Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (206)

Search Parameters:
Keywords = abiotic and biotic surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 13395 KB  
Article
Fine Mapping of a Major Locus for Leaf Sheath Hairiness in Wheat Identifies TaSAIN1-4D as a Candidate Gene
by Lijuan Wu, Jundong He, Shian Shen, Yulin Li, Jinbai He and Xinkun Hu
Genes 2025, 16(9), 1117; https://doi.org/10.3390/genes16091117 - 20 Sep 2025
Viewed by 169
Abstract
Background/Objectives: Leaf sheath hairiness (LSH) is an adaptive trait in wheat that improves tolerance to biotic and abiotic stresses. Although trichome development has been extensively studied in model plants, the genetic basis of LSH in Triticeae crops remains poorly defined. Methods: [...] Read more.
Background/Objectives: Leaf sheath hairiness (LSH) is an adaptive trait in wheat that improves tolerance to biotic and abiotic stresses. Although trichome development has been extensively studied in model plants, the genetic basis of LSH in Triticeae crops remains poorly defined. Methods: In this study, the inheritance and genetic architecture of LSH were investigated. Two F2 populations were used, derived from crosses between the glabrous lines ‘Shumai 830’ and ‘Shumai 2262’ and the hairy line ‘Zhongkelanmai 1’. BSA-seq was combined with KASP marker genotyping to map and refine the trait locus. Candidate genes were evaluated through comparative genomics; sequence variation; and subcellular localization prediction. Results: Phenotypic evaluation revealed that LSH is a dominant trait, segregating at a 3:1 ratio in F2 populations. BSA-seq identified a major locus, QLsh.cwnu-4D, on chromosome 4DL. Fine mapping with KASP markers refined this region to a 1.67 Mb interval overlapping a 530 kb trichome-associated linkage disequilibrium block in Aegilops tauschii. Within this interval, TaSAIN1-4D, a salt-inducible protein unique to Triticeae, was identified as the strongest candidate gene. Extensive sequence variation among alleles (TaSAIN1-4Da; TaSAIN1-4Db; TaSAIN1-4Dc), including large insertions and multiple SNPs, indicated potential functional diversification. Predicted nuclear localization of TaSAIN1-4D supports a role in trichome regulation and stress adaptation. The co-dominant KASP marker K-cwnu-4D-502238348 was tightly linked to LSH and cosegregated perfectly, making it a reliable tool for marker-assisted selection. Conclusions: This study clarifies the genetic architecture of leaf sheath hairiness in wheat and identifies TaSAIN1-4D as a likely regulator. These findings provide a practical marker-assisted selection tool that can accelerate the development of improved wheat varieties with desirable leaf surface traits. Full article
(This article belongs to the Special Issue Genetic Research on Crop Stress Resistance and Quality Traits)
Show Figures

Figure 1

22 pages, 10187 KB  
Article
Box–Behnken-Assisted Optimization of High-Performance Liquid Chromatography Method for Enhanced Sugar Determination in Wild Sunflower Nectar
by Nada Grahovac, Milica Aleksić, Lato Pezo, Ana Đurović, Zorica Stojanović, Jelena Jocković and Sandra Cvejić
Separations 2025, 12(9), 244; https://doi.org/10.3390/separations12090244 - 7 Sep 2025
Viewed by 416
Abstract
Sunflower (Helianthus annuus L.) is a cross-pollinated species that relies on pollinators, attracted by itsnectar composition. Nectar consists primarily of sugars (up to 70%), with sucrose, glucose, and fructose being dominant, while minor components such as mannose, arabinose, xylose, and sugar alcohols [...] Read more.
Sunflower (Helianthus annuus L.) is a cross-pollinated species that relies on pollinators, attracted by itsnectar composition. Nectar consists primarily of sugars (up to 70%), with sucrose, glucose, and fructose being dominant, while minor components such as mannose, arabinose, xylose, and sugar alcohols (e.g., mannitol and inositol) occur in lower concentrations and vary with biotic and abiotic factors. This study developed a robust high-performance liquid chromatography method with refractive index detection (HPLC-RID) for the simultaneous quantification of eight sugars (D-ribose, xylose, arabinose, fructose, mannose, glucose, sucrose, and maltose) and two sugar alcohols (mannitol, meso-inositol) in wild sunflower nectar. A Box–Behnken design (BBD), coupled with response surface methodology (RSM), was used to systematically optimize column temperature (20–23 °C), acetonitrile concentration (80–85%), and flow rate (0.7–1 mL/min), while achieving baseline separation of critical sugar pairs, including the previously co-eluting glucose/mannitol and glucose/mannose. Satisfactory resolution (Rs > 1 for all analytes) was achieved under optimized separation conditions comprising a column temperature of 20 °C, 82.5% acetonitrile, and a flow rate of 0.766 mL/min. The RSM efficiently evaluated factor interactions to maximize chromatographic performance, resulting in an optimized protocol that provides a cost-effective and environmentally friendly alternative to conventional sugar analysis methods. Method validation confirmed satisfactory linearity across relevant concentration ranges (50–500 mg/L for most sugars; 50–5500 mg/L for fructose and glucose), with correlation coefficients (R) between 0.985 and 0.999. The limits of detection (LOD) and quantification (LOQ) for the analyzed sugars and sugar alcohols ranged from 4.04 to 19.46 mg/L and from 13.46 to 194.61 mg/L, respectively. Glucose exhibited the highest sensitivity showing LOD of 4.04 and LOQ of 13.46 mg/L, whereas mannose was identified as the least sensitive analyte, with LOD of 19.46 mg/L and LOQ of 194.61 mg/L. The described method represents a reliable tool for sugar and sugar alcohol analysis in sunflower nectar and can be extended to other plant and food matrices with suitable sample preparation. Full article
(This article belongs to the Special Issue Innovative Sustainable Methods for Food Component Extraction)
Show Figures

