Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (426)

Search Parameters:
Keywords = acid stripping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2574 KB  
Article
Co(II) Recovery from Hydrochloric Acid Solution Using Menthol-Based Deep Eutectic Solvents (DESs): Application to NMC Battery Recycling
by María Isabel Martín-Hernández, María Lourdes Rodríguez, Irene García-Díaz, Gorka Barquero-Carmona, Lorena Alcaraz, Olga Rodríguez-Largo and Félix A. López
Molecules 2025, 30(22), 4414; https://doi.org/10.3390/molecules30224414 - 14 Nov 2025
Abstract
Lithium-ion batteries are essential to ensure electric mobility and reduce CO2 emissions from transportation. One of the most commonly used chemistries is nickel–cobalt–manganese (NMC) batteries, which also have applications beyond the automotive sector. The recycling of these batteries requires the development of [...] Read more.
Lithium-ion batteries are essential to ensure electric mobility and reduce CO2 emissions from transportation. One of the most commonly used chemistries is nickel–cobalt–manganese (NMC) batteries, which also have applications beyond the automotive sector. The recycling of these batteries requires the development of technologies to enable the selective separation and recovery of the metals present in the battery. One of these selective technologies involves the use of deep eutectic solvents (DESs). This research study investigates the different parameters that influence the recovery of Co(II) from hydrochloric acid medium using the deep eutectic solvent 3 Aliquat 336:7 L-Menthol. Firstly, using synthetic Co(II) solutions, the parameters influencing the cobalt extraction process are examined, and then these optimal conditions are applied to the recovery of cobalt from solutions obtained by dissolving NMC 622 battery black mass in 10 M HCl. The obtained results show that the DES used is highly selective for Co(II) recovery compared to other metals present in the solution (Ni, Li and Mn), achieving recoveries of up to 90% of the cobalt initially present in solution. Stripping with H2SO4 0.5 M allows the recovery of cobalt as a crystalline monohydrate salt (CoSO4.H2O). The optimization of the Co/Cu separation conditions is carried out, achieving the separation of Cu(II) using Aliquat 336 in kerosene. Full article
Show Figures

Graphical abstract

9 pages, 2220 KB  
Communication
Stabilizing Zinc Anodes with Water-Soluble Polymers as an Electrolyte Additive
by Xueyan Li, Xiaojiang Chen, Senlong Zhang, Jinrong Wang, Zhuo Chen and Yuexian Song
Materials 2025, 18(21), 5040; https://doi.org/10.3390/ma18215040 - 5 Nov 2025
Viewed by 344
Abstract
Water-induced corrosion and zinc dendrite formation seriously disrupt the Zn plating/stripping process at the anode/electrolyte interface, which results in the instability of the Zn metal anode in aqueous zinc-ion batteries. To address the issues of the zinc metal anode, three water-soluble polymers with [...] Read more.
Water-induced corrosion and zinc dendrite formation seriously disrupt the Zn plating/stripping process at the anode/electrolyte interface, which results in the instability of the Zn metal anode in aqueous zinc-ion batteries. To address the issues of the zinc metal anode, three water-soluble polymers with different hydrophilic groups—polyacrylic acid (PAA), polyacrylamide (PAM), and polyethylene glycol (PEG)—were designed as electrolyte additives in ZnSO4 electrolytes. Among them, the PAA-based system exhibited an optimal electrochemical performance, achieving a stable cycling for more than 360 h at a current density of 5 mA cm−2 with an areal capacity of 2 mA h cm−2. This improvement could be attributed to its carboxyl groups, which effectively suppresses zinc dendrite growth, electrode corrosion, and side reactions, thereby enhancing the cycling performance of zinc-ion batteries. This work provides a reference for the optimization of zinc anodes in aqueous zinc-ion batteries. Full article
(This article belongs to the Topic Advanced Energy Storage in Aqueous Zinc Batteries)
Show Figures

