g dw) were also observed in US-EAE extracts. Chemometric techniques (PCA and HCA) revealed meaningful clustering and variation patterns among methods. These findings highlight the potential of walnut shells as a sustainable source of polyphenols and demonstrate the effectiveness of innovative extraction technologies in maximizing bioactive compound recovery for potential functional applications. Full article
Show Figures

Figure 1

12 pages, 2175 KB  
Article
UPLC-QTOF-ESI-MS/MS-Based Comparative Study of Phytochemicals in Sapindus mukorossi
by Neil Patrick Uy, Hak-Dong Lee, Jajung Ku, Kyung Choi and Sanghyun Lee
Horticulturae 2025, 11(6), 682; https://doi.org/10.3390/horticulturae11060682 - 13 Jun 2025
Viewed by 796
Abstract
This study examined the phytochemical compositions of ten Sapindus mukorossi samples from two regions in Korea: Suwon and Daegu. The Folin–Ciocalteu method was used to calculate the total polyphenol content (TPC). Among all extracts tested, leaf samples from Suwon and Daegu (SLE and [...] Read more.
This study examined the phytochemical compositions of ten Sapindus mukorossi samples from two regions in Korea: Suwon and Daegu. The Folin–Ciocalteu method was used to calculate the total polyphenol content (TPC). Among all extracts tested, leaf samples from Suwon and Daegu (SLE and DLE) exhibited the highest TPC at 2.70 and 2.90 mg tannic acid equivalent/g extract. Similarly, a modified aluminum chloride colorimetric test was used to determine the total flavonoid content (TFC). Similar results were obtained, with SLE and DLE having TFC values of 40.71 and 41.07 mg quercetin equivalent/g extract, respectively. Liquid chromatography with tandem mass spectrometry was used to detect 13 compounds, whereas high-performance liquid chromatography was used to quantify the prominent compounds: rutin, nicotiflorin, and narcissin. Among these, rutin was the most abundant, especially in SLE and DLE (54.37 and 70.21 mg/g, respectively). Furthermore, rutin significantly contributed to the total content of these samples at 78.31 and 85.44 mg/g, respectively. There were significant variations in the distribution of these compounds across different parts of the plant. These findings highlight the importance of S. mukorossi as a source of natural bioactive chemicals and pave the way for further research into its potential applications in healthcare products. Full article
Show Figures

Graphical abstract

32 pages, 7375 KB  
Article
An Innovative Strategy for Untargeted Mass Spectrometry Data Analysis: Rapid Chemical Profiling of the Medicinal Plant Terminalia chebula Using Ultra-High-Performance Liquid Chromatography Coupled with Q/TOF Mass Spectrometry–Key Ion Diagnostics–Neutral Loss Filtering
by Jia Yu, Xinyan Zhao, Yuqi He, Yi Zhang and Ce Tang
Molecules 2025, 30(11), 2451; https://doi.org/10.3390/molecules30112451 - 3 Jun 2025
Viewed by 1208
Abstract
Structural characterization of natural products in complex herbal extracts remains a major challenge in phytochemical analysis. In this study, we present a novel post-acquisition data-processing strategy—key ion diagnostics–neutral loss filtering (KID-NLF)—combined with ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) for systematic profiling of [...] Read more.
Structural characterization of natural products in complex herbal extracts remains a major challenge in phytochemical analysis. In this study, we present a novel post-acquisition data-processing strategy—key ion diagnostics–neutral loss filtering (KID-NLF)—combined with ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) for systematic profiling of the medicinal plant Terminalia chebula. The strategy consists of four main steps. First, untargeted data are acquired in negative electrospray ionization (ESI) mode. Second, a genus-specific diagnostic ion database is constructed by leveraging characteristic fragment ions (e.g., gallic acid, chebuloyl, and HHDP groups) and conserved substructures. Third, MS/MS data are high-resolution filtered using key ion diagnostics and neutral loss patterns (302 Da for HHDP; 320 Da for chebuloyl). Finally, structures are elucidated via detailed spectral analysis. The methanol extract of T. chebula was separated on a C18 column using a gradient of acetonitrile and 0.1% aqueous formic acid within 33 min. This separation enabled detection of 164 compounds, of which 47 were reported for the first time. Based on fragmentation pathways and diagnostic ions (e.g., m/z 169 for gallic acid, m/z 301 for ellagic acid, and neutral losses of 152, 302, and 320 Da), the compounds were classified into three major groups: gallic acid derivatives, ellagitannins (containing HHDP, chebuloyl, or neochebuloyl moieties), and triterpenoid glycosides. KID-NLF overcomes key limitations of conventional workflows—namely, isomer discrimination and detection of low-abundance compounds—by exploiting genus-specific structural signatures. This strategy demonstrates high efficiency in resolving complex polyphenolic and triterpenoid profiles and enables rapid annotation of both known and novel metabolites. This study highlights KID-NLF as a robust framework for phytochemical analysis in species with high chemical complexity. It also paves the way for applications in quality control, drug discovery, and mechanistic studies of medicinal plants. Full article
Show Figures

Graphical abstract

Back to TopTop