Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,340)

Search Parameters:
Keywords = acidic challenges

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7580 KB  
Article
Peroxymonosulfate Activation by Sludge-Derived Biochar via One-Step Pyrolysis: Pollutant Degradation Performance and Mechanism
by Yi Wang, Liqiang Li, Hao Zhou and Jingjing Zhan
Water 2025, 17(17), 2588; https://doi.org/10.3390/w17172588 - 1 Sep 2025
Abstract
Municipal wastewater treatment relies primarily on biological methods, yet effective disposal of residual sludge remains a major challenge. Converting sludge into biochar via oxygen-limited pyrolysis presents a novel approach for waste resource recovery. This study prepared sludge-based biochar (SBC) through one-step pyrolysis of [...] Read more.
Municipal wastewater treatment relies primarily on biological methods, yet effective disposal of residual sludge remains a major challenge. Converting sludge into biochar via oxygen-limited pyrolysis presents a novel approach for waste resource recovery. This study prepared sludge-based biochar (SBC) through one-step pyrolysis of sewage sludge and applied it to activate peroxymonosulfate (PMS) for degrading diverse contaminants. Characterization (SEM, XPS, FTIR) revealed abundant pore structures and diverse surface functional groups on SBC. Using Acid Orange 7 (AO7) as the target pollutant, SBC effectively degraded AO7 across pH 3.0–9.0 and catalyst dosages (0.2–2.0 g·L−1), achieving a maximum observed rate constant (kobs) of 0.3108 min–1. Salinity and common anions showed negligible inhibition on AO7 degradation. SBC maintained 95% degradation efficiency after four reuse cycles and effectively degraded sulfamethoxazole, sulfamethazine, and rhodamine B besides AO7. Mechanistic studies (chemical quenching and ESR) identified singlet oxygen (1O2) and superoxide radicals (O2•- ) as the dominant reactive oxygen species for AO7 degradation. XPS indicated a 39% reduction in surface carbonyl group content after cycling, contributing to activity decline. LC-MS identified five intermediates, suggesting a potential degradation pathway driven by SBC/PMS system. ECOSAR model predictions indicated significantly reduced biotoxicity of the degradation products compared to AO7. This work provides a strategy for preparing sludge-derived catalysts for PMS activation and pollutant degradation, enabling effective solid waste resource utilization. Full article
37 pages, 2462 KB  
Review
Caffeic Acid as a Promising Natural Feed Additive: Advancing Sustainable Aquaculture
by Nguyen Dinh-Hung, Luu Tang Phuc Khang, Suwanna Wisetkaeo, Ngoc Tuan Tran, Lee Po-Tsang, Christopher L. Brown, Papungkorn Sangsawad, Sefti Heza Dwinanti, Patima Permpoonpattana and Nguyen Vu Linh
Biology 2025, 14(9), 1160; https://doi.org/10.3390/biology14091160 - 1 Sep 2025
Abstract
Caffeic acid (CA), a plant-derived phenolic compound, is emerging as a promising natural feed additive for sustainable aquaculture. Its growth-promoting, immunomodulatory, and antimicrobial activities suggest utility as an alternative that diminishes antibiotic use in fish farming. Evidence across multiple species indicates improvements in [...] Read more.
Caffeic acid (CA), a plant-derived phenolic compound, is emerging as a promising natural feed additive for sustainable aquaculture. Its growth-promoting, immunomodulatory, and antimicrobial activities suggest utility as an alternative that diminishes antibiotic use in fish farming. Evidence across multiple species indicates improvements in innate immune responses, enhanced antioxidant capacity, and increased survival during pathogen challenge. Nevertheless, adoption remains limited by unresolved questions regarding optimal inclusion levels, species-specific physiological responses, interactions with other dietary components, and effects on the gut microbiota. This review synthesizes current research on CA, critically evaluates its functional roles in aquaculture, and assesses its relevance to sustainable production. Priorities for future work include elucidating mechanisms of action, conducting cross-species dose–response studies, standardizing dosing protocols, clarifying microbiome effects, and evaluating economic feasibility for large-scale use. Addressing these gaps will be essential to realize the full potential of CA as a functional feed additive in sustainable aquaculture systems. Full article
(This article belongs to the Special Issue Aquatic Animal Nutrition and Feed)
Show Figures

