Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (265)

Search Parameters:
Keywords = W/Cu composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1163 KB  
Article
Biochar Application Methods Matter: Biochemical and Enological Responses of an Italian Field-Grown Grapevine (Vitis vinifera L.) Using Solid and Liquid Formulations
by Riccardo Fedeli, Silvia Celletti and Stefano Loppi
Agronomy 2025, 15(9), 2124; https://doi.org/10.3390/agronomy15092124 - 4 Sep 2025
Viewed by 955
Abstract
Viticulture is increasingly seeking sustainable practices that enhance grape quality while reducing reliance on synthetic inputs. Among bio-based strategies, biochar has attracted growing interest for its potential to improve soil fertility and influence plant metabolism. However, its effects can vary depending on formulation [...] Read more.
Viticulture is increasingly seeking sustainable practices that enhance grape quality while reducing reliance on synthetic inputs. Among bio-based strategies, biochar has attracted growing interest for its potential to improve soil fertility and influence plant metabolism. However, its effects can vary depending on formulation and application methods. This study evaluated the effects of the use of solid (SB) and liquid biochar (LB) on the biochemical and nutritional composition in leaves, berry skins, and must of a grapevine (Vitis vinifera L., cv. Sangiovese) cultivated in a vineyard in Tuscany (Italy). SB was applied once to the soil at 2.5% (w/w), while LB was applied five times/season at 10% (v/v) via fertigation. Results revealed formulation-specific effects on grapevine physiology and fruit composition. SB maintained leaf chlorophyll concentrations, increased total soluble proteins (+65%), total polyphenols (+57%), and tannin content (+33%) in berry skins and must, and reduced Cu and Zn. Conversely, LB reduced leaf chlorophyll concentrations (−24%) and nutrient contents (P, Fe, Cu, and Zn), but increased total flavonoids (+13%), antioxidant capacity (+20%), and vitamin C (+18%) in berry skins, alongside higher fructose and reducing sugars in musts. The findings highlight biochar’s potential as a bio-based input in viticulture, emphasizing the importance of formulation and application strategy. SB appears suited to long-term soil improvement and enhanced phenolic richness, while LB may modulate sugar metabolism for targeted enological outcomes. Full article
Show Figures

Graphical abstract

8 pages, 2204 KB  
Article
Process and Mechanism of Surface Brazing of Graphene on Aluminum Nitride
by Wenbo Li, Zijia Wang, Xinyun Wu, Deren Kong, Chundong Xu, Yugang Yin and Jing Lv
Coatings 2025, 15(9), 1011; https://doi.org/10.3390/coatings15091011 - 1 Sep 2025
Viewed by 474
Abstract
In order to enhance the heat dissipation of a chip, this work investigates the enhancement of the thermal homogenization effect of a ceramic substrate with a high-thermal-conductivity graphene material to improve the interfacial heat transfer performance. AgCuTi-activated brazing material is used to connect [...] Read more.
In order to enhance the heat dissipation of a chip, this work investigates the enhancement of the thermal homogenization effect of a ceramic substrate with a high-thermal-conductivity graphene material to improve the interfacial heat transfer performance. AgCuTi-activated brazing material is used to connect the graphene film/AlN. The mechanism of the influence of brazing temperatures on the microstructure and thermal conductivity of joints is discussed. The thermal conductivity of the graphene/AlN double layer composite brazed at 890 °C for 10 min holding time was the highest at 482.3 W m−1 K−1. This study provides a new solution for the application of AlN ceramics in high-heat-flow scenarios. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

