Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,426)

Search Parameters:
Keywords = UV/H2O2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2212 KB  
Article
Bemotrizinol-Loaded Lipid Nanoparticles for the Development of Sunscreen Emulsions
by Maria Grazia Sarpietro, Debora Santonocito, Giuliana Greco, Stefano Russo, Carmelo Puglia and Lucia Montenegro
Colloids Interfaces 2025, 9(5), 54; https://doi.org/10.3390/colloids9050054 - 26 Aug 2025
Abstract
In this work, bemotrizinol (BMTZ), a broad-spectrum UV-filter, was loaded into nanostructured lipid carriers (NLC) whose lipid matrix contained different oils (isopropyl myristate, decyl oleate, caprylic/capric triglyceride) to assess the effects of the lipid core composition on the properties of the resulting NLC. [...] Read more.
In this work, bemotrizinol (BMTZ), a broad-spectrum UV-filter, was loaded into nanostructured lipid carriers (NLC) whose lipid matrix contained different oils (isopropyl myristate, decyl oleate, caprylic/capric triglyceride) to assess the effects of the lipid core composition on the properties of the resulting NLC. Subsequently, the effects of incorporating different concentrations of optimized BMTZ-loaded NLC on the technological properties of O/W emulsions (pH, viscosity, spreadability, occlusion factor, in vitro BMTZ release, skin permeation, and in vitro sun protection factor) were assessed. The optimized BMTZ-loaded NLC contained 3.0% w/w of isopropyl myristate and showed mean size = 190.6 ± 9.8 nm, polydispersity index = 0.153 ± 0.013, ζ-potential = −10.6 ± 1.7 mV, and loading capacity = 8% w/w. The incorporation of increasing concentrations (5, 10, 20% w/w) of optimized BMTZ loaded into emulsions provided a slight increase in spreadability, lower viscosity, and no change in pH, occlusion factor, and BMTZ release compared to emulsions containing free BMTZ. No BMTZ skin permeation was observed from all formulations. About a 20% increase in sun protection factor values was obtained for vehicles containing BMTZ-loaded NLC compared with formulations incorporating the same amount of free BMTZ. Therefore, incorporating BMTZ-loaded NLC into emulsions could be a promising strategy to develop safer and more effective sunscreen formulations. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Figure 1

26 pages, 3012 KB  
Article
Cytoprotective Effects of Gymnema inodorum Against Oxidative Stress-Induced Human Dermal Fibroblasts Injury: A Potential Candidate for Anti-Aging Applications
by Wattanased Jarisarapurin, Thanchanok Puksasook, Sarawut Kumphune, Nattanicha Chaiya, Pawinee Pongwan, Rawisada Pholsin, Issara Sramala and Satita Tapaneeyakorn
Antioxidants 2025, 14(9), 1043; https://doi.org/10.3390/antiox14091043 - 24 Aug 2025
Abstract
Repeated UV exposure, air pollution, and toxins promote skin oxidative stress. ROS destroy macromolecules, changing cellular mechanisms and signaling cascades. Inflammation and injury to skin cells degrade function and accelerate aging, causing wrinkles, firmness loss, and dermatological disorders. Gymnema inodorum (GI) contains phytochemical [...] Read more.
Repeated UV exposure, air pollution, and toxins promote skin oxidative stress. ROS destroy macromolecules, changing cellular mechanisms and signaling cascades. Inflammation and injury to skin cells degrade function and accelerate aging, causing wrinkles, firmness loss, and dermatological disorders. Gymnema inodorum (GI) contains phytochemical antioxidants such polyphenols and triterpenoids that lower ROS and strengthen skin. GI extracts (GIEs) have never been examined for their effects on dermal skin fibroblasts’ oxidative stress and intracellular cytoprotective mechanisms. In this study, GIEs were prepared as a water extract (GIE0) and ethanol extracts with concentrations ranging from 20% to 95% v/v (GIE20, GIE40, GIE60, GIE80, and GIE95). These extracts were assessed for phytochemical content, antioxidant capacity, and free radical scavenging efficacy. The results were compared to a commercially available native Gymnema extract (NGE) obtained from Gymnema sylvestre. During principal component analysis (PCA), the most effective extracts were identified and subsequently evaluated for their ability to mitigate oxidative stress in fibroblasts. Cytoprotective effects of GIE and NGE against H2O2-induced human dermal fibroblast injury were investigated by cell viability, intracellular ROS production, and signaling pathways. GIE0, GIE80, GIE95, and NGE were the best antioxidants. By preserving ROS balance and redox homeostasis, GIE and NGE reduce fibroblast inflammation and oxidative stress-induced damage. Decreased ROS levels reduce MAPK/AP-1/NF-κB and PI3K/AKT/NF-κB signaling pathways, diminishing inflammatory cytokines. In conclusion, GIE and NGE have antioxidant and anti-inflammatory capabilities that can reduce H2O2-induced fibroblast oxidative stress and damage, thereby preventing skin aging and targeting cancer-associated fibroblasts. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