Figure 1

62 pages, 3631 KB  
Review
Tailoring Electrocatalytic Pathways: A Comparative Review of the Electrolyte’s Effects on Five Key Energy Conversion Reactions
by Goitom K. Gebremariam, Khalid Siraj and Igor A. Pašti
Catalysts 2025, 15(9), 835; https://doi.org/10.3390/catal15090835 (registering DOI) - 1 Sep 2025
Abstract
The advancement of efficient energy conversion and storage technologies is fundamentally linked to the development of electrochemical systems, including fuel cells, batteries, and electrolyzers, whose performance depends on key electrocatalytic reactions: hydrogen evolution (HER), oxygen evolution (OER), oxygen reduction (ORR), carbon dioxide reduction [...] Read more.
The advancement of efficient energy conversion and storage technologies is fundamentally linked to the development of electrochemical systems, including fuel cells, batteries, and electrolyzers, whose performance depends on key electrocatalytic reactions: hydrogen evolution (HER), oxygen evolution (OER), oxygen reduction (ORR), carbon dioxide reduction (CO2RR), and nitrogen reduction (NRR). Beyond catalyst design, the electrolyte microenvironment significantly influences these reactions by modulating charge transfer, intermediate stabilization, and mass transport, making electrolyte engineering a powerful tool for enhancing performance. This review provides a comprehensive analysis of how fundamental electrolyte properties, including pH, ionic strength, ion identity, and solvent structure, affect the mechanisms and kinetics of these five reactions. We examine in detail how the electrolyte composition and individual ion contributions impact reaction pathways, catalytic activity, and product selectivity. For HER and OER, we discuss the interplay between acidic and alkaline environments, the effects of specific ions, interfacial electric fields, and catalyst stability. In ORR, we highlight pH-dependent activity, selectivity, and the roles of cations and anions in steering 2e versus 4e pathways. The CO2RR and NRR sections explore how the electrolyte composition, local pH, buffering capacity, and proton sources influence activity and the product distribution. We also address challenges in electrolyte optimization, such as managing competing reactions and maximizing Faradaic efficiency. By comparing the electrolyte’s effects across these reactions, this review identifies general trends and design guidelines for enhancing electrocatalytic performance and outlines key open questions and future research directions relevant to practical energy technologies. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Figure 1

16 pages, 4623 KB  
Article
Comparative In Vitro Analysis of Root Cementum Surface Alterations Following Various Mechanical and Chemical Treatment Protocols in Gingival Surgery
by Zurab Khabadze, Oleg Mordanov and Omargadzhi Magomedov
J. Clin. Med. 2025, 14(17), 6174; https://doi.org/10.3390/jcm14176174 (registering DOI) - 1 Sep 2025
Abstract
Background/Objectives: Gingival recession poses significant challenges in periodontal therapy, particularly in procedures aimed at achieving predictable root coverage and long-term stability of grafts. Conditioning of the root surface plays a crucial role in improving biomaterial adhesion and facilitating periodontal regeneration. This in vitro [...] Read more.
Background/Objectives: Gingival recession poses significant challenges in periodontal therapy, particularly in procedures aimed at achieving predictable root coverage and long-term stability of grafts. Conditioning of the root surface plays a crucial role in improving biomaterial adhesion and facilitating periodontal regeneration. This in vitro study aimed to evaluate the morphological and microroughness alterations of root cementum following different mechanical and chemical conditioning protocols commonly used in mucogingival surgery. Methods: Forty extracted human single-rooted teeth were randomly allocated into eight groups: untreated control, mechanical scaling alone, and scaling combined with ethylenediaminetetraacetic acid (EDTA), citric acid, phosphoric acid, tetracycline, doxycycline, or saline. Surface roughness was measured using contact profilometry, while structural modifications were analyzed via scanning electron microscopy. Results: Statistically significant intergroup differences (p < 0.05) were observed. Baneocin treatment produced the most conservative changes, with limited surface roughness and minimal structural alteration, whereas phosphoric acid, tetracycline, and EDTA caused pronounced demineralization and surface porosity. Citric acid and doxycycline induced moderate alterations, with partial preservation of cementum integrity. The null hypothesis assuming no surface or morphological changes was rejected. Conclusions: These findings indicate that low-aggressiveness agents may achieve an optimal balance between surface decontamination and cementum preservation, which is critical for enhancing graft integration and improving clinical outcomes in root coverage surgery. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

