Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (24,105)

Search Parameters:
Keywords = acidic condition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4840 KB  
Article
Fluid Inclusion Constraints on the Formation Conditions of the Evevpenta Au–Ag Epithermal Deposit, Kamchatka, Russia
by Pavel S. Zhegunov, Sergey Z. Smirnov, Elena O. Shaparenko, Alexey Yu. Ozerov and Ricardo Scholz
Minerals 2025, 15(11), 1196; https://doi.org/10.3390/min15111196 (registering DOI) - 13 Nov 2025
Abstract
The Evevpenta gold–silver epithermal deposit, belonging to an adularia–sericite or low-sulfidation type, is in the northern part of the Kamchatka Peninsula within the Oligocene–Quaternary Central Kamchatka volcanic belt. Variously native gold, silver, and Au–Ag chalcogenides, including calaverite, petzite, hessite, acanthite, uytenbogaardtite-petrovskaite, and naumannite, [...] Read more.
The Evevpenta gold–silver epithermal deposit, belonging to an adularia–sericite or low-sulfidation type, is in the northern part of the Kamchatka Peninsula within the Oligocene–Quaternary Central Kamchatka volcanic belt. Variously native gold, silver, and Au–Ag chalcogenides, including calaverite, petzite, hessite, acanthite, uytenbogaardtite-petrovskaite, and naumannite, constitute its Au–Ag mineralization. Extensive fluid inclusion studies, involving fluid inclusion petrography, Raman spectroscopy, and microthermometry, revealed that quartz from gold-bearing adularia–quartz veins crystallized from low-salinity fluids (T ice melting from −0.1 to −3.3 °C) at moderate to low temperatures (140 to 364 °C). The mineralizing fluids consisted of Na, K, and Mg sulfate and bicarbonate-bearing aqueous solutions and low-density CO2. The gold-bearing mineral assemblages were formed within narrower temperature ranges. The gold–telluride–quartz assemblage was deposited between 325 and 175 °C, while the telluride–sulfide–quartz formed between 219 and 258 °C. Possible influx of meteoric waters led to progressive cooling and a decrease in salinity from the early to late fluid generations during mineral deposition. Overall data on ore and associated with metasomatic alteration mineralogy indicate that the ore formation occurred under relatively reduced or neutral conditions from weakly acidic to near-neutral aqueous solutions, possessing relatively high sulfur and tellurium fugacity. Full article
18 pages, 3714 KB  
Article
Analysis and Excavation of Unique Metabolic Components of Wheat Cultivated in Saline–Alkaline Soil
by Qiaozhi Song, Yu Liu, Ming Li, Lei Chang and Boli Guo
Foods 2025, 14(22), 3888; https://doi.org/10.3390/foods14223888 (registering DOI) - 13 Nov 2025
Abstract
In order to investigate the impact of drought and saline–alkaline stress on the growth and metabolic components of wheat, as well as to identify advantageous components of wheat under saline–alkaline conditions, metabolomics analysis was conducted separately on wheat cultivated in saline–alkaline soil at [...] Read more.
In order to investigate the impact of drought and saline–alkaline stress on the growth and metabolic components of wheat, as well as to identify advantageous components of wheat under saline–alkaline conditions, metabolomics analysis was conducted separately on wheat cultivated in saline–alkaline soil at Zhong Jie Industrial Park (AAW) and generally grown wheat at Xian Huanyuan Village (GW). The results revealed that AAW exhibited higher levels of accumulated metabolites compared to GW. Specifically, under drought and saline–alkaline stress, alkaloids, flavones, amino acids, and derivatives were significantly up-regulated, while phenolic acids and terpenoids were down-regulated. Notably, 29 differential metabolites, including vitexin-2″-O-glucoside, N-feruloyl agmatine, apigenin-8-C-glucoside, and L-alanyl-L-phenylalanine, showed significant differences between AAW and GW. Flavone and flavonol biosynthesis, apigenin C-glycosides biosynthesis, and metabolic pathways were identified as key pathways contributing to the observed differences in metabolite production. Apigenin-8-C-glucoside and vitexin-2″-O-glucoside emerged as reliable biomarkers for distinguishing between AAW and GW. These findings suggest that metabolites unique to wheat grown in saline–alkaline soil may serve as biomarkers for developing stress-resistant varieties, warranting further study of their functional components in food products. Full article
Show Figures