Graphical abstract

25 pages, 1928 KB  
Article
Hibiscus moscheutos L. Flower Petals Extract Phenolic Profile and In Vitro Antimicrobial, Biofilm Formation, Autoaggregation, Prebiotic, Genotoxicity, and Anti-Inflammatory Properties
by Patryk Kowalczyk, Elżbieta Klewicka, Joanna Milala, Lidia Piekarska-Radzik, Elżbieta Karlińska, Michał Sójka and Robert Klewicki
Molecules 2025, 30(17), 3569; https://doi.org/10.3390/molecules30173569 - 31 Aug 2025
Viewed by 1095
Abstract
The flowers of Hibiscus moscheutos L. are among the largest within the genus, and the plant contains numerous nutrients and phytochemicals that perform various structural and regulatory functions in the human body upon consumption. However, these properties remain insufficiently explored. In this study, [...] Read more.
The flowers of Hibiscus moscheutos L. are among the largest within the genus, and the plant contains numerous nutrients and phytochemicals that perform various structural and regulatory functions in the human body upon consumption. However, these properties remain insufficiently explored. In this study, the phenolic composition and in vitro biological activity of an ethanolic extract from H. moscheutos petals were investigated. The total phenolic content was 219.52 mg/g (HPLC method), including phenolic acids (5.17 mg/g), flavanols (59.18 mg/g), flavonols (93.09 mg/g), and anthocyanins (62.08 mg/g). Many species of the genus Staphylococcus, as well as two probiotic strains of Lacticaseibacillus spp., were sensitive to the extract’s effects (100 mg/mL), which appeared to be strain-dependent. The MIC values for Staphylococcus spp. ranged from 6.25 to 100.00 mg/mL, while for the two probiotic strains, they were 12.50 and 100.00 mg/mL, respectively. The extract did not show prebiotic activity. Nevertheless, it enhanced the biofilm-forming ability of both probiotic and pathogenic microbiota on abiotic (polystyrene) and biotic (mucin and gelatin) surfaces. The stimulation of Staphylococcus spp. biofilms is considered undesirable and may justify limiting the use of the extract, for example, in pharmaceutical or medical applications. At concentrations above 25 mg/mL, the extract reduced bacterial autoaggregation. It also exhibited low genotoxicity in the Ames test and demonstrated anti-inflammatory activity comparable to sodium diclofenac. Hibiscus petal extracts might represent a promising source of bioactive compounds for novel pharmaceutical, nutraceutical, and food applications; however, their potential requires further in-depth investigation. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—3rd Edition)
Show Figures