19 pages, 3163 KB  
Article
Hydrophobic, Durable, and Reprocessable PEDOT:PSS/PDMS-PUa/SiO2 Film with Conductive Self-Cleaning and De-Icing Functionality
by Jie Fang, Rongqing Dong, Meng Zhou, Lishan Liang, Mingna Yang, Huakun Xing, Yongluo Qiao and Shuai Chen
Coatings 2025, 15(9), 985; https://doi.org/10.3390/coatings15090985 - 23 Aug 2025
Viewed by 154
Abstract
Poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) stands out as a renowned commercial conducting polymer composite, boasting extensive and promising applications in the realm of film electronics. In this study, we have made a concerted effort to overcome the inherent drawbacks of PEDOT:PSS films (especially, high [...] Read more.
Poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) stands out as a renowned commercial conducting polymer composite, boasting extensive and promising applications in the realm of film electronics. In this study, we have made a concerted effort to overcome the inherent drawbacks of PEDOT:PSS films (especially, high moisture absorption, mechanical damage vulnerability, insufficient substrate adhesion ability, etc.) by uniformly blending them with polydimethylsiloxane polyurea (PDMS-PUa) and silica (SiO2) nanoparticles through a feasible mechanical stirring process, which effectively harnesses the intermolecular interactions, as well as the morphological and structural characteristics, among the various components. The Si−O bonds within PDMS-PUa and the −CH3 groups attached to Si atoms significantly enhance the hydrophobicity of the composite film (as evidenced by a water contact angle of 132.89° under optimized component ratios). Meanwhile, SiO2 microscopically modifies the surface morphology, resulting in increased surface roughness. This composite film not only maintains high conductivity (1.21 S/cm, in contrast to 0.83 S/cm for the PEDOT:PSS film) but also preserves its hydrophobicity and electrical properties under rigorous conditions, including high-temperature exposure (60–200 °C), ultraviolet (UV) aging (365.0 nm, 1.32 mW/cm2), and abradability testing (2000 CW abrasive paper, drag force of approximately 0.98 N, 40 cycles). Furthermore, the film demonstrates enhanced resistance to both acidic (1 mol/L, 24 h) and alkaline (1 mol/L, 24 h) environments, along with excellent self-cleaning and de-icing capabilities (−6 °C), and satisfactory adhesion (Level 2). Notably, the dried composite film can be re-dispersed into a solution with the aid of isopropanol through simple magnetic stirring, and the sequentially coated films also exhibit good surface hydrophobicity (136.49°), equivalent to that of the pristine film. This research aims to overcome the intrinsic performance drawbacks of PEDOT:PSS-based materials, enabling them to meet the demands of complex application scenarios in the field of organic electronics while endowing them with multifunctionality. Full article
Show Figures

Graphical abstract

11 pages, 1632 KB  
Article
A Tb (Ⅲ) Coordination Polymer Based on 5-(2-(Pyrazole-1-yl) Pyridine-5-yl) Terephthalic Acid and Its Visual Detection of Quinolone Antibiotics
by Ai Wang, Yichong Li, Wei Zhao and Jia Liu
Polymers 2025, 17(17), 2277; https://doi.org/10.3390/polym17172277 - 22 Aug 2025
Viewed by 225
Abstract
The abuse of quinolone antibiotics in the medical and livestock industries potentially causes environmental accumulation that may impair ecological stability. Based on the organic ligand 5-(pyrazole-1-yl) pyridine-5-yl) terephthalic acid (H2PPIPA), a terbium(III) complex, [Tb(HPPIPA)(PPIPA)(H2O)]ₙ (complex 1), was synthesized [...] Read more.
The abuse of quinolone antibiotics in the medical and livestock industries potentially causes environmental accumulation that may impair ecological stability. Based on the organic ligand 5-(pyrazole-1-yl) pyridine-5-yl) terephthalic acid (H2PPIPA), a terbium(III) complex, [Tb(HPPIPA)(PPIPA)(H2O)]ₙ (complex 1), was synthesized via solvothermal reaction with Tb(NO3)3·6H2O. Luminescence studies revealed that complex 1 functions as a turn-on fluorescent probe for the selective detection of ofloxacin (OFX), levofloxacin (LFX), and norfloxacin (NFX), with detection limits of 27.9, 17.1, and 8.0 nM, respectively. Owing to its high selectivity and anti-interference capability, the complex was successfully applied for the determination of OFX and LFX in milk samples. Furthermore, a test strip impregnated with complex 1 enabled naked-eye fluorescence detection of OFX, LFX, and NFX under 254 nm UV light. Additionally, a fluorescence sensing film fabricated from complex 1 exhibited excellent recyclability, allowing for at least seven consecutive detection cycles without significant signal loss. This study innovatively designed and synthesized a novel Tb(III)-based coordination polymer fluorescent probe utilizing an original ligand scaffold, achieving the first reported visual detection of quinolone antibiotics with fluorescence test strips and agar films. Full article
(This article belongs to the Special Issue Coordination Polymers: Design, Preparation, and Application)
Show Figures