Figure 1

20 pages, 1122 KB  
Article
Dietary Supplementation with Yak Stomach Lysozyme Improves Intestinal Health and Nutrient Metabolism in Weaned Piglets Challenged with Enterotoxigenic Escherichia coli (ETEC)
by Zaiwen Li, Lian Hu, Mengjuan Jiang, Di Zhao, Lu Yang, Yili Liu, Biao Li and Mingfeng Jiang
Animals 2025, 15(22), 3287; https://doi.org/10.3390/ani15223287 (registering DOI) - 13 Nov 2025
Abstract
Post-weaning diarrhea caused by Enterotoxigenic Escherichia coli (ETEC) is a major disease in piglets and leads to substantial economic losses in the swine industry. Compared to conventional lysozyme, yak stomach lysozyme (YSL) demonstrates distinctive resistance to pepsin, trypsin, high temperature, and acidic conditions. [...] Read more.
Post-weaning diarrhea caused by Enterotoxigenic Escherichia coli (ETEC) is a major disease in piglets and leads to substantial economic losses in the swine industry. Compared to conventional lysozyme, yak stomach lysozyme (YSL) demonstrates distinctive resistance to pepsin, trypsin, high temperature, and acidic conditions. This study investigated the effects of dietary YSL supplementation on intestinal health in weaned piglets challenged with ETEC, utilizing metabolomics and proteomics. A total of 18 weaned piglets were randomly divided into three groups: control (C), diarrhea (D), and YSL treatment (YLT). Groups C and D were fed a basal diet, while the YLT group received the basal diet supplemented with YSL at a dosage of 100,000 U/kg following ETEC challenge. Following an acclimation period, piglets in groups D and YLT were orally challenged with ETEC, while group C received the same volume of sterile LB broth. The feeding trial lasted for 21 days before sample collection. The results demonstrated that dietary supplementation with YSL significantly reduced the diarrhea rate (p < 0.05). Compared with the D group, the YLT group exhibited significantly increased serum albumin levels (p < 0.05), along with a tendency toward greater villus height (p = 0.085) and higher serum glucose levels (p = 0.052), indicating an improvement in nutritional and metabolic status Metabolomic analysis identified 260 differentially abundant metabolites between the YLT and D groups (81 upregulated, 179 downregulated), which were predominantly enriched in pathways related to amino acid biosynthesis and metabolism, purine metabolism, and nucleic acid metabolism. Proteomic profiling revealed 571 differentially expressed proteins (237 upregulated, 334 downregulated). Upregulated proteins were mainly involved in arginine biosynthesis and base excision repair, while downregulated proteins were associated with the PPAR signaling pathway and Salmonella infection. In summary, dietary YSL supplementation alters the metabolic and proteomic profiles in the intestines of diarrheic piglets, potentially improving gut barrier function and nutrient utilization. This study offers novel insights into the potential of YSL as a promising feed additive for prevention of post-weaning diarrhea in pigs. Full article
(This article belongs to the Section Animal Nutrition)
17 pages, 2574 KB  
Article
Screening and Identification of Reference Genes Under Different Conditions and Growth Stages of Lyophyllum decastes
by Yun-Qi Hui, Huan-Ling Yang, Yu-Qing Zhang, Chen-Zhao Zhu, Li-Ping Xi, Chun-Yan Song, Zheng-Peng Li, E-Xian Li, Shu-Hong Li, Yong-Nan Liu and Rui-Heng Yang
Int. J. Mol. Sci. 2025, 26(22), 11004; https://doi.org/10.3390/ijms262211004 (registering DOI) - 13 Nov 2025
Abstract
Internal reference genes are a prerequisite for ensuring the accuracy of gene verification experiments, but few relevant studies on Lyophyllum decastes have investigated the growth cycle and different environmental conditions. In this study, the qPCR results of 22 house-keeping genes were analyzed using [...] Read more.
Internal reference genes are a prerequisite for ensuring the accuracy of gene verification experiments, but few relevant studies on Lyophyllum decastes have investigated the growth cycle and different environmental conditions. In this study, the qPCR results of 22 house-keeping genes were analyzed using GeNorm, BestKeeper, NormFinder and RefFinder. The results revealed that the most stable gene differed under different conditions. Across all developmental stages and under hot, cold, acidic, alkaline, and salt conditions, UBCE gene displays the greatest expression stability. However, EF1b, β-ACT, HSD17B3, and Cyb presented the greatest stability under cold, heat, and acidic conditions, and heavy metal exposure, respectively. To screen for genes suitable for all conditions, RefFinder’s ranking results revealed that UBCE and EF1b ranked in the top 2, demonstrating the highest gene expression stability. In contrast, Cyb was positioned at the bottom of the comprehensive ranking table. This study not only revealed potential factors affecting the suitability of reference genes but also identified optimal reference genes from a set of candidate genes across diverse conditions. Full article