18 pages, 3869 KB  
Article
Selective and Closed-Loop Recycling of Different Metals from Spent Lithium-Ion Batteries Through Phosphoric Acid Leaching: Parameter Optimization and Regulation of Reaction Kinetics
by Linling Guo, Zihao Chen, Yutong Guo, Chaoyang Chen, Yan Wang and Xiangping Chen
Sustainability 2025, 17(17), 7862; https://doi.org/10.3390/su17177862 (registering DOI) - 1 Sep 2025
Abstract
The sustainable recycling of valuable metals from spent lithium-ion batteries (LIBs) is critical for resource conservation and environmental protection but remains challenging due to the complex coexistence of target and impurity metals. This study systematically investigates the selective leaching behaviors of metals (Co, [...] Read more.
The sustainable recycling of valuable metals from spent lithium-ion batteries (LIBs) is critical for resource conservation and environmental protection but remains challenging due to the complex coexistence of target and impurity metals. This study systematically investigates the selective leaching behaviors of metals (Co, Li, Cu, Fe, Al) in phosphoric acid media, revealing that lithium could be preferentially extracted in mild acidic conditions (0.8 mol/L H3PO4), while complete dissolution of both Li and Co was achieved in concentrated acid (2.0 mol/L H3PO4). Kinetic analysis demonstrated that metal leaching followed a chemically controlled mechanism, with distinct extraction sequences: Li > Cu~Co > Fe > Al in dilute acid and Cu > Al~Li > Fe > Co in concentrated acid. Furthermore, we developed a closed-loop process wherein oxalic acid simultaneously precipitates Co/Li while regenerating H3PO4, enabling acid reuse with minimal efficiency loss during cyclic leaching. These findings establish a single-step phosphoric acid leaching strategy for selective metal recovery, governed by tunable acid concentration and reaction kinetics, offering a sustainable pathway for LIBs recycling. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

17 pages, 3797 KB  
Article
Transcriptomic and Metabolomic Analyses Provide Insights into Cryptocaryon irritans Resistance in Golden Pompano (Trachinotus ovatus)
by Bo Liu, Bao-Suo Liu, Jing-Wen Yang, Hua-Yang Guo, Nan Zhang, Teng-Fei Zhu, Lin Xian, Ke-Cheng Zhu and Dian-Chang Zhang
Fishes 2025, 10(9), 426; https://doi.org/10.3390/fishes10090426 (registering DOI) - 1 Sep 2025
Abstract
Golden pompano (Trachinotus ovatus) is an economically important fish species along China’s southern coast. However, infections by Cryptocaryon irritans severely constrain the healthy and sustainable development of the aquaculture industry. To investigate the genetic basis of resistance to this parasite in [...] Read more.
Golden pompano (Trachinotus ovatus) is an economically important fish species along China’s southern coast. However, infections by Cryptocaryon irritans severely constrain the healthy and sustainable development of the aquaculture industry. To investigate the genetic basis of resistance to this parasite in golden pompano, this study employed transcriptomic and metabolomic analyses to compare differences between susceptible (ES) and resistant (RS) groups following C. irritans challenge. Transcriptome analysis identified 2031 differentially expressed genes (DEGs) between EST and RST groups, comprising 1004 up-regulated and 1027 down-regulated genes. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment revealed that these DEGs were primarily enriched in lipid metabolism and amino acid metabolism pathways. Untargeted metabolomics detected 461 significantly differentially abundant metabolites (295 up-regulated, 166 down-regulated), confirming pronounced metabolic differences between ES and RS groups, particularly in lipid and amino acid metabolism. Further, KEGG enrichment highlighted steroid hormone biosynthesis, α-linolenic acid metabolism, and arachidonic acid metabolism as the most significantly altered pathways upon infection. This integrated transcriptomic and metabolomic study reveals substantial differences in gene expression and metabolite profiles between susceptible and resistant golden pompano in response to C. irritans. These changes predominantly involve lipid metabolism and amino acid metabolism, suggesting that these processes are critical in determining host resistance/susceptibility. Full article
(This article belongs to the Special Issue Molecular Mechanism of Fish Immune Response to Pathogens)
Show Figures