Figure 1

24 pages, 2449 KB  
Article
Synthesis and Characterization of a New Hydrogen-Bond-Stabilized 1,10-Phenanthroline–Phenol Schiff Base: Integrated Spectroscopic, Electrochemical, Theoretical Studies, and Antimicrobial Evaluation
by Alexander Carreño, Evys Ancede-Gallardo, Ana G. Suárez, Marjorie Cepeda-Plaza, Mario Duque-Noreña, Roxana Arce, Manuel Gacitúa, Roberto Lavín, Osvaldo Inostroza, Fernando Gil, Ignacio Fuentes and Juan A. Fuentes
Chemistry 2025, 7(4), 135; https://doi.org/10.3390/chemistry7040135 - 21 Aug 2025
Viewed by 488
Abstract
A new Schiff base, (E)-2-(((1,10-phenanthrolin-5-yl)imino)methyl)-4,6-di-tert-butylphenol (Fen-IHB), was designed to incorporate an intramolecular hydrogen bond (IHB) between the phenolic OH and the azomethine nitrogen with the goal of modulating its physicochemical and biological properties. Fen-IHB was synthesized by condensation of [...] Read more.
A new Schiff base, (E)-2-(((1,10-phenanthrolin-5-yl)imino)methyl)-4,6-di-tert-butylphenol (Fen-IHB), was designed to incorporate an intramolecular hydrogen bond (IHB) between the phenolic OH and the azomethine nitrogen with the goal of modulating its physicochemical and biological properties. Fen-IHB was synthesized by condensation of 5-amino-1,10-phenanthroline with 3,5-di-tert-butyl-2-hydroxybenzaldehyde and exhaustively characterized by HR-ESI-MS, FTIR, 1D/2D NMR (1H, 13C, DEPT-45, HH-COSY, CH-COSY, D2O exchange), and UV–Vis spectroscopy. Cyclic voltammetry in anhydrous CH3CN revealed a single irreversible cathodic peak at −1.43 V (vs. Ag/Ag+), which is consistent with the intramolecular reductive coupling of the azomethine moiety. Density functional theory (DFT) calculations, including MEP mapping, Fukui functions, dual descriptor analysis, and Fukui potentials with dual descriptor potential, identified the exocyclic azomethine carbon as the principal nucleophilic site and the phenolic ring (hydroxyl oxygen and adjacent carbons) as the main electrophilic region. Noncovalent interaction (NCI) analysis further confirmed the strength and geometry of the intramolecular hydrogen bond (IHB). In vitro antimicrobial assays indicated that Fen-IHB was inactive against Gram-negative facultative anaerobes (Salmonella enterica serovar Typhimurium and Typhi, Escherichia coli) and strictly anaerobic Gram-positive species (Clostridioides difficile, Roseburia inulinivorans, Blautia coccoides), as any growth inhibition was indistinguishable from the DMSO control. Conversely, Fen-IHB displayed measurable activity against Gram-positive aerobes and aerotolerant anaerobes, including Bacillus subtilis, Streptococcus pyogenes, Enterococcus faecalis, Staphylococcus aureus, and Staphylococcus haemolyticus. Overall, these comprehensive characterization results confirm the distinctive chemical and electronic properties of Fen-IHB, underlining the crucial role of the intramolecular hydrogen bond and electronic descriptors in defining its reactivity profile and selective biological activity. Full article
Show Figures