Figure 1

20 pages, 12060 KB  
Article
Synthesis of Novel γ-Carbon-Substituted Dialkylphosphinic Acids (P355/P227-355): Unraveling Structural Symmetry Effects on Middle Rare Earth Separation and Extraction Mechanism
by Ruiyi Sun, Fan Li, Yu Xie, Na Sui, Yong Li and Junlian Wang
Separations 2025, 12(11), 303; https://doi.org/10.3390/separations12110303 - 1 Nov 2025
Viewed by 225
Abstract
In this study, two γ-carbon-substituted dialkylphosphinic acids—symmetrical di-(3,5,5-trimethylhexyl)phosphinic acid (P355) and unsymmetrical (2-ethylhexyl)(3,5,5-trimethylhexyl)phosphinic acid (P227-355)—were synthesized via a precise free radical addition method. Their chemical structures were fully characterized using ESI-HRMS, 1H NMR, 31P NMR, and FT-IR. Their middle REE extraction/separation [...] Read more.
In this study, two γ-carbon-substituted dialkylphosphinic acids—symmetrical di-(3,5,5-trimethylhexyl)phosphinic acid (P355) and unsymmetrical (2-ethylhexyl)(3,5,5-trimethylhexyl)phosphinic acid (P227-355)—were synthesized via a precise free radical addition method. Their chemical structures were fully characterized using ESI-HRMS, 1H NMR, 31P NMR, and FT-IR. Their middle REE extraction/separation performance, anti-emulsification behavior, and underlying mechanisms were investigated. Key results showed that P355 had better Dy saturation capacity (357.51 mg/L) and good selectivity for middle REEs (their average value of βN + 1/N = 3.18), while P227-355 showed higher back-extraction efficiency (≈90% Dy stripping at ≥0.02 mol/L H2SO4). Methyl n-pentyl ketone (MNPK) eliminated emulsification and boosted saturation capacity (324.18 mg/L Sm and 357.51 mg/L Dy for P355). Mechanistically, the extraction followed cation exchange (Sm3+ + 2(HL)2 ↔ Sm·L3·(HL) + 3H+); MNPK formed hydrogen-bonded associates (HL·MNPK) with free extractants, slightly reducing the effective concentration of (HL)2 but not altering the core cation exchange mechanism. Full article
(This article belongs to the Special Issue Recent Advances in Rare Earth Separation and Extraction)
Show Figures