Graphical abstract

20 pages, 4050 KB  
Article
Biological Features, Antimicrobial Susceptibility and Phenotypic Characterization of Candidozyma auris CDC B11903 Grown at Different Temperatures
by Terenzio Cosio, Natalia Pedretti, Luca Spaggiari, Luigi Tordelli Ruda, Samyr Kenno, Samuele Sabbatini, Enrico Salvatore Pistoia, Manola Comar, Claudia Monari, Andrea Ardizzoni, Roberta Gaziano and Eva Pericolini
J. Fungi 2025, 11(9), 625; https://doi.org/10.3390/jof11090625 - 26 Aug 2025
Viewed by 721
Abstract
Thermo-tolerance is a virulence factor responsible for the emergence of new fungal pathogens, including Candidozyma auris (formerly classified as Candida auris, C. auris). It has been shown that in C. auris the thermo-tolerance, as well as other virulence traits, such as [...] Read more.
Thermo-tolerance is a virulence factor responsible for the emergence of new fungal pathogens, including Candidozyma auris (formerly classified as Candida auris, C. auris). It has been shown that in C. auris the thermo-tolerance, as well as other virulence traits, such as the ability to aggregate, to form pseudo-hyphae, or to produce melanin are strain-specific features. Here, we investigated the impact of different temperatures (25 °C, 37 °C and 42 °C) on the phenotypic and virulence profile of C. auris strain CDC B11903. The results show a positive correlation between the resistance to antifungals and increasing temperature from 25 °C to 37 °C, while no differences were observed between 37 °C and 42 °C, except for Anidulafungin. Furthermore, C. auris growth was impaired at 25 °C as compared to 37 °C and 42 °C. Except for the haemolytic activity, which increased with rising temperatures, phospholipase, lipase and biofilm production were found at all tested temperatures. Moreover, the ability to produce melanin was observed only at 37 °C and 42 °C. The capacity to grow as pseudo-hyphae or in clusters and to adhere to both biotic and abiotic surfaces were observed at all the temperatures tested, with increased propensity of C. auris to adhere to abiotic surfaces with rising temperatures. The results underline the thermo-tolerance of C. auris strain B11903 and its increased virulence profile at human body temperature both in physiological (37 °C) and febrile state (42 °C). Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

21 pages, 3781 KB  
Article
Environmental Effects on Bacterial Community Assembly in Arid and Semi-Arid Grasslands
by Shenggang Chen, Yaqi Zhang, Jun Ma, Mingyue Bai, Yinglong Chen, Jianbin Guo and Lin Chen
Microorganisms 2025, 13(8), 1934; https://doi.org/10.3390/microorganisms13081934 - 19 Aug 2025
Viewed by 616
Abstract
Studying the effects of environmental factors on microbial community assemblies is crucial for understanding microbial biodiversity and ecosystem processes. Although numerous studies have explored the spatial patterns of microbial communities in surface soils, bacterial community distributions in subsurface layers remain poorly understood. We [...] Read more.
Studying the effects of environmental factors on microbial community assemblies is crucial for understanding microbial biodiversity and ecosystem processes. Although numerous studies have explored the spatial patterns of microbial communities in surface soils, bacterial community distributions in subsurface layers remain poorly understood. We investigated multiple community metrics of soil bacteria in arid and semi-arid grasslands in China, and the V4 region of 16S rDNA was analyzed using soil property measurements, fluorescent PCR, and high-throughput sequencing techniques. Specifically, copiotrophic taxa dominate the topsoil, whereas oligotrophic taxa are prevalent in nutrient-limited subsoil. Bacterial diversity decreases from the topsoil to subsoil, and bacterial distribution and ecological community composition exhibit a strong dependence on environmental factors. Moreover, microbial interaction networks demonstrated a progressive simplification with increasing soil depth: topsoil communities displayed higher modularity and a greater prevalence of positive interactions, whereas subsoil networks were significantly less complex. Null model analyses evidenced assembly mechanisms: deterministic processes (particularly homogeneous selection) dominated the bacterial community assembly, but their influence weakened with depth, whereas stochastic processes (e.g., dispersal limitation) increased progressively from the topsoil to subsoil. The PLS-PM analysis demonstrated that the relative influence of abiotic factors (e.g., climatic conditions and nutrient availability), biotic factors (interspecific interactions), along with drift and dispersal limitations on fungal community assembly exhibited depth-dependent patterns. This study provides novel insights into the vertical stratification of bacterial community in arid and semi-arid grasslands, and advances our understanding of pedogenic process under climate change and microbial adaptive strategies in heterogeneous soil environments. Full article
Show Figures