14 pages, 8738 KB  
Article
Electromagnetic Wave Absorption Properties of Cation-Substituted Ba0.5Sr0.5Zn2−xMexFe16O27 (Me = Fe, Ni, Co, Cu, Mn) W-Type Hexagonal Ferrites
by Jae-Hee Heo and Young-Min Kang
Appl. Sci. 2025, 15(17), 9586; https://doi.org/10.3390/app15179586 - 30 Aug 2025
Viewed by 476
Abstract
W-type hexaferrites with compositions Ba0.5Sr0.5Zn2-xMexFe16O27 (Me = Fe, Ni, Co, Cu, Mn; x = 1) and Ba0.5Sr0.5Zn2−xMnxFe16O27 (x [...] Read more.
W-type hexaferrites with compositions Ba0.5Sr0.5Zn2-xMexFe16O27 (Me = Fe, Ni, Co, Cu, Mn; x = 1) and Ba0.5Sr0.5Zn2−xMnxFe16O27 (x = 0–2.0) were synthesized via solid-state reaction and optimized using a two-step calcination process to obtain single-phase or nearly single-phase structures. Their electromagnetic (EM) wave absorption properties were investigated by fabricating composites with 10 wt% epoxy and measuring the complex permittivity and permeability across two frequency bands: 0.1–18 GHz and 26.5–40 GHz. Reflection loss (RL) was calculated and visualized as two-dimensional (2D) maps with respect to frequency and sample thickness. In the 0.1–18 GHz range, only the Co-substituted sample exhibited strong ferromagnetic resonance (FMR) and broadband absorption, achieving a minimum RL of −41.5 dB at 4.84 GHz and a −10 dB bandwidth of 11.8 GHz. In contrast, the other Ba0.5Sr0.5Zn2-xMexFe16O27 samples (Me = Fe, Mn, Ni, Cu) showed no significant absorption in this range due to the absence of FMR. However, all these samples clearly exhibited FMR characteristics and distinct absorption peaks in the 26.5–40 GHz range, particularly the Mn-substituted series, which demonstrated RL values below −10 dB over the 32.0–40 GHz range with absorber thicknesses below 1 mm. The FMR frequency varied depending on the substitution type and amount. In the Mn-substituted series, the FMR frequency was lowest at x = 1.0 and increased as x deviated from this composition. This study confirms the potential of Co-free W-type hexaferrites as efficient, cost-effective, and broadband EM wave absorbers in the 26.5–40 GHz range. Full article
(This article belongs to the Topic Advanced Composite Materials)
Show Figures

Figure 1

13 pages, 3028 KB  
Article
Unveiling Brass-Doped CoSb3-Based Thermoelectric Materials Using Solid-State Reaction
by Dan Zhao, Yonghua Ji, Bingke Qin, Jiaxin Fan, Xiaodong Lv and Run Huang
Materials 2025, 18(17), 3928; https://doi.org/10.3390/ma18173928 - 22 Aug 2025
Viewed by 520
Abstract
Skutterudite (CoSb3)-based thermoelectric materials are regarded as one of the most promising candidates for mid-temperature commercial thermoelectric applications, thanks to their excellent electrical performance and alloy-based attributes. By utilizing techniques such as doping, microstructure design, and high-temperature solid-state reactions, synthesis of [...] Read more.
Skutterudite (CoSb3)-based thermoelectric materials are regarded as one of the most promising candidates for mid-temperature commercial thermoelectric applications, thanks to their excellent electrical performance and alloy-based attributes. By utilizing techniques such as doping, microstructure design, and high-temperature solid-state reactions, synthesis of Brassx/Co4Sb11.5Te0.5 (x = 0.1, 0.3, 0.5, 0.7, representing wt%) in composite form can be rapidly achieved. XRD analysis indicates that the prepared Brassx/Co4Sb11.5Te0.5 samples primarily exhibit the CoSb3 crystal structure, with the formation of minor impurity phases such as Cu13Te7 and ZnTe. SEM and EDS analyses reveal that the sample is composed of nanoscale equiaxed grains, some of which are micrometer in size, with a large number of microporous structures distributed uniformly, forming abundant grain boundaries. By co-doping with brass and tellurium (Te), the carrier concentration can be effectively regulated, thereby enhancing the power factor of CoSb3-based thermoelectric materials. Meanwhile, the introduction of nanostructures, grain boundaries, and defects optimizes the microstructure of the samples, leading to a reduction in the lattice thermal conductivity of the CoSb3-based thermoelectric materials. At a testing temperature of 781 K, Brass0.1/Co4Sb11.5Te0.5 achieved a maximum power factor of 1.86 mW·m−1·K−2, a minimum lattice thermal conductivity of 1.02 W/(mK), and a maximum thermoelectric figure of merit ZT of 0.81. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