Figure 1

17 pages, 3914 KB  
Article
Green Synthesis of Chitosan-Coated Selenium Nanoparticles for Paclitaxel Delivery
by Mouhaned Y. Al-Darwesh, Maroua Manai, Hammouda Chebbi and Axel Klein
Nanomaterials 2025, 15(16), 1276; https://doi.org/10.3390/nano15161276 - 18 Aug 2025
Viewed by 291
Abstract
Selenium nanoparticles (Se NPs) were synthesized from Na2SeO3 using Foeniculum vulgare (fennel) seed extract as mild sustainable reductant, coated with chitosan (Ch), and loaded with Paclitaxel (PTX). The PTX release from the Se@Ch–PTX NPs and their cytotoxicity against MDA-MB-231 breast [...] Read more.
Selenium nanoparticles (Se NPs) were synthesized from Na2SeO3 using Foeniculum vulgare (fennel) seed extract as mild sustainable reductant, coated with chitosan (Ch), and loaded with Paclitaxel (PTX). The PTX release from the Se@Ch–PTX NPs and their cytotoxicity against MDA-MB-231 breast cancer cells was studied in view of an application as drug delivery platform. Thermogravimetric analysis (TGA) showed the thermal stability of the NPs up to 300 °C. UV–vis absorption and Fourier transform IR (FT-IR) spectroscopy allowed to trace surface species originating from the F. vulgare extract on the Se NPs, while the surface of the Se@Ch–PTX NPs is characterized from Ch and PTX functionalities. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed approximate spherical shaped NPs with sizes ranging from 10 to 40 nm. Zeta potential measurements showed a clear distinction between the −39 mV found the Se NPs and +57 mV for the Ch–PTX coated NPs. The NPs showed good biocompatibility with red blood cells (RBCs) in hemolytic activity assays, exhibiting no hemolytic effects at concentrations ranging from 50 to 400 µg/mL. In vitro release studies showed a sustained and pH-responsive release pattern with a maximum release of about 80% within 22 h for Se@Ch–PTX at pH = 3.5. The Se@Ch–PTX NPs showed high antiproliferative activity against MDA-MB-231 cells with an IC50 value of 12.3 µg/mL compared to about 36 for PTX and 52 µg/mL for the Se NPs. The reactive oxygen species (ROS) activity as studied through DPPH scavenging showed higher values for the Se@Ch–PTX NPs compared to the Se NP. Full article
Show Figures

Graphical abstract

18 pages, 1887 KB  
Article
Pathogenicity of Tolypocladium spp. Against Plutella xylostella: Effects on Immune Enzyme Activities and Gene Expression Profile
by Ni Cai, Zhigang Zhang, Babar Hussain Chang, Zhijun Qiao, Fang Liu, Xiangqun Nong and Kaimei Wang
Insects 2025, 16(8), 859; https://doi.org/10.3390/insects16080859 - 18 Aug 2025
Viewed by 296
Abstract
(1) Background: Tolypocladium spp. are fungi known for producing cyclosporin A and their ability to infect insects. However, their pathogenicity against the lepidopteran pest Plutella xylostella has not been previously reported. (2) Methods: Four Tolypocladium strains were isolated from soil and identified through [...] Read more.
(1) Background: Tolypocladium spp. are fungi known for producing cyclosporin A and their ability to infect insects. However, their pathogenicity against the lepidopteran pest Plutella xylostella has not been previously reported. (2) Methods: Four Tolypocladium strains were isolated from soil and identified through morphological and phylogenetic analyses (ITS, gene sequencing). Growth rates, sporulation capacity, and stress tolerance (45 °C heat, UV) were evaluated. Pathogenicity was assessed via larval bioassays, and immune responses were analyzed by quantifying Toll pathway gene expression and enzyme activities (PO, CAT, POD, GSTs, CarE, AChE) from 24 to 96 h post-inoculation. (3) Results: Strains N8-SF-04092 and O1/O2/O3-SF-04630/04927/04931 were identified as Tolypocladium cylindrosporum and Tolypocladium inflatum, respectively. Strain O2 showed the highest growth rate (p < 0.05), while O3 and N8 exhibited superior sporulation (>7 × 105 spores/mm2). N8 also demonstrated notable thermotolerance. In pathogenicity assays, O1, O3, and N8 caused 98.3%, 93.3%, and 96.7% larval mortality, respectively, with LT50 values (3.89–4.45 days) significantly lower than O2 (p < 0.05). Immune gene expression in P. xylostella was transiently activated at 24 h but suppressed from 48 to 96 h by N8 (p < 0.05), while O1 induced partial activation at 24 h and 96 h but suppression at 48 h and 72 h. Protective enzymes (PO, CAT) were initially upregulated (24–48 h) but inhibited after 72 h (p < 0.01). POD activity showed opposing trends between O1 (initially activated then suppressed) and N8 (initially suppressed then activated). Detoxification enzymes (GSTs, CarE, AchE) were predominantly suppressed, except for GSTs, which increased at 72–96 h. (4) Conclusions: Strains O1 and N8 exhibit high virulence against P. xylostella by disrupting immune responses through dynamic modulation of Toll pathway genes and enzyme activities. The thermotolerance of strain N8 further enhances its promising biocontrol agent for field application. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 1706 KB  
Article
An Improved Flow-Through Photodegradation Device for the Removal of Emerging Contaminants
by Ron Schweitzer, Soliman Khatib, Lior Levy and Giora Rytwo
Catalysts 2025, 15(8), 778; https://doi.org/10.3390/catal15080778 - 15 Aug 2025
Viewed by 452
Abstract
Cost-effective procedures usually cannot achieve complete removal of priority contaminants present in water at very low concentrations (as pesticides or pharmaceuticals). Advanced oxidation processes (AOPs) represent promising technologies for removing priority contaminants from water at trace concentrations, yet practical implementation remains limited due [...] Read more.
Cost-effective procedures usually cannot achieve complete removal of priority contaminants present in water at very low concentrations (as pesticides or pharmaceuticals). Advanced oxidation processes (AOPs) represent promising technologies for removing priority contaminants from water at trace concentrations, yet practical implementation remains limited due to technical and economic constraints. This study presents an innovative flow-through photodegradation device designed to overcome current limitations while achieving efficient contaminant removal at industrial scale. The device integrates a UVC 254 nm lamp-equipped flow chamber with automated dosing pumps for hydrogen peroxide and/or solid catalyst suspensions, coupled with a 30 nm porous membrane filtration system for catalyst recirculation. This configuration optimizes light–catalyst–pollutant contact while enabling combined catalytic processes. Performance evaluation using acesulfame (ACE) and iohexol (IHX) as model contaminants demonstrated rapid and effective removal. IHX degradation with UVC and 75 μM H2O2 achieved complete removal with t95% = 7.23 ± 1.21 min (pseudo-order 0.25, t1/2 = 3.27 ± 0.39 min), while ACE photolysis (with UVC only) required t95% = 14.88 ± 2.02 min (pseudo-order 1.27, t1/2 = 2.35 ± 0.84 min). The introduction of t95% as a performance metric provides practical insights for near-complete contaminant removal requirements. Real-world efficacy was confirmed using tertiary wastewater treatment plant effluents containing 14 μg/L IHX, achieving complete removal within 8 min. However, carbamazepine degradation proved slower (t95% > 74 h), highlighting the need for combined catalytic approaches for recalcitrant compounds. Spiking experiments (1000 μg/L) revealed concentration-dependent kinetics and synergistic effects between co-present contaminants. Analysis identified degradation byproducts consistent with previous studies, including tri-deiodinated iohexol (474.17 Da) intermediates. This scalable system, constructed from commercially available components, demonstrates potential for cost-effective industrial implementation. The modular design allows adaptation to various contaminants through adjustable AOP combinations (UV/H2O2, photocatalysts, ozone), representing a practical advancement toward addressing the gap between laboratory-scale photocatalytic research and full-scale water treatment applications. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation)
Show Figures