(This article belongs to the Section Molecular Plant Sciences)
26 pages, 1919 KB  
Article
Zinc Kiln Slag Recycling Based on Hydrochloric Acid Oxidative Leaching and Subsequent Metal Recovery
by Pavel Grudinsky, Ekaterina Vasileva and Valery Dyubanov
Sustainability 2025, 17(22), 10171; https://doi.org/10.3390/su172210171 (registering DOI) - 13 Nov 2025
Abstract
The limited availability of high-quality ore deposits and the environmental hazards of metallurgical wastes highlight the importance of developing resource-efficient metal recovery technologies. Zinc kiln slag (ZKS), also known as Waelz slag, a by-product material enriched in non-ferrous metals, was processed through oxidative [...] Read more.
The limited availability of high-quality ore deposits and the environmental hazards of metallurgical wastes highlight the importance of developing resource-efficient metal recovery technologies. Zinc kiln slag (ZKS), also known as Waelz slag, a by-product material enriched in non-ferrous metals, was processed through oxidative HCl leaching with H2O2 as an oxidant. Thermodynamic simulation and laboratory experiments were applied to determine optimal leaching conditions to dissolve copper, zinc, and iron. Optimal leaching efficiency was achieved with consumptions of 0.8 g HCl and 0.1 g H2O2 per gram of ZKS, a liquid-to-solid (L/S) ratio of 5 mL/g, a temperature of 70 °C, and a duration of 180 min, which resulted in recoveries of 96.3% Cu, 93.6% Fe, and 76.8% Zn. The solid residue with 43.5 wt.% C is promising for reuse as a reductant material in pyrometallurgical processes. Copper and arsenic were separated from the leachate via cementation with iron powder, achieving recovery rates of 98.9% and 91.2%, respectively. A subsequent two-step iron precipitation produced ferric hydroxide with 52.2 wt.% Fe and low levels of impurities. As a result, the developed novel hydrochloric acid oxidative leaching and metal precipitation route for ZKS recycling provides an efficient and sustainable alternative to conventional treatment methods. Full article
(This article belongs to the Special Issue Sustainable Materials, Waste Management, and Recycling)
17 pages, 1034 KB  
Article
Development of Immunoenzyme Assay of Herbicide Acetochlor and Its Application to Soil Testing with Comparison of Sample Preparation Techniques
by Anna N. Berlina, Anatoly V. Zherdev and Boris B. Dzantiev
Soil Syst. 2025, 9(4), 127; https://doi.org/10.3390/soilsystems9040127 - 13 Nov 2025
Abstract
Acetochlor is a selective herbicide affecting weeds of cereal plants. Its analysis in soils allows accessing their suitability for crops and risks of contamination of agricultural products. The aim of this study was to develop a microplate enzyme immunoassay for the determination of [...] Read more.
Acetochlor is a selective herbicide affecting weeds of cereal plants. Its analysis in soils allows accessing their suitability for crops and risks of contamination of agricultural products. The aim of this study was to develop a microplate enzyme immunoassay for the determination of acetochlor in soil extracts. For the development, rabbit antibodies specific to acetochlor were obtained by immunization with a conjugate of carrier protein with a derivative of acetochlor with mercaptopropionic acid. Another derivative with mercaptosuccinic acid was applied for immobilization on the solid phase. In the study, organic extracts have been obtained from soil varying solvents and their ratios, and using QuEChERS protocol. The extracts have been tested to estimate residual influences of the sample matrix. Optimal conditions for the immunoassay were selected, appropriate sample preparation techniques, and the composition of the medium for competitive immune interaction. The most effective approach involved dichloromethane extraction, followed by careful evaporation and subsequent reconstitution of the dry residue in a 10 mM phosphate-buffer solution supplemented with 0.1% gelatin. The resulting analytical system exhibited a detection limit of 59.4 ng/mL for acetochlor, with a working range spanning from 112 to 965 ng/mL. Taking into account the soil sample preparation, the LOD was estimated as 0.3 µg/g with the working range from 0.66 to 5.7 µg/g of soil. Analysis of prepared extracts from gray forest soil demonstrated a revealing of acetochlor between 74% and 124%. Full article
Show Figures