Figure 1

16 pages, 1438 KB  
Article
A Programmable Finite-Replicated Organism Framework for Balanced Safety and Functionality
by Mengyuan Wang, Pei Du, Fankang Meng, Wenhui Zhang, Yanhui Xiang, Qiong Wu and Chunbo Lou
Life 2025, 15(9), 1381; https://doi.org/10.3390/life15091381 - 1 Sep 2025
Abstract
Live-attenuated vaccines face a critical challenge in balancing immunogenicity with safety. To address this, we engineered programmable finite-replicated organisms (FROs) by depositing a limited number of indispensable components (such as noncanonical amino acids, ncAAs) within the cell, consuming the coenabling precise control of [...] Read more.
Live-attenuated vaccines face a critical challenge in balancing immunogenicity with safety. To address this, we engineered programmable finite-replicated organisms (FROs) by depositing a limited number of indispensable components (such as noncanonical amino acids, ncAAs) within the cell, consuming the coenabling precise control of bacterial replication capability while preserving antigenic breadth. Two strategies were adopted to achieve the following purposes: (1) encoding ncAA in essential genes; (2) encoding ncAA in antitoxin of toxin–antitoxin (TA) systems. As noncanonical amino acids, 3,5-dichlorotyrosine (Cl2Y) was encoded by the amber codon (TAG) and inserted into the essential genes (e.g., serS, murG, and dnaA) or antitoxin genes. After optimizing expression and the number of amber codons in the storage genes, the FRO cells can grow up to six generations, achieving amplification approaching 100 times after depletion of the ncAA in the growth medium. The escape frequencies are 10−5 to 10−7, which need to be optimized by combining multiple storage genes in the same genome in the future. This work holds the potential to amplify the amounts of antigens for vaccines, potentially accelerating the development of next-generation vaccines against antibiotic-resistant threats. Full article
(This article belongs to the Special Issue Synthetic Genetic Elements, Devices, and Systems: 2nd Edition)
Show Figures