Graphical abstract

14 pages, 2664 KB  
Article
Synergistic Effects of UV Radiation and H2O2 on Chloramphenicol Degradation by REE-Based Catalysts
by Alice Cardito, Mariateresa Lettieri, Lorenzo Saviano, Olga Sacco, Giusy Lofrano, Vincenzo Vaiano, Giovanni Libralato, Marco Guida and Maurizio Carotenuto
Catalysts 2025, 15(8), 776; https://doi.org/10.3390/catal15080776 - 14 Aug 2025
Viewed by 303
Abstract
The persistent occurrence of antibiotics like chloramphenicol (CAP) in aquatic systems poses serious environmental and public health risks. This study investigates the photocatalytic degradation of CAP using cerium oxide (CeO2), lanthanum oxide (La2O3), and lanthanum-doped cerium oxide [...] Read more.
The persistent occurrence of antibiotics like chloramphenicol (CAP) in aquatic systems poses serious environmental and public health risks. This study investigates the photocatalytic degradation of CAP using cerium oxide (CeO2), lanthanum oxide (La2O3), and lanthanum-doped cerium oxide (CexLayO2−δ), synthesized via co-precipitation. The catalysts were tested under a solar simulator, UV-A, and UV-C radiation, both with and without hydrogen peroxide (H2O2). Structural characterization confirmed successful synthesis of nanometric catalysts, with La doping causing lattice expansion in CeO2 and a reduction in crystallite size (from 27 nm in CeO2 to ~20 nm in doped samples). Photolysis alone achieved limited CAP removal (~34–35%), while photocatalysis with La2O3 under UV-A and UV-C improved removal up to 58% and 55%, respectively. Complete degradation was obtained with La2O3 under UV-C in the presence of H2O2 within 15 min. Pareto analysis highlighted the dominant effect of the interaction between radiation and H2O2 (43%), while the catalyst type contributed minimally (0.23%). These findings confirm the potential of REE oxides, especially La2O3, in advanced oxidation processes and underscore the importance of light source and radical generation over catalyst selection alone. Full article
Show Figures