Figure 1

32 pages, 8357 KB  
Article
Multiscale Damage and Failure Behavior of Drainage Asphalt Mixture Under Multifactor
by Xiong Tao, Tao Bai, Jianwei Fan, Haiwei Shen and Hao Cheng
Materials 2025, 18(21), 4924; https://doi.org/10.3390/ma18214924 - 28 Oct 2025
Viewed by 319
Abstract
Macroscopic fatigue tests, mesoscopic finite element simulations, and microscopic molecular dynamics simulations were composed to study the damage and failure of drainage asphalt mixtures in multiscale. The applicability of the fatigue models fit by strain, stress, and the linear fitting slope of the [...] Read more.
Macroscopic fatigue tests, mesoscopic finite element simulations, and microscopic molecular dynamics simulations were composed to study the damage and failure of drainage asphalt mixtures in multiscale. The applicability of the fatigue models fit by strain, stress, and the linear fitting slope of the indirect tensile modulus curves were compared. The mesoscopic damage and failure distribution and evolution characteristics were studied, considering the single or coupling effect of traffic loading, hydrodynamic pressure, mortar aging, and interfacial attenuation. The microscopic molecular mechanism of the interface adhesion failure between the aggregate and mortar under water-containing conditions was analyzed. Results show that the fatigue model based on the linear fitting slopes of the indirect tensile modulus curves has significant applicability for drainage asphalt mixtures with different void rates and gradations. The damage and failure have an obvious leap development when traffic loading increases from 0.7 MPa to 0.8 MPa. The hydrodynamic pressure significantly increases the stress of the mortar around the voids and close to the aggregate, promoting damage development and crack extension, especially when it is greater than 0.3 MPa. With the aging deepening of the mortar, the increase rate of the damage degree gradually decreases from the top to the bottom of the mixture. With the development of interfacial attenuation, the damage and failure of interfaces continue increasing, while that of the mortar increases first and then decreases, which is related to the loading concentration in the interface and the stress decrease in the mortar. Under the coupling effects, whether the cracks mainly generate in the mortar or interface depends on their damage degrees, thus causing the stripping of the aggregate wrapped or not wrapped by the mortar, respectively. The van del Waals force is the main molecular effect of interface adhesion, and both acidic and alkaline aggregate components significantly tend to form hydrogen bonds with water rather than asphalt, thus attenuating the interface adhesion. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 4179 KB  
Article
Hydrometallurgical Recovery of Critical Metal Indium from Scrap LCD Panels
by Karina Rani, Rekha Panda, Ankur Sharma, Alok Kumar Meher, Balram Ambade, Kyoungkeun Yoo and Manis Kumar Jha
Minerals 2025, 15(10), 1084; https://doi.org/10.3390/min15101084 - 18 Oct 2025
Viewed by 426
Abstract
Indium, widely used in indium–tin oxide (ITO) coatings for liquid crystal displays (LCDs), is a scarce and strategically important metal with increasing demand. Recycling waste LCD panels offers an efficient secondary source to address supply risks and environmental concerns. In this study, a [...] Read more.
Indium, widely used in indium–tin oxide (ITO) coatings for liquid crystal displays (LCDs), is a scarce and strategically important metal with increasing demand. Recycling waste LCD panels offers an efficient secondary source to address supply risks and environmental concerns. In this study, a hydrometallurgical flow sheet was developed under mild conditions for indium (In) recovery. Leaching trials with sulphuric acid at varying concentrations, pulp densities, temperatures, and times showed that 5% H2SO4 (v/v) with 100 g/L pulp density at 60 °C for 30 min achieved ~98% dissolution of In, while minimizing the co-leaching of Al and Sn. Kinetic analysis indicated a diffusion-controlled mechanism for In dissolution with an activation energy of 21.2 kJ mol−1. The leached liquor was further purified through solvent extraction by 20% Cyanex 921 (v/v), achieving optimum In extraction at pH 2.5 with an organic-to-aqueous phase ratio of 1/3, reaching equilibrium within 15 min. The McCabe–Thiele plot shown indicates the complete In extraction in two stages. FT-IR studies confirmed the In-extractant bonding at optimized conditions. 10% H2SO4 (v/v) was used for the stripping of In from the loaded organic, ensuring nearly complete back-transfer of indium with excellent phase separation. The integrated process yielded ~97% In recovery in stripping. The pure salt of Indium could be obtained by evaporation/crystallization of pure indium solution. The developed process has the potential to be transferred for commercial exploitation after scale-up and pilot trial. Full article
(This article belongs to the Special Issue Application of Nanomaterials in Mineral Processing)
Show Figures

Figure 1

14 pages, 2514 KB  
Article
Ultrasensitive Electrochemical Immunoassays of IgG and CA125 Based on Glucose Oxidase-Catalyzed Signal Amplification with Gold Staining
by Long Chao, Zhisong Wu, Shiqiang Qi, Aigui Xu, Zhao Huang and Dexuan Yan
Biosensors 2025, 15(10), 689; https://doi.org/10.3390/bios15100689 - 11 Oct 2025
Viewed by 552
Abstract
Herein, we propose an ultrasensitive electrochemical immunosensor based on glucose oxidase labeling and enzyme-catalyzed Au staining. In brief, the primary antibody (Ab1), bovine serum albumin, an antigen and then a bionanocomposite that contains a second antibody (Ab2), poly(3-anilineboronic acid) [...] Read more.
Herein, we propose an ultrasensitive electrochemical immunosensor based on glucose oxidase labeling and enzyme-catalyzed Au staining. In brief, the primary antibody (Ab1), bovine serum albumin, an antigen and then a bionanocomposite that contains a second antibody (Ab2), poly(3-anilineboronic acid) (PABA), Au nanoparticles (AuNPs) and glucose oxidase (GOx) are modified on a glassy carbon electrode coated with multiwalled carbon nanotubes, yielding a corresponding sandwich-type immunoelectrode. In the presence of glucose, a chemical reduction of NaAuCl4 by enzymatically generated H2O2 can precipitate a lot of gold on the Ab2-PABA-AuNPs-GOx immobilized immunoelectrode. In situ anodic stripping voltammetry (ASV) detection of gold in 8 μL 1.0 M aqueous HBr-Br2 is conducted for the antigen assay, and the ASV detection process takes approximately 6 min. This method is employed for the assay of human immunoglobulin G (IgG) and human carbohydrate antigen 125 (CA125), which demonstrates exceptional sensitivity, high selectivity and fewer required reagents/samples. The achieved limits of detection (S/N = 3) by the method are 0.25 fg mL−1 for IgG (approximately equivalent to containing 1 IgG molecule in the 1 microlitre of the analytical solution) and 0.1 nU mL−1 for CA125, which outperforms many previously reported results. Full article
(This article belongs to the Special Issue Materials and Techniques for Bioanalysis and Biosensing—2nd Edition)
Show Figures

