Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = ZnO/WSe2 heterostructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3541 KB  
Article
Effects of Vacancy Defects on Electrical and Optical Properties of ZnO/WSe2 Heterostructure: First-Principles Study
by Xi Yong, Ao Wang, Lichuan Deng, Xiaolong Zhou and Jintao Li
Metals 2022, 12(11), 1975; https://doi.org/10.3390/met12111975 - 18 Nov 2022
Cited by 3 | Viewed by 2371
Abstract
In this work, based on the first principles calculation of density functional theory (DFT), we studied the band structure changes of monolayer ZnO and ZnO/WSe2 before and after vacancy generation, and systematically studied the vacancy formation energy, band structure, density of states, [...] Read more.
In this work, based on the first principles calculation of density functional theory (DFT), we studied the band structure changes of monolayer ZnO and ZnO/WSe2 before and after vacancy generation, and systematically studied the vacancy formation energy, band structure, density of states, electronic density difference and optical properties of ZnO/WSe2 heterostructure before and after vacancy generation. The results show that the band structures of ZnO, WSe2, and ZnO/WSe2 heterostructure are changed after the formation of Zn, O, W, and Se vacancies. The bandgap of the ZnO/WSe2 heterostructure can be effectively controlled, the transition from direct to indirect bandgap semiconductor will occur, and the heterostructure will show metallic properties. The optical properties of heterostructure have also changed significantly, and the absorption capacity of heterostructure to infrared light has been greatly increased with red shift and blue shift respectively. The generation of vacancy changes the electrical and optical properties of ZnO/WSe2 heterostructure, which provides a feasible strategy for adjusting the photoelectric properties of two-dimensional optoelectronic nano devices and has good potential and broad application prospects. Full article
Show Figures

Figure 1

9 pages, 6611 KB  
Article
Hybrid Density Functional Study on the Photocatalytic Properties of Two-dimensional g-ZnO Based Heterostructures
by Guangzhao Wang, Dengfeng Li, Qilong Sun, Suihu Dang, Mingmin Zhong, Shuyuan Xiao and Guoshuai Liu
Nanomaterials 2018, 8(6), 374; https://doi.org/10.3390/nano8060374 - 28 May 2018
Cited by 18 | Viewed by 4377
Abstract
In this work, graphene-like ZnO (g-ZnO)-based two-dimensional (2D) heterostructures (ZnO/WS2 and ZnO/WSe2) were designed as water-splitting photocatalysts based on the hybrid density functional. The dependence of photocatalytic properties on the rotation angles and biaxial strains were investigated. The bandgaps of [...] Read more.
In this work, graphene-like ZnO (g-ZnO)-based two-dimensional (2D) heterostructures (ZnO/WS2 and ZnO/WSe2) were designed as water-splitting photocatalysts based on the hybrid density functional. The dependence of photocatalytic properties on the rotation angles and biaxial strains were investigated. The bandgaps of ZnO/WS2 and ZnO/WSe2 are not obviously affected by rotation angles but by strains. The ZnO/WS2 heterostructures with appropriate rotation angles and strains are promising visible water-splitting photocatalysts due to their appropriate bandgap for visible absorption, proper band edge alignment, and effective separation of carriers, while the water oxygen process of the ZnO/WSe2 heterostructures is limited by their band edge positions. The findings pave the way to efficient g-ZnO-based 2D visible water-splitting materials. Full article
Show Figures

Graphical abstract

Back to TopTop