Figure 1

20 pages, 4874 KB  
Article
Preparation of pH-Responsive PET TeMs by Controlled Graft Block Copolymerisation of Styrene and Methacrylic Acid for the Separation of Water–Oil Emulsions
by Indira B. Muslimova, Dias D. Omertassov, Nurdaulet Zhumanazar, Nazerke Assan, Zhanna K. Zhatkanbayeva and Ilya V. Korolkov
Polymers 2025, 17(16), 2221; https://doi.org/10.3390/polym17162221 - 14 Aug 2025
Viewed by 402
Abstract
To develop membranes capable of efficient and switchable emulsion separation under variable pH conditions, pH-responsive surfaces were engineered on poly(ethylene terephthalate) track-etched membranes (PET TeMs) via a two-step UV-initiated RAFT graft polymerization process. Initially, polystyrene (PS) was grafted to render the surface hydrophobic, [...] Read more.
To develop membranes capable of efficient and switchable emulsion separation under variable pH conditions, pH-responsive surfaces were engineered on poly(ethylene terephthalate) track-etched membranes (PET TeMs) via a two-step UV-initiated RAFT graft polymerization process. Initially, polystyrene (PS) was grafted to render the surface hydrophobic, followed by the grafting of poly(methacrylic acid) (PMAA) to introduce pH-responsive carboxyl groups. Optimized conditions (117 mM MAA, RAFT:initiator 1:10, 60 min UV exposure at 10 cm) resulted in PET TeMs-g-PS-g-PMAA surfaces exhibiting tunable wettability, with contact angles shifting from 90° at pH 2 to 65° at pH 9. Successful grafting was confirmed by FTIR, AFM, SEM, TGA, and TB dye sorption. The membranes showed high degree of rejection (up to 98%) for both direct and reverse emulsions. In direct emulsions, stable flux values (70 ± 2.8 to 60 ± 2.9 L m−2 h−1 for cetane-in-water and 195 ± 8.2 to 120 ± 6.9 L m−2 h−1 for o-xylene-in-water) were maintained over five cycles at 900 mbar, indicating excellent antifouling performance. Reverse emulsions initially exhibited higher flux, but stronger fouling; however, flux recovery reached 91% after cleaning. These findings demonstrate the potential of PET TeMs-g-PS-g-PMAA as switchable, pH-responsive membranes for robust emulsion separation. Full article
Show Figures

Figure 1

15 pages, 925 KB  
Article
8-OXO-Cordycepin Is Not a Suitable Substrate for Adenosine Deaminase-Preliminary Experimental and Theoretical Studies
by Boleslaw T. Karwowski
Molecules 2025, 30(16), 3377; https://doi.org/10.3390/molecules30163377 - 14 Aug 2025
Viewed by 350
Abstract
Adenosine deaminase (ADA) is one of the most important enzymes in nucleoside metabolism, regulating the levels of adenosine and deoxyadenosine triphosphate (ADT/dATP) on either side of the cell membrane. This small protein (weighing approximately 40 kDa) exhibits deamination properties towards other pharmaceuticals built [...] Read more.
Adenosine deaminase (ADA) is one of the most important enzymes in nucleoside metabolism, regulating the levels of adenosine and deoxyadenosine triphosphate (ADT/dATP) on either side of the cell membrane. This small protein (weighing approximately 40 kDa) exhibits deamination properties towards other pharmaceuticals built on adenine as the leading structure, which requires co-administration of ADA inhibitors. 3′-deoxyadenosine (Cordycepin, Cord) is an active compound isolated from the fungus Cordyceps, which has been used in traditional Chinese medicine for over 2000 years. Its anticancer activity is likely related to the inhibition of primer elongation of lagging strands during genetic information replication. Unfortunately, Cord is rapidly deaminated by ADA into inactive 3′-deoxyinosine, necessitating its co-administration with ADA inhibitors. Here, for the first time, the synthesis and discussion of the oxidised form of Cord are presented. The 7,8-dihydro-8-oxo-3′-deoxyadenosine (CordOXO) exhibits high resistance to ADA because of its syn conformation, as shown experimentally by UV spectroscopy and RP-HPLC monitoring. Theoretical Density Functional based Tight Binding (DFTB) studies of the Michaelis complex ADA-CordOXO have revealed significant distance increases between the “active” H2O molecule and C6 of the 8-oxo-adenine moiety of CordOXO, i.e., 4 Å as opposed to 2.7 Å in the cases of ADA-dAdo and Cord. In conclusion, it can be postulated that the conversion of Cord to CordOXO enhances its therapeutic potential; however, this needs to be verified in vitro and in vivo. It should be emphasised that the therapeutic effect, if any, can be achieved theoretically without ADA inhibitors, e.g., pentostatin, thus reducing adverse effects. These promising preliminary results, presented here, warrant further investigations. Full article
Show Figures