16 pages, 4749 KB  
Article
High Thermal Conductivity Diamond–Copper Composites Prepared via Hot Pressing with Tungsten–Coated Interfacial Layer Optimization
by Qiang Wang, Zhijie Ye, Lei Liu, Jie Bai, Yuning Zhao, Qiang Hu, Hong Liu, Lang Hu, Xiaodong Guo, Yongneng Xiao, Wenxin Cao and Zhenhuai Yang
Materials 2025, 18(16), 3882; https://doi.org/10.3390/ma18163882 - 19 Aug 2025
Viewed by 679
Abstract
Diamond–copper composites, due to their exceptional thermal conductivity, hold significant potential in the field of electronic device thermal management. Hot-press sintering is a promising fabrication technique with industrial application prospects; however, the thermal conductivity of composites prepared by this method has yet to [...] Read more.
Diamond–copper composites, due to their exceptional thermal conductivity, hold significant potential in the field of electronic device thermal management. Hot-press sintering is a promising fabrication technique with industrial application prospects; however, the thermal conductivity of composites prepared by this method has yet to reach optimal levels. In this study, tungsten was deposited on the surface of diamond particles by magnetron sputtering as an interfacial transition layer, and hot-press sintering was employed to fabricate the composites. The findings reveal that with prolonged annealing time, tungsten gradually transformed into W2C and WC, significantly enhancing interfacial bonding strength. When the diamond volume content was 50% and the interfacial coating consisted of 2 wt.% W, 92 wt.% WC, and 6 wt.% W2C, the composite exhibited a thermal conductivity of 640 W/(m·K), the highest value reported among hot-press sintered composites with diamond content below 50%. Additionally, the AMM (Acoustic Mismatch Model) and DMM (Diffusion Mismatch Model) models were utilized to calculate the interfacial thermal conductance between different phases, identifying the optimal interfacial structure as diamond/W2C/WC/W2C/Cu. This composite material shows potential for application in high-power electronic device cooling, thermal management systems, and thermoelectric conversion, providing a more efficient thermal dissipation solution for related devices. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

15 pages, 5348 KB  
Article
High-Performance Asymmetric Supercapacitor Based on a Bilayer Cu0.7Zn0.3CoNiSyO4−y/Ni3S2 Electrode
by Anastassiya Migunova, Maratbek Gabdullin, Renata Nemkayeva and Khabibulla Abdullin
Energies 2025, 18(16), 4348; https://doi.org/10.3390/en18164348 - 15 Aug 2025
Viewed by 540
Abstract
Supercapacitors have begun to successfully compete with Li-ion batteries in various portable energy storage applications, owing to their ability to enable fast charging, deliver high power and energy, and offer an exceptionally long cycle life. This paper presents the results of a study [...] Read more.
Supercapacitors have begun to successfully compete with Li-ion batteries in various portable energy storage applications, owing to their ability to enable fast charging, deliver high power and energy, and offer an exceptionally long cycle life. This paper presents the results of a study on the performance of a positive electrode composed of a CuxZn1−xCoNiSyO4−y whisker layer and an underlying porous Ni3S2 layer, synthesized in a single step via the hydrothermal method. The coating with the nominal composition Cu0.7Zn0.3CoNiS3O/Ni3S2 exhibited a high specific capacitance of 4.10 C cm−2 at a current density of 2 mA cm−2 or 9535 F g−1 at a current density of 1 A g−1, attributed to the synergistic contribution of both layers and the optimized ratio of the four transition metals in the sulfoxide matrix. The assembled asymmetric supercapacitor (ASC), employing the obtained composite as the positive electrode and activated carbon as the negative electrode, exhibited a specific capacitance of 115 F g−1 (200 C g−1). It achieved a high energy density of 48.3 Wh kg−1 at a power density of 870 W kg−1. After 20,000 charge–discharge cycles at a current density of 10 A g−1, the ASC retained 74% of its initial capacitance, highlighting the potential of the CuxZn1−xCoNiSyO4−y electrode for high-performance energy storage applications. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