Figure 1

18 pages, 2837 KB  
Article
Selective Separation of Pd, Pt, and Rh from Wastes Using Commercial Extractants for the Sustainable Development of Critical Metals Management
by Karolina Pianowska, Joanna Kluczka, Grzegorz Benke, Karolina Goc and Katarzyna Leszczyńska-Sejda
Sustainability 2025, 17(19), 8956; https://doi.org/10.3390/su17198956 - 9 Oct 2025
Viewed by 502
Abstract
This paper presents the results of research on the selective separation of palladium, platinum, and rhodium from waste solutions using commercial organic extractants such as Mextral 63H and trioctylamine. The research was carried out on a real waste solution, containing low concentrations of [...] Read more.
This paper presents the results of research on the selective separation of palladium, platinum, and rhodium from waste solutions using commercial organic extractants such as Mextral 63H and trioctylamine. The research was carried out on a real waste solution, containing low concentrations of platinum group metals and significant amounts of base metals such as copper, iron, chromium, and nickel. It was found that a 20% solution of Mextral 63H in toluene selectively extracts over 99% of Pd, while a 10% solution of trioctylamine effectively extracts both Pd and Pt with a yield of over 98%. Effective stripping agents were also selected for the obtained Pd and Pt extracts: 2 M thiourea solution for Pd and diluted solutions of nitric and perchloric acids for Pt. The research allowed the development of a technological scheme enabling the separation of all three platinum group metals by selective extraction of Pd and then Pt, while Rh remains in the raffinate after both extraction stages. The proposed model, developed on the basis of results obtained for a real solution, assumes selective recovery of palladium, platinum, and rhodium from such solutions, which can find application in the precious metals industry. Moreover, the developed technology is in line with the sustainable development of the critical metals economy. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

13 pages, 1261 KB  
Article
Influence of Milking Process and Production System on Raw Goat Milk Bacteriome
by Ezquibel Montesinos Rivera, Estela Garza Brenner, Pascuala Ambriz Morales, Williams Arellano Vera, Rogelio de J. Treviño-Rangel and Ana María Sifuentes Rincón
Microbiol. Res. 2025, 16(10), 218; https://doi.org/10.3390/microbiolres16100218 - 4 Oct 2025
Cited by 1 | Viewed by 484
Abstract
The aim of this study was to compare, during milking, the bacteriomes of goat milk from farms in Mexico representing traditional and semi-intensive production systems. Metagenomic DNA was isolated from pooled milk samples collected at different milking stages, and following 16S rRNA-targeted sequencing, [...] Read more.
The aim of this study was to compare, during milking, the bacteriomes of goat milk from farms in Mexico representing traditional and semi-intensive production systems. Metagenomic DNA was isolated from pooled milk samples collected at different milking stages, and following 16S rRNA-targeted sequencing, alpha (Shannon H’ and Simpson D) and beta (Bray–Curtis) diversity indices were calculated. Within the semi-intensive system, fore-stripping showed lower diversity (H’ = 1.5 vs. H’ = 4.0) but greater evenness (D = 0.5 vs. D = 0.8) than the milking stage. In contrast, no differences between stages in the traditional system were observed. The Bray–Curtis index revealed that the use of the semi-intensive system explained 99.4% of the variability, while the traditional system accounted for only 0.5%. In the semi-intensive system, fore-stripping was dominated by Mesoplasma (51.9%) and Staphylococcus (42.1%), whereas Enterococcus (27.2%) and Lactococcus (18.5%) prevailed during milking. Meanwhile, in the traditional system, Pseudomonas (46.9% and 22.7) and Lactococcus (22.7% and 29.2%) predominated in both stages. Management practices strongly influence the microbiological profile of milk, leading to changes in not only the diversity and abundance of pathogenic bacteria but also in the presence of beneficial lactic acid bacteria and, hence, the overall expected milk quality. Full article
Show Figures