Figure 1

16 pages, 1852 KB  
Article
Combined Effects of Lactic Acid Bacteria Fermentation and Physical Milling on Physicochemical Properties of Glutinous Rice Flour and Texture of Glutinous Dumplings
by Jingyi Zhang, Bin Hong, Shan Zhang, Di Yuan, Shan Shan, Qi Wu, Shuwen Lu and Chuanying Ren
Foods 2025, 14(22), 3882; https://doi.org/10.3390/foods14223882 - 13 Nov 2025
Abstract
This study investigated the combined effects of lactic acid bacteria (LAB) fermentation and different milling methods (wet, semi-dry, and dry) on the physicochemical properties of glutinous rice flour (GRF) and the texture of the final product. A systematic analysis of rice samples treated [...] Read more.
This study investigated the combined effects of lactic acid bacteria (LAB) fermentation and different milling methods (wet, semi-dry, and dry) on the physicochemical properties of glutinous rice flour (GRF) and the texture of the final product. A systematic analysis of rice samples treated with three LAB strains (Lactiplantibacillus plantarum CGMCC 1.12974, Limosilactobacillus fermentum CICC 22704, and Lactobacillus acidophilus CICC 22162) revealed that fermentation pretreatment created favorable conditions for subsequent physical milling by degrading the protein network and modifying the starch structure. The results demonstrated that fermentation combined with dry or semi-dry milling significantly improved the whiteness of GRF and the contents of γ-aminobutyric acid (GABA), total phenols, and total flavonoids, while reducing the contents of damaged starch (except in samples fermented with Lb. acidophilus) and protein by 2.91–12.43% and 17.80–32.09%, respectively. The functional properties of the GRF were also optimized: fermented flour exhibited higher peak viscosity, lower gelatinization temperature, and higher gelatinization enthalpy. Texture profile analysis revealed that glutinous dumplings prepared from fermented dry/semi-dry milled GRF, particularly those fermented with Lp. plantarum, showed significantly reduced hardness and chewiness, along with significantly improved cohesiveness and resilience. Consequently, their texture approximated that of high-standard wet-milled products. Correlation analysis based on the top ten discriminative features selected by random forest identified peak viscosity and breakdown viscosity as the most important positive factors associated with superior texture (high resilience, high cohesiveness, and low hardness), whereas damaged starch content and protein content were key negative correlates. In summary, this study confirms that the combination of fermentation and milling exerts a beneficial influence on the functional quality of GRF. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