13 pages, 3182 KB  
Article
Improved Electrochemical Performance Using Transition Metal Doped ZnNi/Carbon Nanotubes as Conductive Additive in Li/CFx Battery
by Fangmin Wang, Jiayin Li, Yuxin Zheng, Xue Dong, Yuzhen Zhao, Zemin He, Manni Li, Lei Lin, Danyang He, Zongcheng Miao, Haibo Zhang, Hua Tan and Jianfeng Huang
Catalysts 2025, 15(8), 758; https://doi.org/10.3390/catal15080758 - 8 Aug 2025
Viewed by 609
Abstract
Lithium/carbon fluoride (Li/CFx) batteries are promising for specialized applications due to their high theoretical capacity (>865 mAh·g−1) and energy density. However, their practical deployment is hindered by the intrinsically low conductivity of CFx and sluggish reaction kinetics. While [...] Read more.
Lithium/carbon fluoride (Li/CFx) batteries are promising for specialized applications due to their high theoretical capacity (>865 mAh·g−1) and energy density. However, their practical deployment is hindered by the intrinsically low conductivity of CFx and sluggish reaction kinetics. While conventional conductive additives improve electron transport, their physical mixing with active materials yields weak interfacial contacts and fails to catalytically facilitate C–F bond cleavage. To address these dual limitations, this study proposes a dual-functional conductive-catalytic additive strategy. We engineered zinc-nickel/carbon nanotube (ZnNi/CNT) composites modified with transition metal dopants (Fe, W, Cu) to integrate conductive networks with nanoscale-dispersed catalytic sites. Fe-doped ZnNi/CNT (ZnFeNiC) emerged as the optimal system, delivering a discharge plateau of 2.45 V and a specific capacity of 810.3 mAh·g−1 at 0.1 C. This performance is attributed to Fe-doping accelerates Li+ diffusion, and promotes reversible Ni redox transitions (Ni2+↔Ni0) that catalyze C–F bond dissociation. This work establishes a design paradigm for high-performance Li/CFx batteries, bridging the gap between conductive enhancement and catalytic activation. Full article
Show Figures

Figure 1

39 pages, 8119 KB  
Article
Magmatic Redox Evolution and Porphyry–Skarn Transition in Multiphase Cu-Mo-W-Au Systems of the Eocene Tavşanlı Belt, NW Türkiye
by Hüseyin Kocatürk, Mustafa Kumral, Hüseyin Sendir, Mustafa Kaya, Robert A. Creaser and Amr Abdelnasser
Minerals 2025, 15(8), 792; https://doi.org/10.3390/min15080792 - 28 Jul 2025
Viewed by 750
Abstract
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite [...] Read more.
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite mineral chemistry, the petrogenetic controls on mineralization across four spatially associated mineralized regions (Kirazgedik, Güneybudaklar, Kozbudaklar, and Delice) were examined. The earliest and thermally most distinct phase is represented by the Kirazgedik porphyry system, characterized by high temperature (~930 °C), oxidized quartz monzodioritic intrusions emplaced at ~2.7 kbar. Rising fO2 and volatile enrichment during magma ascent facilitated structurally focused Cu-Mo mineralization. At Güneybudaklar, Re–Os geochronology yields an age of ~49.9 Ma, linking Mo- and W-rich mineralization to a transitional porphyry–skarn environment developed under moderately oxidized (ΔFMQ + 1.8 to +0.5) and hydrous (up to 7 wt.% H2O) magmatic conditions. Kozbudaklar represents a more reduced, volatile-poor skarn system, leading to Mo-enriched scheelite mineralization typical of late-stage W-skarns. The Delice system, developed at the contact of felsic cupolas and carbonates, records the broadest range of redox and fluid compositions. Mixed oxidized–reduced fluid signatures and intense fluid–rock interaction reflect complex, multistage fluid evolution involving both magmatic and external inputs. Geochemical and mineralogical trends—from increasing silica and Rb to decreasing Sr and V—trace a systematic evolution from mantle-derived to felsic, volatile-rich magmas. Structurally, mineralization is controlled by oblique fault zones that localize magma emplacement and hydrothermal flow. These findings support a unified genetic model in which porphyry and skarn mineralization styles evolved continuously from multiphase magmatic systems during syn-to-post-subduction processes, offering implications for exploration models in the Western Tethyan domain. Full article
Show Figures