Graphical abstract

21 pages, 3201 KB  
Article
Role of p-Benzoquinone in the Photocatalytic Production of Solketal
by Alejandro Ariza-Pérez, Juan Martín-Gómez, M. Carmen Herrera-Beurnio, Francisco J. López-Tenllado, Jesús Hidalgo-Carrillo, Alberto Marinas and Francisco J. Urbano
Molecules 2025, 30(16), 3339; https://doi.org/10.3390/molecules30163339 - 11 Aug 2025
Viewed by 408
Abstract
The role of p-benzoquinone (BQ) as a photocatalyst in the synthesis of solketal under UV irradiation has been studied, along with the combined use of BQ/TiO2 P25 as a photocatalytic system for the process. The presence of the O2/O [...] Read more.
The role of p-benzoquinone (BQ) as a photocatalyst in the synthesis of solketal under UV irradiation has been studied, along with the combined use of BQ/TiO2 P25 as a photocatalytic system for the process. The presence of the O2/O2−• redox couple is essential for the reaction to take place. However, experiments with p-benzoquinone as a superoxide radical scavenger failed, with the opposite effect of enhancing the reaction being observed. It was found that p-benzoquinone and oxygen compete for photogenerated electrons in the conduction band of titania. A redox equilibrium between p-benzoquinone and hydroquinone (H2Q), mediated by the O2/O2−• system, was identified as a key factor in enabling the reaction. Furthermore, EPR spin-trapping experiments confirmed the presence of the carbon-centered radical 2-hydroxypropan-2-yl, which was determined to be the main radical species involved in the process. Either acetone or 2-propanol can generate this radical, with the BQ/H2Q redox system being pivotal in the formation of the hemiacetal intermediate. This intermediate is subsequently converted into the final acetal (solketal), with H2Q acting as a photoacid through an excited-state proton transfer (ESPT) mechanism. The photoacid behavior of hydroquinone was confirmed using pyridine as a basic probe, as the formation of hydroquinone–pyridine adducts was detected by Raman spectroscopy. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 2688 KB  
Article
Optimizing Antioxidant and Biological Activities of Quercus Fructus: Synergistic Role of Inner Shell and Extraction Methods
by Jin Gyeom Kim, Hajeong Kim, Beulah Favour Ortutu, Woochan Jeong, Su-In Yoon, Inhwa Han and Jin Ah Cho
Antioxidants 2025, 14(8), 976; https://doi.org/10.3390/antiox14080976 - 8 Aug 2025
Viewed by 316
Abstract
This study comprehensively evaluated how the inclusion of the inner shell and the choice of extraction method influence the antioxidant activity of Quercus Fructus (QF). Eight QF extracts were prepared with or without the inner shell using stirring (S) and ultrasonication (U) with [...] Read more.
This study comprehensively evaluated how the inclusion of the inner shell and the choice of extraction method influence the antioxidant activity of Quercus Fructus (QF). Eight QF extracts were prepared with or without the inner shell using stirring (S) and ultrasonication (U) with 80% ethanol, boiled water (B) and autoclave (A) with distilled water. Among them, the ultrasonication extract with inner shell (IU) exhibited the highest antioxidant capacity, showing strong DPPH radical scavenging (228.8 mg TEAC/g), ABTS activity (162.9 mg TEAC/g), reducing power (380.9 mg TERP/g), and SOD-like activity (38.1%). HPLC-UV profiling identified quercetin-7-glucoside (Q7G) as a major detectable compound, although several polar phenolics remained unidentified. In LPS-stimulated Raw 264.7 cells, IU significantly suppressed nitric oxide production and iNOS expression without cytotoxicity. Additionally, IU treatment markedly reduced ROS accumulation in H2O2-exposed zebrafish embryos. These findings suggest that including the inner shell with ultrasonication extraction synergistically enhances QF’s antioxidant efficacy, suggesting a practical strategy for maximizing the functional potential of QF in natural antioxidant development. Full article
(This article belongs to the Special Issue Plant Antioxidants, Inflammation, and Chronic Disease)
Show Figures