22 pages, 2296 KB  
Article
Chemical Profile, Bioactive Constituents and In Vitro Growth Stimulation Properties of Cold-Pressed Hemp Seed Oils from Romanian Varieties: In Vitro and In Silico Evaluation
by Doris Floares (Oarga), Diana Obistioiu, Anca Hulea, Mukhtar Adeiza Suleiman, Iuliana Popescu, Ciprian Buzna, Adina Berbecea, Ersilia Alexa, Cristina Dehelean and Isidora Radulov
Plants 2025, 14(22), 3465; https://doi.org/10.3390/plants14223465 - 13 Nov 2025
Abstract
Industrial hemp (Cannabis sativa L.; Cannabaceae), traditionally cultivated for fiber, also represents a valuable source of nutrient-rich seed oil. In this study, cold-pressed hemp seed oils from three Romanian varieties (Teodora, Silvana, and Armanca) were evaluated for their fatty acid composition, [...] Read more.
Industrial hemp (Cannabis sativa L.; Cannabaceae), traditionally cultivated for fiber, also represents a valuable source of nutrient-rich seed oil. In this study, cold-pressed hemp seed oils from three Romanian varieties (Teodora, Silvana, and Armanca) were evaluated for their fatty acid composition, minor bioactive constituents, antioxidant activity, growth-promoting property toward probiotic strains in vitro, and molecular docking interactions with probiotic targets. Gas chromatography revealed a fatty acid profile dominated by linoleic (49.4–51.9%), oleic (16.3–22.8%), and α-linolenic acids (9.8–14.4%), resulting in favorable PUFA/SFA ratios (5.17–6.39) and ω-6/ω-3 ratios (3.93–5.53). The oils also contained phenolics (118–160 mg GAE/kg), chlorophylls (6.18–8.31 mg/kg), and carotenoids (2.58–3.37 mg/kg), which contributed to their antioxidant activity (DPPH inhibition 35.92 µM TE/100 g–43.37 µM TE/100 g). Broth microdilution assays against Lacticaseibacillus rhamnosus GG, L. paracasei ATCC BAA-52, and L. acidophilus ATCC 4356 demonstrated strain- and dose-dependent potential to promote probiotic growth under in vitro conditions. While L. rhamnosus and L. paracasei were inhibited at low concentrations and only mildly stimulated at higher levels, L. acidophilus showed robust growth promotion, reaching +54.7% effect and CP = 1.55 with Teodora oil at 16 mg/mL. Molecular docking highlighted strong binding affinities of γ-linolenic and linoleic acids with key metabolic enzymes involved in probiotic metabolism (hydratase, enolase, glyceraldehyde-3-phosphate dehydrogenase, ribonucleoside hydrolase), forming stable hydrophilic and hydrophobic interactions which are explored in defining the stability of the ligand-protein complexes. These results indicate that both major fatty acids and minor bioactive constituents contribute to the nutritional and antioxidant value of Romanian hemp seed oils and reveal a potential to promote probiotic growth under in vitro conditions, as supported by complementary in silico evidence. Full article
Show Figures

Figure 1

14 pages, 5315 KB  
Article
Experimental Evaluation of Milling Post-Processing on the Surface Quality of MEX-Printed Carbon Fiber-Reinforced PLA Composites
by Abdullah Yahia AlFaify
Machines 2025, 13(11), 1049; https://doi.org/10.3390/machines13111049 - 13 Nov 2025
Abstract
This study explores the machinability of Material Extrusion (MEX) printed parts made from carbon fiber-reinforced polylactic acid (PLA). MEX-printed parts typically exhibit high surface roughness, necessitating post-processing to enhance their quality. In this work, milling was used as a post-processing method to improve [...] Read more.
This study explores the machinability of Material Extrusion (MEX) printed parts made from carbon fiber-reinforced polylactic acid (PLA). MEX-printed parts typically exhibit high surface roughness, necessitating post-processing to enhance their quality. In this work, milling was used as a post-processing method to improve the surface finish. Response surface methodology (RSM) experimental design was employed to investigate the effects of cutting velocity, feed rate, and depth of cut on the surface quality of the machined surfaces. Results showed that the as-built MEX-printed sample exhibited a high average surface roughness (Sa) of ~7.982 µm, indicating the need for post-processing. Post-processing milling considerably enhances the Sa by reducing it to ~1.621 µm under the optimal condition. Statistical findings showed that all considered factors have significant influence on the Sa, with feed rate as the most influential one, contributing to 47.63% of the total variation. The Sa values varied from 1.834 µm to 4.146 µm due to changes in the considered factors. Increasing feed rate leads to the emergence of cavities and ridges along the deposited filaments associated with brittle removal mechanism, resulting in higher surface roughness. Full article
(This article belongs to the Special Issue Recent Advances in Surface Integrity with Machining and Milling)
Show Figures