Figure 1

20 pages, 10028 KB  
Article
The Fabrication of Cu2O-u/g-C3N4 Heterojunction and Its Application in CO2 Photoreduction
by Jiawei Lu, Yupeng Zhang, Fengxu Xiao, Zhikai Liu, Youran Li, Guiyang Shi and Hao Zhang
Catalysts 2025, 15(8), 715; https://doi.org/10.3390/catal15080715 - 27 Jul 2025
Viewed by 836
Abstract
Over efficient photocatalysts, CO2 photoreduction typically converts CO2 into low-carbon chemicals, which serve as raw materials for downstream synthesis processes. Here, an efficient composite photocatalyst heterojunction (Cu2O-u/g-C3N4) has been fabricated to reduce CO2. [...] Read more.
Over efficient photocatalysts, CO2 photoreduction typically converts CO2 into low-carbon chemicals, which serve as raw materials for downstream synthesis processes. Here, an efficient composite photocatalyst heterojunction (Cu2O-u/g-C3N4) has been fabricated to reduce CO2. Graphitic carbon nitride (g-C3N4) was synthesized via thermal polymerization of urea at 550 °C, while pre-dispersed Cu2O derived from urea pyrolysis (Cu2O-u) was prepared by thermal reduction of urea and CuCl2·2H2O at 180 °C. The heterojunction Cu2O-u/g-C3N4 was subsequently constructed through hydrothermal treatment at 180 °C. This heterojunction exhibited a bandgap of 2.10 eV, with dual optical absorption edges at 485 nm and above 800 nm, enabling efficient harvesting of solar light. Under 175 W mercury lamp irradiation, the heterojunction catalyzed liquid-phase CO2 photoreduction to formic acid, acetic acid, and methanol. Its formic acid production activity surpassed that of pristine g-C3N4 by 3.14-fold and TiO2 by 8.72-fold. Reaction media, hole scavengers, and reaction duration modulated product selectivity. In acetonitrile/isopropanol systems, formic acid and acetic acid production reached 579.4 and 582.8 μmol·h−1·gcat−1. Conversely, in water/triethanolamine systems, methanol production reached 3061.6 μmol·h−1·gcat−1, with 94.79% of the initial conversion retained after three cycles. Finally, this work ends with the conclusions of the CO2 photocatalytic reduction to formic acid, acetic acid, and methanol, and recommends prospects for future research. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

19 pages, 9988 KB  
Article
Research on Modification Technology of Laser Cladding Stellite6/Cu Composite Coating on the Surface of 316L Stainless Steel Plow Teeth
by Wenhua Wang, Qilang He, Wenqing Shi and Weina Wu
Micromachines 2025, 16(7), 827; https://doi.org/10.3390/mi16070827 - 20 Jul 2025
Cited by 1 | Viewed by 523
Abstract
Plow loosening machines are essential agricultural machinery in the agricultural production process. Improving the surface strengthening process and extending the working life of the plow teeth of the plow loosening machine are of great significance. In this paper, the preparation of Stellite6/Cu composite [...] Read more.
Plow loosening machines are essential agricultural machinery in the agricultural production process. Improving the surface strengthening process and extending the working life of the plow teeth of the plow loosening machine are of great significance. In this paper, the preparation of Stellite6/Cu composite coating on the surface of 316L steel substrate intended for strengthening the plow teeth of a plow loosening machine using laser cladding technology was studied. The influence of different laser process parameters on the microstructure and properties of Stellite6/Cu composite coating was investigated. The composite coating powder was composed of Stellite6 powder with a different weight percent of copper. Microstructural analysis, phase composition, elemental distribution, microhardness, wear resistance, and corrosion resistance of the composite coatings on the plow teeth were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), microhardness testing, energy dispersive spectroscopy (EDS), friction and wear testing, and electrochemical workstation measurements. The results showed that (1) When the laser power was 1000 W, the average hardness of the prepared Stellite6/Cu composite layer achieved the highest hardness, approximately 1.36 times higher than the average hardness of the substrate, and the composite coating prepared exhibited the best wear resistance; (2) When the scanning speed was 800 mm/min, the composite coating exhibited the lowest average friction coefficient and the optimal corrosion resistance in a 3.5% wt.% NaCl solution with a self-corrosion current density of −7.55 µA/cm2; (3) When the copper content was 1 wt.%, the composite coating achieved the highest average hardness with 515.2 HV, the lowest average friction coefficient with 0.424, and the best corrosion resistance with a current density of −8.878 µA/cm2. Full article
Show Figures