Figure 1

18 pages, 3706 KB  
Article
Controllable Preparation of TiO2/SiO2@Blast Furnace Slag Fiber Composites Based on Solid Waste Carriers and Study on Mechanism of Photocatalytic Degradation of Urban Sewage
by Xinwen Luo, Jinhu Wu, Guangqian Zhu, Xinyu Han, Junjian Zhao, Yaqiang Li, Yingying Li and Shaopeng Gu
Catalysts 2025, 15(8), 755; https://doi.org/10.3390/catal15080755 - 7 Aug 2025
Viewed by 407
Abstract
Photocatalytic composite materials (TiO2/SiO2/BFSF) were first fabricated using the sol–gel method of loading SiO2 and TiO2 on blast furnace slag fibers (BFSFs) in sequence and using them as a new carrier. Then, TG-DTA, XRD, BET, SEM-EDS, and [...] Read more.
Photocatalytic composite materials (TiO2/SiO2/BFSF) were first fabricated using the sol–gel method of loading SiO2 and TiO2 on blast furnace slag fibers (BFSFs) in sequence and using them as a new carrier. Then, TG-DTA, XRD, BET, SEM-EDS, and UV-Vis absorption spectra, as well as spectrophotometric measurements, were employed to analyze the physicochemical properties of TiO2. The influence of SiO2 coating, the number of impregnations in TiO2 sol, the calcination temperature, and the number of repeated usages on the activity of TiO2/SiO2/BFSF was researched by analyzing the degradation of methylene blue (MB) aqueous solution. The results show that SiO2 could increase the load of TiO2, impede the growth of TiO2 grains, and inhibit the recombination of electron–hole pairs, ultimately enhancing the photocatalytic activity of samples. The activity of TiO2/SiO2/BFSF first quickly increased and then slowly decreased with an increase in the loading times of TiO2 sol and calcination temperature. After three impregnations in TiO2 sol and calcining at 450 °C for 2.5 h, a uniform and compact anatase TiO2 thin film was deposited on the surface of TiO2/SiO2/BFSF, showing the strongest activity. When this sample was used to degrade MB aqueous solution for 180 min under ultraviolet light irradiation, the degradation proportion reached a maximum of 96%. After four reuses, the degradation ratio could still reach 67%. In addition, three potential photocatalytic mechanisms were proposed. Finally, the high-value-added application of blast furnace slag for preparing photocatalytic composite materials was achieved, successfully turning solid waste into “treasure”. Full article
(This article belongs to the Special Issue Enhanced Photocatalytic Activity over Ti, Zn, or Sn-Based Catalysts)
Show Figures

Figure 1

16 pages, 2153 KB  
Article
Green Synthesis, Optimization, and Characterization of CuO Nanoparticles Using Tithonia diversifolia Leaf Extract
by S. S. Millavithanachchi, M. D. K. M. Gunasena, G. D. C. P. Galpaya, H. V. V. Priyadarshana, S. V. A. A. Indupama, D. K. A. Induranga, W. A. C. N. Kariyawasam, D. V. S. Kaluthanthri and K. R. Koswattage
Nanomaterials 2025, 15(15), 1203; https://doi.org/10.3390/nano15151203 - 6 Aug 2025
Viewed by 427
Abstract
Green synthesis of copper oxide (CuO) nanoparticles offers a sustainable alternative to conventional chemical methods that often involve toxic reagents and harsh conditions. This study investigates the use of Tithonia diversifolia, an invasive species in Sri Lanka, as a bioreductant for the [...] Read more.
Green synthesis of copper oxide (CuO) nanoparticles offers a sustainable alternative to conventional chemical methods that often involve toxic reagents and harsh conditions. This study investigates the use of Tithonia diversifolia, an invasive species in Sri Lanka, as a bioreductant for the eco-friendly fabrication of CuO nanoparticles. Using copper sulfate (CuSO4·5H2O) as a precursor, eight treatments were conducted by varying precursor concentration, temperature, and reaction time to determine optimal conditions. A visible color change in the reaction mixture initially indicated nanoparticle formation. Among all the conditions, treatment T4 (5 mM CuSO4, 80 °C, 2 h) yielded the most favorable results in terms of stability, morphology, and crystallinity. UV-Vis spectroscopic analysis confirmed the synthesis, with absorbance peaks between 265 and 285 nm. FTIR analysis revealed organic functional groups and characteristic metal–oxygen vibrations in the fingerprint region (500–650 cm−1), confirming formation. SEM imaging showed that particles were mainly spherical to polygonal, averaging 125–150 nm. However, dynamic light scattering showed larger diameters (~240 nm) due to surface capping agents. Zeta potential values ranged from −16.0 to −28.0 mV, indicating stability. XRD data revealed partial crystallinity with CuO-specific peaks. These findings support the potential of T. diversifolia in green nanoparticle synthesis, suggesting a low-cost, eco-conscious strategy for future applications. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

Back to TopTop