Figure 1

41 pages, 2871 KB  
Review
Inflammation-Responsive Hydrogels in Perioperative Pain and Wound Management: Design Strategies and Emerging Potential
by Young Eun Moon, Jin-Oh Jeong and Hoon Choi
Gels 2025, 11(9), 691; https://doi.org/10.3390/gels11090691 (registering DOI) - 1 Sep 2025
Abstract
Surgical procedures trigger dynamic inflammatory responses that influence postoperative pain, wound healing, and long-term outcomes. Conventional therapies rely on the systemic delivery of anti-inflammatory and analgesic agents, which often lack spatiotemporal precision and carry significant side effects. Inflammation-responsive hydrogels offer a promising alternative [...] Read more.
Surgical procedures trigger dynamic inflammatory responses that influence postoperative pain, wound healing, and long-term outcomes. Conventional therapies rely on the systemic delivery of anti-inflammatory and analgesic agents, which often lack spatiotemporal precision and carry significant side effects. Inflammation-responsive hydrogels offer a promising alternative by enabling localized, stimulus-adaptive drug release aligned with the evolving biochemical milieu of surgical wounds. These smart biomaterials respond to endogenous triggers, such as reactive oxygen species, acidic pH, and proteolytic enzymes, allowing precise modulation of inflammation and tissue repair. This narrative review outlines the pathophysiological features of perioperative inflammation and the design principles of responsive hydrogel systems, including pH-, reactive oxygen species-, enzyme-sensitive, and multi-stimuli platforms. We evaluated the integration of key payloads, NSAIDs, corticosteroids, α2-adrenergic agonists, and biologics, highlighting their therapeutic synergy and translational relevance. Preclinical studies across soft tissue, orthopedic, thoracic, and abdominal models have demonstrated the efficacy of these systems in modulating immune responses, reducing pain, and enhancing regeneration. Despite these encouraging results, challenges remain, including trigger fidelity, surgical compatibility, and regulatory readiness. Future advances in biosensor integration, logic-based design, and artificial intelligence-guided formulation may accelerate clinical translation. Inflammation-responsive hydrogels represent a transformative strategy for precise perioperative care. Full article
(This article belongs to the Special Issue Innovations in Application of Biofunctional Hydrogels)
Show Figures

Figure 1

15 pages, 5672 KB  
Article
Enhanced Electrocatalytic Performance for Selective Glycerol Oxidation to Formic Acid at a Multiphase AuCu-Ag/AgBr Interface
by Jianchuan Jin, Luyao Sun, Zhiqing Wang, Shiyu Li, Lingqin Shen and Hengbo Yin
Catalysts 2025, 15(9), 831; https://doi.org/10.3390/catal15090831 (registering DOI) - 1 Sep 2025
Abstract
Electrochemical glycerol oxidation presents a sustainable and environmentally friendly pathway for formic acid production, addressing the significant carbon emissions and resource dependency associated with conventional industrial processes. However, the development of advanced electrocatalysts with high formic acid selectivity and durability remains challenging due [...] Read more.
Electrochemical glycerol oxidation presents a sustainable and environmentally friendly pathway for formic acid production, addressing the significant carbon emissions and resource dependency associated with conventional industrial processes. However, the development of advanced electrocatalysts with high formic acid selectivity and durability remains challenging due to the polyhydroxy structure and carbon chain complexity of glycerol, which lead to intricate oxidation pathways and a wide variety of products. To tackle this issue, we report a AuCu-Ag/AgBr catalyst with a multiphase interface, referring to the integrated boundaries among AuCu, Ag, and AgBr phases that interact with the liquid electrolyte, for high-rate and high-efficiency glycerol oxidation. Comprehensive characterizations reveal that the multiphase interface may effectively modulate the adsorption configurations of glycerol molecules and enhance charge transfer efficiency. Under ambient conditions, glycerol electro-oxidation at 1.43 V for 8 h yielded a conversion of 38% and a formic acid selectivity of 81%, and recycling tests confirmed its high stability under prolonged electrolysis. This synergistic catalytic effect provides a kinetically favorable pathway for formic acid production, demonstrating the potential of AuCu-Ag/AgBr catalysts in advancing sustainable glycerol valorization. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts for Biomass Conversions)
Show Figures