Figure 1

14 pages, 4290 KB  
Article
Multifunctional Green-Synthesized Cu2O-Cu(OH)2 Nanocomposites Grown on Cu Microfibers for Water Treatment Applications
by Hala Al-Jawhari, Nuha A. Alhebshi, Roaa Sait, Reem Altuwirqi, Laila Alrehaili, Noorah Al-Ahmadi and Nihal Elbialy
Micro 2025, 5(3), 33; https://doi.org/10.3390/micro5030033 - 5 Jul 2025
Viewed by 579
Abstract
Free-standing copper oxide (Cu2O)-copper hydroxide (Cu(OH)2) nanocomposites with enhanced catalytic and antibacterial functionalities were synthesized on copper mesh using a green method based on spinach leaf extract and glycerol. EDX, SEM, and TEM analyses confirmed the chemical composition and [...] Read more.
Free-standing copper oxide (Cu2O)-copper hydroxide (Cu(OH)2) nanocomposites with enhanced catalytic and antibacterial functionalities were synthesized on copper mesh using a green method based on spinach leaf extract and glycerol. EDX, SEM, and TEM analyses confirmed the chemical composition and morphology. The resulting Cu2O-Cu(OH)2@Cu mesh exhibited notable hydrophobicity, achieving a contact angle of 137.5° ± 0.6, and demonstrated the ability to separate thick oils, such as HD-40 engine oil, from water with a 90% separation efficiency. Concurrently, its photocatalytic performance was evaluated by the degradation of methylene blue (MB) under a weak light intensity of 5 mW/cm2, achieving 85.5% degradation within 30 min. Although its application as a functional membrane in water treatment may raise safety concerns, the mesh showed significant antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria under both dark and light conditions. Using the disk diffusion method, strong bacterial inhibition was observed after 24 h of exposure in the dark. Upon visible light irradiation, bactericidal efficiency was further enhanced—by 17% for S. aureus and 2% for E. coli. These findings highlight the potential of the Cu2O-Cu(OH)2@Cu microfibers as a multifunctional membrane for industrial wastewater treatment, capable of simultaneously removing oil, degrading organic dyes, and inactivating pathogenic bacteria through photo-assisted processes. Full article
Show Figures

Figure 1

21 pages, 2754 KB  
Article
Exploring Growth Phase Effect on Polysaccharide Composition and Metal Binding Properties in Parachlorella hussii
by Karima Guehaz, Zakaria Boual, Giulia Daly, Matilde Ciani, Hakim Belkhalfa and Alessandra Adessi
Polysaccharides 2025, 6(3), 58; https://doi.org/10.3390/polysaccharides6030058 - 2 Jul 2025
Viewed by 689
Abstract
Microalgae-based bioremediation is increasingly recognized as a sustainable, efficient, and straightforward technology. Despite this growing interest, the potential of Parachlorella hussii for metal biosorption remains underexplored. This study is the first report evaluating the metal biosorption activity in Parachlorella hussii ACOI 1508 (N9), [...] Read more.
Microalgae-based bioremediation is increasingly recognized as a sustainable, efficient, and straightforward technology. Despite this growing interest, the potential of Parachlorella hussii for metal biosorption remains underexplored. This study is the first report evaluating the metal biosorption activity in Parachlorella hussii ACOI 1508 (N9), highlighting the impact of the culture age on the monosaccharide composition and its correlation to the metal binding capacity. The capsular strain (N9) was isolated from the hypersaline ecosystem—Lake Chott Aïn El-Beida—in southeastern Algeria. Cultivated in Bold’s Basal medium, the strain produced 0.807 ± 0.059 g L−1 of RPSs and 1.975 ± 0.120 g L−1 of CPSs. Biochemical analysis of the extracts revealed a high total sugar content (% w/w) that ranged from 62.98 ± 4.87% to 95.60 ± 87% and a low protein content (% w/w) that ranged from 0.49 ± 0.08% to 1.35 ± 0.69%, with RPS-D7 and RPS-D14 having high molecular weight (≥2 MDa). HPLC-based monosaccharide characterization demonstrated compositional differences between the exponential and stationary phases, with rhamnose dominating (~55%) in RPS-D14 and with the presence of uronic acids comprising 7–11.3%. Metal removal efficiency was evaluated using the whole biomass in two growth phases. Copper uptake exhibited the highest capacity, reaching 18.55 ± 0.61 mg Cu g−1 DW at D14, followed by zinc removal with 6.52 ± 0.61 mg Zn g−1 DW. Interestingly, removal efficiencies increased to about twofold during the stationary phase, reaching 51.15 ± 1.14% for Cu, 51.08 ± 3.35% for Zn, and 36.55 ± 3.09% for Ni. The positive results obtained for copper/zinc removal highlight the biosorption potential of P. hussii, and notably, we found that the metal removal capacity significantly improved with culture age—a parameter that has been poorly investigated in prior studies. Furthermore, we observed a growth phase-dependent modulation in monosaccharide composition, which correlated with enhanced functional properties of the excreted biomolecules involved in biosorption. This metabolic adjustment suggests an adaptive response that may contribute to the species’ effectiveness in heavy metal uptake, underscoring its novelty and biotechnological relevance. Full article
Show Figures