Figure 1

19 pages, 2210 KB  
Article
A Synthetic Pathway for Producing Carbon Dots for Detecting Iron Ions Using a Fiber Optic Spectrometer
by Ariana Adkisson, Dean Gouramanis, Ki-Joong Kim, Ward Burgess, Nicholas Siefert and Scott Crawford
Sensors 2025, 25(19), 6066; https://doi.org/10.3390/s25196066 - 2 Oct 2025
Viewed by 474
Abstract
Iron detection is of growing importance in the critical minerals sector, where unwanted iron ions are typically removed during the processing of target critical metals. The ideal sensor should utilize inexpensive, scalable materials along with a low-cost, robust, and easy-to-use analysis platform. Here, [...] Read more.
Iron detection is of growing importance in the critical minerals sector, where unwanted iron ions are typically removed during the processing of target critical metals. The ideal sensor should utilize inexpensive, scalable materials along with a low-cost, robust, and easy-to-use analysis platform. Here, we demonstrate a simple acid–base synthesis of luminescent iron-responsive carbon dots by reacting ethanolamine, phosphoric acid, and m-phenylenediamine. The carbon dots exhibit selective, iron-specific emission quenching, with the ability to detect part-per-billion levels of iron ions even in 0.1 M HCl. After benchmarking the purified materials using a commercial spectrometer, a “low-cost” process is demonstrated in which carbon dots with minimal purification are coupled with a portable fiber-optic spectrometer for analyzing iron content. Carbon dot-coated paper strips are also evaluated as another convenient platform for iron analysis. Taken together, the sensing material and platforms demonstrated here are well-suited for detecting trace quantities of iron in environmentally relevant conditions, with potential applications in tracking iron removal processes during critical mineral production as one exciting area of interest. Full article
(This article belongs to the Special Issue Optical Fiber Sensing and Its Applications)
Show Figures

Graphical abstract

15 pages, 3038 KB  
Article
Removal of Diatrizoic Acid from Water via Liquid Surfactant Membrane with Aliquat 336 as Extractant: Operational Insights and Natural Water Matrices
by Manel Lecheheb and Oualid Hamdaoui
Processes 2025, 13(9), 3000; https://doi.org/10.3390/pr13093000 - 19 Sep 2025
Viewed by 389
Abstract
Hospitals often use diatrizioic acid (DTZA), an iodinated radiocontrast agent, which is poorly biodegradable and persistent in aqueous media. Therefore, the objective of this work is to remove DTZA from water using an advanced separation process, namely liquid surfactant membrane (LSM) or emulsion [...] Read more.
Hospitals often use diatrizioic acid (DTZA), an iodinated radiocontrast agent, which is poorly biodegradable and persistent in aqueous media. Therefore, the objective of this work is to remove DTZA from water using an advanced separation process, namely liquid surfactant membrane (LSM) or emulsion liquid membrane. The LSM system is composed of Aliquat 336 as extractant, Span 80 as emulsifier, kerosene as diluent, and KCl as internal stripping phase. The impacts of experimental parameters impacting the extraction of DTZA from water by LSM, namely surfactant concentration, initial pH of the contaminated solution, extractant dosage, nature of base in the contaminated solution, concentration of the internal stripping phase, nature of stripping solution, emulsion/external solution volume ratio, internal solution/organic phase volume ratio, mixing rate, nature of diluent, emulsification time, emulsification rate, and initial DTZA concentration, were investigated. A highly stable emulsion with a good degree of removal of 90.8% of DTZA in water was obtained for an emulsifier dosage of 3% (w/w), an extractant dosage of 1.0% (w/w), a pH of the contaminated solution of 10 using NH4OH, a concentration of the inner phase of 0.3 N KCl, an internal solution/organic phase volume ratio of 1/1, an emulsion/external solution volume ratio of 20/250, a mixing speed of 250 rpm, an emulsification time of 4 min, and an emulsification speed of 20,000 rpm. Additionally, the extraction of DTZA from various natural water matrices (natural mineral water, tap water and seawater) was examined. The developed LSM method offers a fascinating enhanced separation method for the elimination of DTZA in waters with low chloride ion concentrations. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