Figure 1

17 pages, 1396 KB  
Article
Dose-Dependent Effect of the Polyamine Spermine on Wheat Seed Germination, Mycelium Growth of Fusarium Seed-Borne Pathogens, and In Vivo Fusarium Root and Crown Rot Development
by Tsvetina Nikolova, Dessislava Todorova, Tzenko Vatchev, Zornitsa Stoyanova, Valya Lyubenova, Yordanka Taseva, Ivo Yanashkov and Iskren Sergiev
Agriculture 2025, 15(15), 1695; https://doi.org/10.3390/agriculture15151695 - 6 Aug 2025
Viewed by 583
Abstract
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus [...] Read more.
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus Fusarium. This situation threatens yield and grain quality through root and crown rot. While conventional chemical fungicides face resistance issues and environmental concerns, biological alternatives like seed priming with natural metabolites are gaining attention. Polyamines, including putrescine, spermidine, and spermine, are attractive priming agents influencing plant development and abiotic stress responses. Spermine in particular shows potential for in vitro antifungal activity against Fusarium. Optimising spermine concentration for seed priming is crucial to maximising protection against Fusarium infection while ensuring robust plant growth. In this research, we explored the potential of the polyamine spermine as a seed treatment to enhance wheat resilience, aiming to identify a sustainable alternative to synthetic fungicides. Our findings revealed that a six-hour seed soak in spermine solutions ranging from 0.5 to 5 mM did not delay germination or seedling growth. In fact, the 5 mM concentration significantly stimulated root weight and length. In complementary in vitro assays, we evaluated the antifungal activity of spermine (0.5–5 mM) against three Fusarium species. The results demonstrated complete inhibition of Fusarium culmorum growth at 5 mM spermine. A less significant effect on Fusarium graminearum and little to no impact on Fusarium oxysporum were found. The performed analysis revealed that the spermine had a fungistatic effect against the pathogen, retarding the mycelium growth of F. culmorum inoculated on the seed surface. A pot experiment with Bulgarian soft wheat cv. Sadovo-1 was carried out to estimate the effect of seed priming with spermine against infection with isolates of pathogenic fungus F. culmorum on plant growth and disease severity. Our results demonstrated that spermine resulted in a reduced distribution of F. culmorum and improved plant performance, as evidenced by the higher fresh weight and height of plants pre-treated with spermine. This research describes the efficacy of spermine seed priming as a novel strategy for managing Fusarium root and crown rot in wheat. Full article
Show Figures

Figure 1

20 pages, 6058 KB  
Article
The GPI-Anchored Aspartyl Proteases Encoded by the YPS1 and YPS7 Genes of Candidozyma auris and Their Role Under Stress Conditions
by Alvaro Vidal-Montiel, Daniel Clark-Flores, Eulogio Valentín-Gómez, Juan Pedro Luna-Arias, Erika Rosales-Cruz, César Hernández-Rodríguez, Lourdes Villa-Tanaca and Margarita Juárez-Montiel
J. Fungi 2025, 11(8), 573; https://doi.org/10.3390/jof11080573 - 1 Aug 2025
Viewed by 837
Abstract
Candidozyma auris is a multidrug-resistant, thermo- and osmotolerant yeast capable of persisting on biotic and abiotic surfaces, attributes likely linked to its cell wall composition. Here, seven putative genes encoding yapsins, aspartyl proteases GPI-anchored to the membrane or cell wall, were identified in [...] Read more.
Candidozyma auris is a multidrug-resistant, thermo- and osmotolerant yeast capable of persisting on biotic and abiotic surfaces, attributes likely linked to its cell wall composition. Here, seven putative genes encoding yapsins, aspartyl proteases GPI-anchored to the membrane or cell wall, were identified in the genomes of C. auris CJ97 and 20-1498, from clades III and IV, respectively. The C. auris YPS1 gene is orthologous to the SAP9 of C. albicans. The YPS7 gene is orthologous to YPS7 in C. glabrata and S. cerevisiae, so that they may share similar roles. An in silico analysis suggested an interaction between pepstatin and the catalytic domain of Yps1 and Yps7. Although this inhibitor, when combined with caffeine, had a subtle effect on the growth of C. auris, it induced alterations in the cell wall. CauYPS1 and CauYPS7 expression increased under nutrient starvation and NaCl, and at 42 °C. The transcriptome of the 20-1498 strain suggests that autophagy may play a role in thermal stress, probably degrading deleterious proteins or maintaining cell wall and vacuolar homeostasis. Therefore, CauYps1 and CauYps7 may play a role in the cell wall integrity of C. auris in stress conditions, and they could be a target of new antifungal or antivirulence agents. Full article
Show Figures