Figure 1

30 pages, 3838 KB  
Article
Evidence of Organ-Specific Metal Accumulation: ICP-MS Elemental Analysis of Autopsy Tissues of Tobacco Smokers
by Wojciech Flieger, Przemysław Niedzielski, Zofia Wojciechowska, Aleksandra Proch, Jędrzej Proch, Alicja Forma, Andrzej Torbicz, Dariusz Majerek, Grzegorz Teresiński, Jacek Baj, Ryszard Maciejewski and Jolanta Flieger
Int. J. Mol. Sci. 2025, 26(13), 6368; https://doi.org/10.3390/ijms26136368 - 2 Jul 2025
Viewed by 898
Abstract
Cigarette smoking exposes individuals to numerous toxic substances, including heavy metals. Smokers are at risk due to the accumulation of these substances in various tissues. Objective: To compare the concentrations of 41 elements in 11 brain regions, the spinal cord, the bronchial, the [...] Read more.
Cigarette smoking exposes individuals to numerous toxic substances, including heavy metals. Smokers are at risk due to the accumulation of these substances in various tissues. Objective: To compare the concentrations of 41 elements in 11 brain regions, the spinal cord, the bronchial, the lungs, and the liver in smokers (n = 11) and non-smokers (n = 17). Elemental composition was determined by ICP-MS after wet digestion in a microwave system. The following toxic elements were detected at levels of µg/g w.w.: Al, Cd, Pb, Ba, As, Ni, and Tl. Significantly higher concentrations of Al were detected in bronchial and lung, and more Pb, Tl, and rare earth elements were detected in the liver of smokers compared to non-smokers. In addition, smokers had significantly lower concentrations of essential elements involved in antioxidant defense, such as Cu, in liver tissue (p = 0.033). The brain and spinal cord in smokers and non-smokers were similar in terms of chemical composition, except the insula, where smokers had greater Al accumulation (p = 0.030), the precentral gyrus, where higher amounts of As, Cd, and Mn were detected, and the septal nucleus accumbens, which preferentially accumulated Cd in smokers; however, the p-values indicate that these differences were not statistically significant. Most brain areas of smokers were characterized by higher Na content (p < 0.05). These findings prove the long-term effects of smoking, demonstrating the bioaccumulation of toxic elements, the increased levels of rare earth elements in the liver, decreased levels of elements involved in the body’s antioxidant defense, and disruption of sodium homeostasis in the brain of smokers. Full article
Show Figures