Graphical abstract

24 pages, 3402 KB  
Article
Development of Multifunctional Slag and Bauxite Residue-Based Geopolymers with Heavyweight Aggregate Enhancement
by Andrie Harmaji, Reza Jafari and Guy Simard
Materials 2025, 18(17), 4087; https://doi.org/10.3390/ma18174087 (registering DOI) - 1 Sep 2025
Abstract
The growing demand for sustainable and multifunctional construction materials, particularly those capable of addressing durability and energy challenges, has motivated the development of conductive and photothermally active geopolymers. This study investigated the use of an Fe-rich spinel aggregate (FSA) as a high-density filler [...] Read more.
The growing demand for sustainable and multifunctional construction materials, particularly those capable of addressing durability and energy challenges, has motivated the development of conductive and photothermally active geopolymers. This study investigated the use of an Fe-rich spinel aggregate (FSA) as a high-density filler in geopolymers composed of ground granulated blast furnace slag and bauxite residue, with a fixed addition of 1 wt% graphite (binder-based) to enhance electrical conductivity. The effects of different FSA replacement percentages (0–100%) on compressive strength, electrical conductivity, photothermal efficiency, and chemical resistance were evaluated. An increase in the FSA content translated to an increase in the final compressive strength, with 100% FSA replacement achieving the highest value of 45.5 ± 2.5 MPa at 28 days. As the FSA content increased, the electrical resistivity decreased to as low as 42 Ω·m at 100% replacement. Under simulated solar flux conditions (1 kW/m2), photothermal analysis revealed that the 100% FSA mixtures exhibited the highest surface temperature increase of 9.8 °C after 300 s, indicating their superior thermal responsiveness. Furthermore, acid immersion in 10% HCl for 28 days showed mass gain in all geopolymers, with the highest gain observed at 50% FSA (+11.51%). Similarly, the strength increased after acid exposure up to a 75% FSA content. These findings highlight the multifunctional potential of FSA-enhanced geopolymers for high-mechanical-performance, electrically conductive, photothermally active, and chemically durable materials as multifunctional construction materials. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials—Second Edition)
Show Figures

Graphical abstract

19 pages, 1981 KB  
Article
Physicochemical Characterisation of Olive Mill Wastewaters Based on Extraction Methods and Filtration Levels
by Inês S. Afonso, Cristina Duarte, Maria João Afonso, António E. Ribeiro, Joana S. Amaral, Patrícia C. Sousa, Rui A. Lima and João E. Ribeiro
Clean Technol. 2025, 7(3), 73; https://doi.org/10.3390/cleantechnol7030073 (registering DOI) - 1 Sep 2025
Abstract
Olive mill wastewaters (OMWW) generated during olive oil extraction represent a significant environmental challenge due to their high organic matter content, acidic pH, phenolic content, and toxicity. Their composition varies widely depending on the extraction method and remains difficult to treat, particularly for [...] Read more.
Olive mill wastewaters (OMWW) generated during olive oil extraction represent a significant environmental challenge due to their high organic matter content, acidic pH, phenolic content, and toxicity. Their composition varies widely depending on the extraction method and remains difficult to treat, particularly for small-scale producers lacking access to complex infrastructure. This study evaluates the combined effect of the extraction system (traditional vs. three-phase continuous) and filtration level (single vs. double) on the physicochemical and biological properties of OMWW. The methodologies employed included the analysis of water content, density, fatty acid composition, acidity, pH, total solids, chemical and biochemical oxygen demand, and biodegradability. The results indicate that traditional systems consistently produced OMWW with higher organic matter and phenolic loads, while filtration moderately reduced antioxidant potential and acidity, especially in traditional systems. The use of simple, low-cost filtration materials proved effective in improving effluent clarity and could serve as a practical pre-treatment option. This approach offers an accessible strategy for small producers aiming to valorise OMWW or reduce environmental impact. However, the study was conducted at the laboratory scale, and the long-term behaviour of filtered OMWW under real operating conditions remains to be evaluated. Full article
(This article belongs to the Topic Advances and Innovations in Waste Management)
Show Figures