25 pages, 13196 KB  
Article
Effect of Printing Temperature on the Microstructure and Tensile Properties of Polylactic Acid–Magnetic Iron Composites Manufactured by Material Extrusion
by Meriem Bouchetara, Sofiane Belhabib, Alessia Melelli, Jonathan Perrin, Timm Weitkamp, Ahmed Koubaa, Mahfoud Tahlaiti, Mustapha Nouri and Sofiane Guessasma
Polymers 2025, 17(18), 2485; https://doi.org/10.3390/polym17182485 - 14 Sep 2025
Viewed by 802
Abstract
In this study, we examined how printing temperature affects the microstructure and mechanical properties of polylactic acid (PLA) composite reinforced with iron oxide i.e., magnetite manufactured using a material extrusion technique. The composite was printed at temperatures from 185 °C to 215 °C. [...] Read more.
In this study, we examined how printing temperature affects the microstructure and mechanical properties of polylactic acid (PLA) composite reinforced with iron oxide i.e., magnetite manufactured using a material extrusion technique. The composite was printed at temperatures from 185 °C to 215 °C. Microstructure analysis via synchrotron radiation X-ray microtomography revealed changes in both iron oxide and porosity contents within the printed structures. Mechanical testing results demonstrated a limited effect of the printing temperature on tensile performance. Finite element computation is considered to predict the elasticity behavior of the printed composite by converting 3D images into 3D structural meshes. When implementing a two-phase model, the predictions show a leading role of the iron oxide content, and an overestimation of the stiffness of the composite. A three-phase model demonstrates a better matching of the experimental results suggesting a limited load transfer across the PLA-iron oxide interface with Young’s moduli in the interphase zone as small as 10% of PLA Young’s modulus. Magnetic actuation demonstrates that experiments on PLA-iron oxide plates reveal a pronounced thickness-dependent limitation, with the maximum deflection observed in thin strips of 0.4 mm. Full article
(This article belongs to the Special Issue Additive Manufacturing Based on Polymer Materials)
Show Figures

Figure 1

18 pages, 5696 KB  
Article
Impact of Microbiological Activity and Moisture on the Surface pH of Rock Art Sites: Cueva del Ratón, Baja California Sur, Mexico and Other Sites
by Ian Donald MacLeod and Valerie Magar
Heritage 2025, 8(9), 371; https://doi.org/10.3390/heritage8090371 - 9 Sep 2025
Viewed by 521
Abstract
This paper reviews the apparent impact of how changes in nitrate, sulphate activities, and moisture affect the surface pH of rock art paintings at Cueva del Ratón, in the Sierra de San Francisco in Baja California Sur, Mexico. The data was collected after [...] Read more.
This paper reviews the apparent impact of how changes in nitrate, sulphate activities, and moisture affect the surface pH of rock art paintings at Cueva del Ratón, in the Sierra de San Francisco in Baja California Sur, Mexico. The data was collected after atypical weather events caused rain and mist in this normally arid area. The rock art paintings had been previously examined over several years and observed the unexpected formation of silica skins over some surfaces; such coatings are not often experienced in arid environments. The local geology of the cave and the availability of moisture can dramatically alter the microbiological activity on faecal material and development of surface acidity from such reactions which interacts with both the host rock and the pigments. Through a series of surface pH measurements and localised measurements on chloride, sulphate and nitrate it appears that both nitrate and sulphate concentrations have a significant impact on the surface pH, which is controlled by a diffusion-based movement of moisture from the closed to the open end of the shelter. The exfoliation of the rock surface and formation of the silica skins involves chemical reactions as contrasted with diffusion-controlled reactions which distribute the metabolites of the yeasts, moulds and bacteria, which are dominated by the availability of water through drip lines. The results are particularly relevant due to changing weather patterns in the last decade, caused by climate change, with an increase in hurricanes directly affecting the Baja California peninsula. The use of disposable test strips for semi-quantitative assessment of how these major anions impact on the decay mechanisms was a novel response to budget constraints and the remoteness of the location. Full article
Show Figures