Figure 1

23 pages, 23602 KB  
Article
Exploration of the Supercapacitive Performance of 3D Flower-like Architecture of Quaternary CuNiCoZnO Developed on Versatile Substrates
by Priya G. Gaikwad, Nidhi Tiwari, Rajanish K. Kamat, Sadaf Jamal Gilani, Sagar M. Mane, Jaewoong Lee and Shriniwas B. Kulkarni
Micromachines 2025, 16(6), 645; https://doi.org/10.3390/mi16060645 - 28 May 2025
Viewed by 601
Abstract
The demand for high-performance supercapacitors has driven extensive research into novel electrode materials with superior electrochemical properties. This study explores the supercapacitive behavior of quaternary CuNiCoZnO (CNCZO) films engineered into a three-dimensional (3D) flower-like morphology and developed on versatile substrates, including carbon cloth, [...] Read more.
The demand for high-performance supercapacitors has driven extensive research into novel electrode materials with superior electrochemical properties. This study explores the supercapacitive behavior of quaternary CuNiCoZnO (CNCZO) films engineered into a three-dimensional (3D) flower-like morphology and developed on versatile substrates, including carbon cloth, stainless steel mesh, and nickel foam. The unique structural design, comprising interconnected nanosheets, enhances the electroactive surface area, facilitates ion diffusion, and improves charge storage capability. The synergistic effect of the multi-metallic composition contributes to remarkable electrochemical characteristics, including high specific capacitance, excellent rate capability, and outstanding cycling stability. Furthermore, the influence of different substrates on the electrochemical performance is systematically investigated to optimize material–substrate interactions. Electrochemical evaluations reveal outstanding specific capacitance values of 2318.5 F/g, 1993.7 F/g, and 2741.3 F/g at 2 mA/cm2 for CNCZO electrodes on stainless steel mesh, carbon cloth, and nickel foam, respectively, with capacitance retention of 77.3%, 95.7%, and 86.1% over 5000 cycles. Furthermore, a symmetric device of CNCZO@Ni exhibits a peak specific capacitance of 67.7 F/g at a current density of 4 mA/cm2, a power density of 717.4 W/kg, and an energy density of 25.6 Wh/kg, maintaining 84.5% stability over 5000 cycles. The straightforward synthesis of CNCZO on multiple substrates presents a promising route for the development of flexible, high-performance energy storage devices. Full article
(This article belongs to the Special Issue Energy Conversion and Storage Devices: Materials and Applications)
Show Figures

Figure 1

16 pages, 8657 KB  
Article
Tailoring Microstructure and Properties of W-Mo-Cu Composites Fabricated via Infiltration Sintering: Effects of Graphene Addition and Skeleton Relative Density
by Jinwen Cai, Qiaoling Jiang, Keqin Feng and Hongling Zhou
Materials 2025, 18(11), 2539; https://doi.org/10.3390/ma18112539 - 28 May 2025
Viewed by 544
Abstract
W-Mo-Cu composites show promise for advanced applications, but their properties require optimization. In this study, a novel approach utilizing Cu-coated graphene (Cu@Gr) reinforcement with skeleton relative density adjustment was employed to tailor the microstructure and properties of W-Mo-Cu composites fabricated via infiltration sintering [...] Read more.
W-Mo-Cu composites show promise for advanced applications, but their properties require optimization. In this study, a novel approach utilizing Cu-coated graphene (Cu@Gr) reinforcement with skeleton relative density adjustment was employed to tailor the microstructure and properties of W-Mo-Cu composites fabricated via infiltration sintering (1300 °C, 1.5 h). The results revealed that Cu@Gr significantly promoted sintering densification, modified the phase composition, and enhanced the properties of the composite. Specifically, the addition of 0.4 wt.% Cu@Gr resulted in a relative density of 98% for the composite, representing an 8% increase compared to the material without Cu@Gr. Furthermore, when higher amounts of Cu@Gr were incorporated, the composite consistently exhibited a high degree of densification. In addition to the primary W, Mo, and Cu phases, molybdenum carbide, Mo2C, was formed at 0.4 wt.% Cu@Gr, with its content rising proportionally to graphene dosage. Notably, the composite containing 0.6 wt.% Cu@Gr exhibits the highest thermal conductivity and electrical conductivity, showing 64% and 73% increases, respectively, versus Cu@Gr-free samples. Additionally, although W-Mo green compact density variations (73–85%) did not compromise graphene-induced densification, a higher green compact density reduced the thermal/electrical conductivities but increased the hardness. These findings demonstrate that controlled Cu@Gr incorporation and green compact optimization synergistically improve the properties of W-Mo-Cu composites, providing insights into high-performance material design. Full article
Show Figures

Figure 1

Back to TopTop