Graphical abstract

33 pages, 1864 KB  
Review
The Emerging Roles of Nanoparticles in Managing the Environmental Stressors in Horticulture Crops—A Review
by Mohamed K. Abou El-Nasr, Karim M. Hassan, Basma T. Abd-Elhalim, Dmitry E. Kucher, Nazih Y. Rebouh, Assiya Ansabayeva, Mostafa Abdelkader, Mahmoud A. A. Ali and Mohamed A. Nasser
Plants 2025, 14(14), 2192; https://doi.org/10.3390/plants14142192 - 15 Jul 2025
Cited by 1 | Viewed by 966
Abstract
The primary worldwide variables limiting plant development and agricultural output are the ever-present threat that environmental stressors such as salt (may trigger osmotic stress plus ions toxicity, which impact on growth and yield of the plants), drought (provokes water stress, resulting in lowering [...] Read more.
The primary worldwide variables limiting plant development and agricultural output are the ever-present threat that environmental stressors such as salt (may trigger osmotic stress plus ions toxicity, which impact on growth and yield of the plants), drought (provokes water stress, resulting in lowering photosynthesis process and growth rate), heavy metals (induced toxicity, hindering physiological processes also lowering crop quantity and quality), and pathogens (induce diseases that may significantly affect plant health beside productivity). This review explores the integrated effects of these stressors on plant productivity and growth rate, emphasizing how each stressor exceptionally plays a role in physiological responses. Owing to developments in technology that outclass traditional breeding methods and genetic engineering techniques, powerful alleviation strategies are vital. New findings have demonstrated the remarkable role of nanoparticles in regulating responses to these environmental stressors. In this review, we summarize the roles and various applications of nanomaterials in regulating abiotic and biotic stress responses. This review discusses and explores the relationship between various types of nanoparticles (metal, carbon-based, and biogenic) and their impact on plant physiology. Furthermore, we assess how nanoparticle technology may play a role in practices of sustainable agriculture by reducing the amount of compounds used, providing them with a larger surface area, highly efficient mass transfer abilities, and controlled, targeted delivery of lower nutrient or pesticide amounts. A review of data from several published studies leads to the conclusion that nanoparticles may act as a synergistic effect, which can effectively increase plant stress tolerance and their nutritional role. Full article
Show Figures

Figure 1

22 pages, 2245 KB  
Article
XPS Monitoring of Calcarenite Building Walls Long Exposed Outdoors: Estimation of Deterioration Trend from the Time Sequence of Curve-Fitted Spectra and PCA Exploration of the Large Dataset
by Maria A. Acquavia, Francesco Cardellicchio, Mariangela Curcio, Fausto Langerame, Anna M. Salvi, Laura Scrano and Carmen Tesoro
Appl. Sci. 2025, 15(14), 7741; https://doi.org/10.3390/app15147741 - 10 Jul 2025
Viewed by 316
Abstract
A temporal monitoring of monumental buildings in calcarenite, exposed outdoors in the considered Mediterranean environment of Southern Italy, was performed using XPS, the surface-specific technique. The methodology adopted to monitor the surfaces interacting with atmospheric agents and biotic/abiotic pollutants involved progressive sampling, extended [...] Read more.
A temporal monitoring of monumental buildings in calcarenite, exposed outdoors in the considered Mediterranean environment of Southern Italy, was performed using XPS, the surface-specific technique. The methodology adopted to monitor the surfaces interacting with atmospheric agents and biotic/abiotic pollutants involved progressive sampling, extended to about five years, from the walls of a new building, specifically installed in the immediate vicinity of an ancient farmhouse in an advanced state of degradation. Taking the ancient building as the final temporal reference, the aim was to obtain adequate information on the degradation processes of calcarenitic stones, from the initial and evolving phases of the new building towards those representative of the old reference. A large set of XPS data was obtained by resolving, through curve-fitting, the acquired spectra into component peaks, identified as ‘indicator’ chemical groups, which trend as a function of time, supported by PCA, demonstrates a close compositional similarity between the samples of the new building analyzed after 52 months from its installation and those of the ancient building dating back to over a century ago. The results obtained can be considered in the diagnostic strategy of the ongoing PNRR programs dedicated to the care of historical monuments and ecosystem sustainability. Full article
Show Figures