Figure 1

23 pages, 4737 KB  
Article
Knockout of Perilipin-2 in Microglia Alters Lipid Droplet Accumulation and Response to Alzheimer’s Disease Stimuli
by Isaiah O. Stephens and Lance A. Johnson
Cells 2025, 14(22), 1783; https://doi.org/10.3390/cells14221783 - 13 Nov 2025
Abstract
Lipid droplets (LDs) are emerging as key regulators of metabolism and inflammation, with their buildup in microglia linked to aging and neurodegeneration. Perilipin-2 (Plin2) is a ubiquitously expressed LD-associated protein that stabilizes lipid stores; in peripheral tissues, its upregulation promotes lipid retention, inflammation, [...] Read more.
Lipid droplets (LDs) are emerging as key regulators of metabolism and inflammation, with their buildup in microglia linked to aging and neurodegeneration. Perilipin-2 (Plin2) is a ubiquitously expressed LD-associated protein that stabilizes lipid stores; in peripheral tissues, its upregulation promotes lipid retention, inflammation, and metabolic dysfunction. Yet, its role in microglia remains unclear. Using CRISPR-engineered Plin2 knockout (KO) BV2 microglia, we examined how Plin2 contributes to lipid accumulation, bioenergetics, and immune function. Compared to wild-type (WT) cells, Plin2 KO microglia showed markedly reduced LD burden under basal and oleic acid-loaded conditions. Functionally, this was linked to enhanced phagocytosis of zymosan particles, even after lipid loading, indicating improved clearance capacity. Transcriptomics revealed genotype-specific responses to amyloid-β (Aβ), especially in mitochondrial metabolism pathways. Seahorse assays confirmed a distinct bioenergetic profile in KO cells, with reduced basal respiration and glycolysis but preserved mitochondrial capacity, increased spare reserve, and a blunted glycolytic response to Aβ. Together, these findings establish Plin2 as a regulator of microglial lipid storage and metabolic state, with its loss reducing lipid buildup, enhancing phagocytosis, and altering Aβ-induced metabolic reprogramming. Targeting Plin2 may represent a strategy to reprogram microglial metabolism and function in aging and neurodegeneration. Full article
(This article belongs to the Special Issue Lipids and Lipidomics in Neurodegenerative Diseases)
Show Figures

Graphical abstract

15 pages, 1902 KB  
Article
Dual Role of Bacillus velezensis EM-A8 in Maize: Biocontrol of Exserohilum Turcicum and Enhancement of Plant Growth
by María Fiamma Grossi Vanacore, Melina Sartori, Francisco Giordanino, Germán Barros and Daiana García
Plants 2025, 14(22), 3464; https://doi.org/10.3390/plants14223464 - 13 Nov 2025
Abstract
Northern corn leaf blight (NCLB), caused by Exserohilum turcicum, is a major foliar disease of maize worldwide. To develop sustainable alternatives that reduce chemical products, we evaluated Bacillus velezensis EM-A8 (GenBank accession number OL704805) as a biocontrol agent under greenhouse and field [...] Read more.
Northern corn leaf blight (NCLB), caused by Exserohilum turcicum, is a major foliar disease of maize worldwide. To develop sustainable alternatives that reduce chemical products, we evaluated Bacillus velezensis EM-A8 (GenBank accession number OL704805) as a biocontrol agent under greenhouse and field conditions. The aims of this study were as follows: (i) characterize phytohormone production in two formulations containing the BCA; (ii) assess the influence of the BCA on plant biomass and yield; (iii) compare the efficacy of both formulations in controlling NCLB under field conditions; and (iv) determine whether the treatments affected salicylic acid and phenolic compound levels in maize tissues. The strain synthesized a broad spectrum of phytohormones, including salicylic acid, indoleacetic acid, indolebutyric acid, jasmonic acid, abscisic acid and gibberellic acid, as well as cytokinins such as kinetin, zeatin, and 6-benzylaminopurine. Foliar application increased maize dry biomass by 30%. In field trials, both formulations effectively suppressed NCLB, reducing the number of symptomatic leaves by 25–50% compared with controls. Furthermore, treated plants exhibited yield increases exceeding 1000 kg/ha. These findings demonstrate that B. velezensis EM-A8 provides effective biocontrol of E. turcicum while simultaneously enhancing maize growth and yield under field conditions. Future work should aim to scale up the use of B. velezensis EM-A8 in integrated pest management programs and evaluate its long-term impact on soil microbiota, plant health, and yield sustainability. Full article
Show Figures