Figure 1

16 pages, 4161 KB  
Article
New Eutectic Solvent Based on bis(2,4,4-trimethylpentyl)phosphinic Acid, Tributyl Phosphate and Phenol for the Extraction of Trivalent Rare-Earth Elements from Nitrate Solutions
by Tatiana Yu. Chikineva, Inna V. Zinov’eva, Sofya A. Yakovleva, Yulia A. Zakhodyaeva and Andrey A. Voshkin
Processes 2025, 13(9), 2830; https://doi.org/10.3390/pr13092830 - 3 Sep 2025
Viewed by 727
Abstract
A pressing scientific task is the development of modern extractants that meet the increased requirements for efficiency and safety. In this work, a new three-component eutectic solvent based on bis(2,4,4-trimethylpentyl)phosphinic acid (BTMPPA), tributyl phosphate (TBP) and phenol was proposed. The formation of the [...] Read more.
A pressing scientific task is the development of modern extractants that meet the increased requirements for efficiency and safety. In this work, a new three-component eutectic solvent based on bis(2,4,4-trimethylpentyl)phosphinic acid (BTMPPA), tributyl phosphate (TBP) and phenol was proposed. The formation of the eutectic solvent was confirmed by IR and 31P NMR spectroscopy. The temperature dependences of the main physical properties of the proposed eutectic solvent—the refractive index, density and viscosity—were determined. For the first time, the extraction properties of the eutectic solvent BTMPPA/TBP/phenol (1:1:2) were studied using the example of the extraction of metal ions from aqueous nitrate solutions. The extraction efficiencies of Pr, Nd and Dy in a single stage were 34, 38 and 81%, respectively. The extraction behaviour of Pr, Nd and Dy with the eutectic solvent BTMPPA/TBP/phenol was studied as a function of pH, salting-out agent concentration, component ratio in the eutectic mixture, phase volume ratio, etc. Nitric acid with a concentration of 0.5 mol/L was chosen as a stripping agent, and the chemical stability of the eutectic solvent BTMPPA/TBP/phenol during extraction–stripping cycles was evaluated. In summary, the proposed hydrophobic eutectic solvent has good physical characteristics and enables a more efficient recovery of rare-earth elements from nitrate solutions. Full article
(This article belongs to the Special Issue Green Chemistry: From Wastes to Value-Added Products (2nd Edition))
Show Figures