Figure 1

16 pages, 12272 KB  
Article
Cysteine-Mediated Root Growth Promotion in Strawberry (Fragaria × ananassa) Induced by TgSWO-Overexpressing Trichoderma
by Xiaohui Meng, Yuanhua Wang, Xu Zhang, Hongjun Yang, Yilei Lu, Ye Xu, Xiong Zhang and Zhiming Yan
Microorganisms 2025, 13(7), 1480; https://doi.org/10.3390/microorganisms13071480 - 26 Jun 2025
Viewed by 527
Abstract
Strawberry (Fragaria × ananassa) is a globally important economic crop valued for its nutritional and commercial significance. However, its growth is frequently challenged by various biotic and abiotic stresses. To enhance strawberry root development and resilience, we engineered a Trichoderma guizhouense [...] Read more.
Strawberry (Fragaria × ananassa) is a globally important economic crop valued for its nutritional and commercial significance. However, its growth is frequently challenged by various biotic and abiotic stresses. To enhance strawberry root development and resilience, we engineered a Trichoderma guizhouense NJAU4742 strain to overexpress the TgSWO gene, which encodes a plant cell-wall-loosening protein known to facilitate fungal penetration and colonization. Strawberry seedlings treated with the TgSWO-overexpressing T. guizhouense NJAU4742 strain (S-OE) exhibited significant improvements in shoot and root fresh weights, root surface area, and number of root tips, showing 1.37- to 2.00-fold increases compared with the strawberry seedlings inoculated with the wild-type T. guizhouense NJAU4742 (S-WT) and 2.00- to 3.44-fold increases compared with the uninoculated strawberry seedlings (S-CK). Field-emission scanning electron microscopy (SEM) of the S-OE roots revealed denser hyphal colonization. Transcriptome analysis of S-OE showed a decrease in genes related to defense and detoxification, while genes for cell-wall growth and hormone signaling increased, shifting focus from defense to growth. Metabolomic profiling identified cysteine as a key metabolite associated with induced growth, which was further validated through exogenous cysteine application experiments. This study highlights the potential of genetically enhanced Trichoderma for improving strawberry growth and provides new insights into root–microbe interactions and metabolite-mediated plant development. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

19 pages, 3010 KB  
Article
Heat Transmittance and Weathering Performance of Thermally Modified Fir Wood Exposed Outdoors
by Anastasia Ioakeimidou, Vasiliki Kamperidou and Ioannis Barboutis
Forests 2025, 16(6), 945; https://doi.org/10.3390/f16060945 - 4 Jun 2025
Viewed by 520
Abstract
In order to rationally utilize wood materials, increase wood quality, and mitigate drawbacks, research on industrial techniques for timber protection and preservation is essential on a European and global scale. When high-quality timber enters the market, it offers structures and objects that have [...] Read more.
In order to rationally utilize wood materials, increase wood quality, and mitigate drawbacks, research on industrial techniques for timber protection and preservation is essential on a European and global scale. When high-quality timber enters the market, it offers structures and objects that have considerable added value. This study examines the performance of thermally treated (6 h at 170 °C and 200 °C) softwood species (fir wood) when exposed outdoors and applied on wooden building structures as cladding timber, among other structures. International standards were applied for the characterization of the untreated and thermally treated wooden boards after the treatments in terms of physical, hygroscopic, and surface properties. In contrast, all the boards (of dimensions 390 × 75 × 20 mm in length, width, thickness respectively) were exposed outdoors to direct sunlight and a combination of biotic and abiotic factors for a six-month period to mainly investigate the thermal properties (heat transfer analysis/insulation properties) using a real-time test in situ, as well as to investigate their potential resistance to natural weathering (color, surface roughness, visual inspection, etc.). Heat transfer in the thermally treated wood specimens was found to be much slower than that in the untreated specimens, which, combined with lower hygroscopicity and higher dimensional stability, reveals the high potential of thermally treated wood utilization in outdoor applications, such as cladding, facades, frames, and other outdoor elements. Full article
Show Figures