Figure 1

17 pages, 3780 KB  
Article
Acid/Alkali-Resistant Modified MOF-74 Grafted with Polyether Demulsifier for Oil-in-Water Emulsions Under Ambient Conditions
by Bingyu Wang, Wei Guo, Ying Deng, Wenbin Jiao, Linzhu Du, Junhui Yue and Bo Zhang
Polymers 2025, 17(17), 2386; https://doi.org/10.3390/polym17172386 - 31 Aug 2025
Abstract
The effective and rapid separation of oil–water emulsions at room temperature, particularly under harsh environmental conditions like acid–base fluctuations, high salinity, and the coexistence of surfactants, remains a significant challenge in oily wastewater treatment. To address this, a novel amphiphilic demulsifier, MOF-74@SiO2 [...] Read more.
The effective and rapid separation of oil–water emulsions at room temperature, particularly under harsh environmental conditions like acid–base fluctuations, high salinity, and the coexistence of surfactants, remains a significant challenge in oily wastewater treatment. To address this, a novel amphiphilic demulsifier, MOF-74@SiO2-GPTMS grafted ANP (MSG-ANP), was synthesized by first modifying MOF-74@SiO2 (MS) with γ-glycidoxypropyltrimethoxysilane (GPTMS) to create epoxy-functionalized MSG particles, followed by grafting the non-ionic polyether C12–C14 aliphatic polyethylene oxide polyoxypropylene (ANP) onto MSG. Bottle tests demonstrated that MSG-ANP achieved a high demulsification efficiency of 93% within 15 min for oil-in-water emulsions at room temperature. It exhibited excellent environmental tolerance, maintaining efficiencies of 89% at pH 3.0, 82% at pH 11.0, and 95% under high salinity (50,000 mg/L, pH 6.8). Furthermore, MSG-ANP effectively treated surfactant-stabilized emulsions, exceeding 96% efficiency against both cetyltrimethylammonium bromide and sodium dodecyl sulfate after 30 min, outperforming commercial demulsifiers SP-169 and AR-331 by factors of 1.2 and 1.6, respectively. This superior performance stems from synergistic hydrogen bonding (via hydroxyl, ether, ester, Fe-O, and Si-O groups) destabilizing the interfacial film and electrostatic neutralization of coalescing charged droplets. Consequently, MSG-ANP presents a promising solution for rapid, room-temperature demulsification across a wide pH range and under high-salinity conditions. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

13 pages, 671 KB  
Review
Metabolic Signatures in Lean MASLD: Current Insights and Future Directions
by Ambrin Farizah Babu
Metabolites 2025, 15(9), 583; https://doi.org/10.3390/metabo15090583 (registering DOI) - 31 Aug 2025
Abstract
Lean metabolic dysfunction-associated steatotic liver disease (lean MASLD) challenges longstanding views that link hepatic steatosis primarily to obesity. Emerging as a distinct and under-recognized clinical entity, lean MASLD affects individuals with a normal body mass index (BMI), yet carries risks of cardiovascular disease, [...] Read more.
Lean metabolic dysfunction-associated steatotic liver disease (lean MASLD) challenges longstanding views that link hepatic steatosis primarily to obesity. Emerging as a distinct and under-recognized clinical entity, lean MASLD affects individuals with a normal body mass index (BMI), yet carries risks of cardiovascular disease, hepatocellular carcinoma, and liver-related mortality comparable to obesity-associated MASLD. The absence of overt metabolic dysfunction complicates diagnosis, revealing critical limitations in current screening frameworks centered on BMI. This review synthesizes evolving clinical insights and epidemiological trends in lean MASLD, and delineates its unique pathophysiological mechanisms. Recent advances in metabolomics have uncovered disease-specific disruptions in lipid and amino acid metabolism, bile acid signaling, and gut microbiota-derived metabolites. By integrating evidence from metabolic, genetic, and epigenetic domains, we identified promising biomarkers, and therapeutic targets that may support earlier detection and precision-guided treatment strategies. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