Figure 1

20 pages, 6138 KB  
Article
Sequential Redox Precipitation and Solvent Extraction for Comprehensive Metal Recovery from Spent High Manganese Lithium-Ion Battery
by Jiawei Zhang, Fupeng Liu, Chunfa Liao, Tao Zhang, Feixiong Chen, Hao Wang and Yuxin Gao
Metals 2025, 15(9), 948; https://doi.org/10.3390/met15090948 - 26 Aug 2025
Viewed by 902
Abstract
The traditional recycling process of spent lithium-ion battery(LIB) with high Mn content faces the defects of high cost of neutralization and precipitation, poor economics of Mn extraction, and serious Li loss. Therefore, this paper introduces a comprehensive hydrometallurgical method for extracting valuable metals [...] Read more.
The traditional recycling process of spent lithium-ion battery(LIB) with high Mn content faces the defects of high cost of neutralization and precipitation, poor economics of Mn extraction, and serious Li loss. Therefore, this paper introduces a comprehensive hydrometallurgical method for extracting valuable metals from high-Mn spent LIB. Particularly, directional precipitation of Mn was achieved by utilizing its redox properties, and shot-process extraction and enrichment of Li was realized by using the extractant HBL121. In a sulfuric acid system, control of the oxidant dosage to 0.8% resulted in high leaching efficiencies for Li, Ni, Co, and Mn, with values of 96.58%, 96.13%, 95.22%, and 94.24%, respectively, under optimal conditions which were C(H2SO4) of 3.5 mol/L, V(H2O2) of 0.8% (v/v), L/S of 10:1, temperature of 60 °C, and time of 60 min. Subsequently, the addition of KMnO4 dosage (Kp/Kt) in a ratio of 1:1 resulted in the precipitation of 98.47% of Mn as MnO2, with Ni and Li precipitation efficiencies of 0.2% and 0.1%, respectively. Cascade extraction of Ni and Co was reached by using Cyanex272 extractant from the solution after Mn precipitation. At an organic-to-aqueous phase ratio (O/A) of 1:5, the Co extraction efficiency reached 98.68%, whereas the loss efficiency of Ni was 5.53%, and Li was less than 0.1%. Adjusting the O/A to 1:1 increased the Ni extraction efficiency to 89.99% and Li loss to 8.95%. Finally, the HBL121 extractant was utilized to extract Li from the Li-rich solution, achieving 95.08% extraction efficiency. The Li was stripped with 2 mol/L H2SO4 from the load organic phase, realizing a Li concentration of 11.44 g/L. Thus, this process facilitates the comprehensive and efficient recovery of valuable metals such as Li, Ni, Co, and Mn from spent high-Mn LIB. Full article
Show Figures

Graphical abstract

11 pages, 1632 KB  
Article
A Tb (Ⅲ) Coordination Polymer Based on 5-(2-(Pyrazole-1-yl) Pyridine-5-yl) Terephthalic Acid and Its Visual Detection of Quinolone Antibiotics
by Ai Wang, Yichong Li, Wei Zhao and Jia Liu
Polymers 2025, 17(17), 2277; https://doi.org/10.3390/polym17172277 - 22 Aug 2025
Viewed by 699
Abstract
The abuse of quinolone antibiotics in the medical and livestock industries potentially causes environmental accumulation that may impair ecological stability. Based on the organic ligand 5-(pyrazole-1-yl) pyridine-5-yl) terephthalic acid (H2PPIPA), a terbium(III) complex, [Tb(HPPIPA)(PPIPA)(H2O)]ₙ (complex 1), was synthesized [...] Read more.
The abuse of quinolone antibiotics in the medical and livestock industries potentially causes environmental accumulation that may impair ecological stability. Based on the organic ligand 5-(pyrazole-1-yl) pyridine-5-yl) terephthalic acid (H2PPIPA), a terbium(III) complex, [Tb(HPPIPA)(PPIPA)(H2O)]ₙ (complex 1), was synthesized via solvothermal reaction with Tb(NO3)3·6H2O. Luminescence studies revealed that complex 1 functions as a turn-on fluorescent probe for the selective detection of ofloxacin (OFX), levofloxacin (LFX), and norfloxacin (NFX), with detection limits of 27.9, 17.1, and 8.0 nM, respectively. Owing to its high selectivity and anti-interference capability, the complex was successfully applied for the determination of OFX and LFX in milk samples. Furthermore, a test strip impregnated with complex 1 enabled naked-eye fluorescence detection of OFX, LFX, and NFX under 254 nm UV light. Additionally, a fluorescence sensing film fabricated from complex 1 exhibited excellent recyclability, allowing for at least seven consecutive detection cycles without significant signal loss. This study innovatively designed and synthesized a novel Tb(III)-based coordination polymer fluorescent probe utilizing an original ligand scaffold, achieving the first reported visual detection of quinolone antibiotics with fluorescence test strips and agar films. Full article
(This article belongs to the Special Issue Coordination Polymers: Design, Preparation, and Application)
Show Figures

Figure 1

Back to TopTop