Figure 1

28 pages, 59439 KB  
Article
The Middle–Late Permian to Late Cretaceous Mediterranean-Type Karst Bauxites of Western Iran: Authigenic Mineral Forming Conditions and Critical Raw Materials Potential
by Farhad Ahmadnejad, Giovanni Mongelli, Ghazal Rafat and Mohammad Sharifi
Minerals 2025, 15(6), 584; https://doi.org/10.3390/min15060584 - 29 May 2025
Cited by 1 | Viewed by 633
Abstract
The Sanandaj–Sirjan Zone and Zagros Fold–Thrust Belt in Iran host numerous Mediterranean-type karst bauxite deposits; however, their formation mechanisms and critical raw material potential remain ambiguous. This study combines mineralogical and geochemical analyses to explore (1) the formation of authigenic minerals, (2) the [...] Read more.
The Sanandaj–Sirjan Zone and Zagros Fold–Thrust Belt in Iran host numerous Mediterranean-type karst bauxite deposits; however, their formation mechanisms and critical raw material potential remain ambiguous. This study combines mineralogical and geochemical analyses to explore (1) the formation of authigenic minerals, (2) the role of microbial organic processes in Fe cycling, and (3) the assessment of their critical raw materials potential. Mineralogical analyses of the Late Cretaceous Daresard and Middle–Late Permian Yakshawa bauxites reveal distinct horizons reflecting their genetic conditions: Yakshawa exhibits a vertical weathering sequence (clay-rich base → ferruginous oolites → nodular massive bauxite → bleached cap), while Daresard shows karst-controlled profiles (breccia → oolitic-pisolitic ore → deferrified boehmite). Authigenic illite forms via isochemical reactions involving kaolinite and K-feldspar dissolution. Scanning electron microscopy evidence demonstrates illite replacing kaolinite with burial depth enhancing crystallinity. Diaspore forms through both gibbsite transformation and direct precipitation from aluminum-rich solutions under surface conditions in reducing microbial karst environments, typically associated with pyrite, anatase, and fluorocarbonates under neutral–weakly alkaline conditions. Redox-controlled Fe-Al fractionation governs bauxite horizon development: (1) microbial sulfate reduction facilitates Fe3⁺ → Fe2⁺ reduction under anoxic conditions, forming Fe-rich horizons, while (2) oxidative weathering (↑Eh, ↓moisture) promotes Al-hydroxide/clay enrichment in upper profiles, evidenced by progressive total organic carbon depletion (0.57 → 0.08%). This biotic–abiotic coupling ultimately generates stratified, high-grade bauxite. Finally, both the Yakshawa and Daresard karst bauxite ores are enriched in critical raw materials. It is worth noting that the overall enrichment appears to be mostly driven by the processes that led to the formation of the ores and not by the chemical features of the parent rocks. Divergent bauxitization pathways and early diagenetic processes—controlled by paleoclimatic fluctuations, redox shifts, and organic matter decay—govern critical raw material distributions, unlike typical Mediterranean-type deposits where parent rock composition dominates critical raw material partitioning. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

18 pages, 1313 KB  
Article
Characteristic of Virulence and Parameters of Mixed Biofilm Formed by Carbapenem-Resistant Pseudomonas aeruginosa and Proteus mirabilis Strains Isolated from Infected Chronic Wounds
by Jana Wełna, Marta Napiórkowska-Mastalerz, Michał Cyrankiewicz, Tomasz Bogiel and Joanna Kwiecińska-Piróg
Pathogens 2025, 14(6), 536; https://doi.org/10.3390/pathogens14060536 - 27 May 2025
Viewed by 631
Abstract
A biofilm is a group of bacterial cells in the polysaccharide matrix bonded to the surface (biotic or abiotic). Clinicians now realize that most infections are biofilm-related. Biofilm infections are often induced by more than one bacterial species. The aim of this study [...] Read more.
A biofilm is a group of bacterial cells in the polysaccharide matrix bonded to the surface (biotic or abiotic). Clinicians now realize that most infections are biofilm-related. Biofilm infections are often induced by more than one bacterial species. The aim of this study is to characterize a mixed biofilm composed of Pseudomonas aeruginosa and Proteus mirabilis strains. Forty-six isolates derived from chronic wound infections were cultivated to establish mature biofilms. The biofilm biomass and cell viability were measured by colorimetric assays. P. aeruginosa strains were tested for the presence of virulence and biofilm-related genes. The quorum sensing assay using the biosensor strain was also performed. A mixed biofilm of P. aeruginosa and P. mirabilis was visualized using fluorescence microscopy. Four groups of P. aeruginosa and P. mirabilis pairs, also visualized with fluorescence microscopy, were distinguished based on the biofilm biomass growth and metabolic activity loss. The exoY gene observed among P. aeruginosa isolates was connected to the metabolic activity loss of the biofilm. Generally, the interactions between P. aeruginosa and P. mirabilis species are not uniform. It is crucial to further research the interactions between microorganisms in biofilms. This may provide information on the mechanisms of biofilm formation in the complicated chronic wound environment. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