18 pages, 1740 KB  
Article
Sustainable Management of Bacterial Leaf Spot in Bell Pepper by Biological and Chemical Resistance Inducers
by Pisut Keawmanee, Ratiya Pongpisutta, Sujin Patarapuwadol, Jutatape Watcharachaiyakup, Sotaro Chiba, Santiti Bincader and Chainarong Rattanakreetakul
Agriculture 2025, 15(17), 1859; https://doi.org/10.3390/agriculture15171859 - 31 Aug 2025
Abstract
Bacterial leaf spot, particularly in chili peppers, is major concern worldwide, particularly in chili peppers. Enhancing pepper resistance to bacterial leaf spot addresses a key agricultural challenge while minimizing chemical usage. In this study, the efficacy of plant resistance inducers (PRIs) in controlling [...] Read more.
Bacterial leaf spot, particularly in chili peppers, is major concern worldwide, particularly in chili peppers. Enhancing pepper resistance to bacterial leaf spot addresses a key agricultural challenge while minimizing chemical usage. In this study, the efficacy of plant resistance inducers (PRIs) in controlling bacterial leaf spot in peppers was evaluated through molecular and secondary metabolite analyses. Pepper plant seedlings were treated with salicylic acid (SA), acibenzolar-S-methyl, β-aminobutyric acid, chitosan, Bacillus subtilis B01, and B. velezensis CH6 and inoculated with Xanthomonas euvesicatoria pv. euvesicatoria. Disease severity was assessed, and the expression level of genes (PR-1, PR-2, PR-4, and CAT) and the abundance of secondary metabolites were analyzed via quantitative PCR (qPCR) and gas chromatography-mass spectrometry (GC-MS), respectively. Soil drenching with B. subtilis B01 produced the best effects, reducing the disease severity by 80% and significantly inducing PR-1 expression 24–48 h post-treatment. SA was similarly effective in inducing systemic acquired resistance (SAR), while β-aminobutyric acid primed antioxidative defenses through sustained catalase (CAT) expression, and chitosan induced PR-4. GC-MS analysis revealed secondary metabolites associated with systemic resistance pathways including SAR and induced systemic resistance (ISR). Herein, B. subtilis B01 and SA were identified as potent resistance inducers that reduce the disease severity of bacterial leaf spot and activate key defense pathways in pepper plants. These findings contribute to the development of sustainable, integrated disease management strategies. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

16 pages, 4261 KB  
Article
A Plant Growth-Promoting Bacterial Isolate, Bacillus velezensis 41S2, Enhances Seed Protein, Isoflavone Accumulation, and Stress Resilience in Soybean Under Salt–Alkaline Soil Conditions
by Han Zheng, Shutian Hua, Zhe Li, Ziyan Wang, Donglin Zhao, Changliang Jing, Yiqiang Li, Chengsheng Zhang, Yanfen Zheng, Youqiang Wang and Mingguo Jiang
Agronomy 2025, 15(9), 2103; https://doi.org/10.3390/agronomy15092103 - 31 Aug 2025
Abstract
Salt–alkaline soil poses a significant challenge to soybean productivity. While plant growth-promoting rhizobacteria (PGPR) offer a sustainable strategy for stress mitigation, their field-level application remains underexplored. Here, a field experiment was conducted in the Yellow River Delta of Shandong, China, a typical salt–alkaline [...] Read more.
Salt–alkaline soil poses a significant challenge to soybean productivity. While plant growth-promoting rhizobacteria (PGPR) offer a sustainable strategy for stress mitigation, their field-level application remains underexplored. Here, a field experiment was conducted in the Yellow River Delta of Shandong, China, a typical salt–alkaline region. In this study, we evaluated the effectiveness of Bacillus velezensis 41S2 in enhancing soybean performance under salt–alkaline soil through integrated field trials and transcriptomic analysis. Inoculation with strain 41S2 significantly improved plant biomass, yield components, and seed yield under salt–alkaline soil, and notably increased seed protein and isoflavone contents. Physiological analyses revealed that strain 41S2 markedly reduced hydrogen peroxide (H2O2) accumulation, indicating alleviation of oxidative stress. Moreover, strain 41S2 modulated the levels of soluble sugars and amino acids, contributing to osmotic regulation and carbon–nitrogen (C-N) metabolic balance. Transcriptome profiling further indicated that strain 41S2 upregulated genes involved in antioxidant response, C–N metabolism, and phenylpropanoid biosynthesis, highlighting its role in coordinating multilayered stress response pathways. Overall, these findings highlight the potential of B. velezensis 41S2 as a multifunctional bioinoculant for improving salt tolerance and presents a promising tool for sustainable crop production and ecological restoration in salt–alkaline soil. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

Back to TopTop