24 pages, 3004 KB  
Article
Growth Process and Mortality of Sasa borealis Seedlings over Six Years Following Mass Flowering and Factors Influencing Them
by Hanami Suzuki and Hisashi Kajimura
Biology 2025, 14(5), 516; https://doi.org/10.3390/biology14050516 - 7 May 2025
Viewed by 817
Abstract
The sexual reproduction of Sasa borealis, a species of dwarf bamboo, occurred in central Japan from 2016 to 2017. S. borealis grows on the forest floor and serves as an important source of habitat and food for various animals. Sexual reproduction occurs [...] Read more.
The sexual reproduction of Sasa borealis, a species of dwarf bamboo, occurred in central Japan from 2016 to 2017. S. borealis grows on the forest floor and serves as an important source of habitat and food for various animals. Sexual reproduction occurs in synchrony among individuals in a given area, leading to a decline in population and causing substantial disturbances to the forest ecosystem; however, the subsequent regeneration process remains unclear. In this study, we investigated S. borealis seedling regeneration over six years. Fixed plots were established in the forest in the year following the sexual reproductive event, and the growth of seedlings was monitored from seed emergence to seedling growth at the individual level. We considered biotic and abiotic factors to evaluate their influence on regeneration. We examined mammalian and arthropod foraging as biotic factors. Conversely, abiotic factors included temperature and humidity near the ground surface, solar radiation, soil conditions, and snow cover. Seedling growth was characterized by a slow rate and affected by morphological changes resulting from foraging and abiotic factors. The return of S. borealis to its presexual reproductive stage requires an extended duration. Our study provides precious information for future S. borealis conservation and management strategies. Full article
(This article belongs to the Special Issue Young Researchers in Ecology)
Show Figures

Graphical abstract

65 pages, 3461 KB  
Review
Pharmaceutical Contamination by Biofilms Formed of the Burkholderia cepacia Complex: Public Health Risks
by Giorgio Silva-Santana, Francisca Letícia Sousa Sales, Alícia Ribeiro Aguiar and Marcelo Luiz Lima Brandão
Processes 2025, 13(5), 1270; https://doi.org/10.3390/pr13051270 - 22 Apr 2025
Cited by 3 | Viewed by 3239
Abstract
Biofilms formation by the Burkholderia cepacia complex (Bcc) poses a considerable risk to hospital environments, particularly for immunocompromised individuals. These bacteria exhibit notable resistance to disinfectants and antibiotics, mainly due to their ability to adhere to biotic and abiotic surfaces, forming highly persistent [...] Read more.
Biofilms formation by the Burkholderia cepacia complex (Bcc) poses a considerable risk to hospital environments, particularly for immunocompromised individuals. These bacteria exhibit notable resistance to disinfectants and antibiotics, mainly due to their ability to adhere to biotic and abiotic surfaces, forming highly persistent biofilms, contamination, and pharmaceutical solutions. These microbial structures function as protective shields, impeding the effective action of antimicrobial compounds and facilitating the occurrence of chronic infections and outbreaks in healthcare settings. The high genetic plasticity of the Bcc, evidenced by the presence of multiple chromosomes and the ease of horizontal gene transfer, further enhances its capacity for adaptation and treatment resistance. Moreover, the ability of the Bcc to survive in aquatic environments and withstand unfavorable conditions heightens concerns regarding the contamination of pharmaceutical products. This study examines the molecular mechanisms underlying Bcc biofilm formation, its impact on hospital infections, and the challenges associated with its eradication. It also discusses the current detection techniques available and innovative approaches to mitigating contamination in pharmaceutical products. In summary, a thorough understanding of the mechanisms underlying Bcc biofilm formation and maintenance is crucial for implementing more effective preventive measures and minimizing the risks associated with hospital infections. Full article
(This article belongs to the Special Issue Microbial Biofilms: Latest Advances and Prospects)
Show Figures

Figure 1

Back to TopTop