Figure 1

21 pages, 3306 KB  
Review
Oil from Cornelian Cherry Kernels
by Anna Bieniek, Iwona Szot and Grzegorz P. Łysiak
Molecules 2025, 30(22), 4382; https://doi.org/10.3390/molecules30224382 - 13 Nov 2025
Abstract
The utilization of post-production and post-processing by-products aligns with current trends in sustainable fruit industry practices. Recovering valuable nutrients from such materials holds significant potential for the food, nutraceutical, pharmaceutical, and cosmetic sectors. Among these, cornelian cherry (Cornus mas L.) seeds represent [...] Read more.
The utilization of post-production and post-processing by-products aligns with current trends in sustainable fruit industry practices. Recovering valuable nutrients from such materials holds significant potential for the food, nutraceutical, pharmaceutical, and cosmetic sectors. Among these, cornelian cherry (Cornus mas L.) seeds represent a promising source of functional ingredients, particularly due to their oil’s rich nutritional and phytochemical profile. The seeds, accounting for approximately 9–10% of the fruit mass, yield an oil characterized by high levels of polyunsaturated fatty acids—mainly linoleic acid (≈67.5%) and oleic acid (≈20%)—alongside palmitic (≈5.8%) and stearic acids (≈2.1%). Linolenic acid content, however, shows notable variability (1.4–14.7%), influencing the oil’s omega-6/omega-3 ratio, which generally remains below 5:1. Cornelian cherry seed oil stands out among other stone fruit oils (e.g., rosehip, apricot, peach, cherry, plum) for its favorable fatty acid composition and absence of cyanogenic glycosides, making it safe for human consumption. Beyond its nutritional value, this oil exhibits biological activity and health-promoting potential, suggesting wide applicability in functional foods and nutraceutical formulations. Despite progress in characterizing seed composition—including proteins, lipids, carbohydrates, minerals, and tannins—knowledge gaps persist regarding the transfer of these compounds into the oil, particularly under cold-pressing conditions. Future studies should focus on optimizing extraction processes, assessing thermal treatment effects, and clarifying the variability of linolenic acid. Such research will support the sustainable exploitation of cornelian cherry by-products and the industrial-scale development of this high-value oil. Full article
Show Figures

Figure 1

18 pages, 1371 KB  
Article
Impact of Individual Process Parameters on Extraction of Polysaccharides from Saccharina latissima
by Elmira Khajavi Ahmadi, Said Al-Hamimi, Madeleine Jönsson and Roya R. R. Sardari
Mar. Drugs 2025, 23(11), 435; https://doi.org/10.3390/md23110435 - 13 Nov 2025
Abstract
While numerous extraction methods have been applied to the brown algae Saccharina latissima, a systematic evaluation of how individual extraction parameters influence the extraction of each target polysaccharide has not previously been reported. Accordingly, this study compared conventional and advanced techniques for [...] Read more.
While numerous extraction methods have been applied to the brown algae Saccharina latissima, a systematic evaluation of how individual extraction parameters influence the extraction of each target polysaccharide has not previously been reported. Accordingly, this study compared conventional and advanced techniques for extracting fucoidan, laminarin, and alginate from pre-treated biomass. Conventional methods employed diluted acid (0.01 M and 0.1 M HCl), diluted alkali (0.01 M and 0.1 M NaOH), and hot water (121 °C for 30/60 min) for extraction. Advanced techniques involved pressurized liquid extraction (PLE) using water and moderate electric field (MEF) extraction with conditions optimized by statistical experimental design. Pre-treatment with aqueous ethanol removed 30% ash and eliminated mannitol, improving extraction selectivity. The results demonstrated fucoidan yields of 31% with 0.01 M HCl and 46% with 0.1 M NaOH, while 0.01 M NaOH facilitated laminarin co-extraction (45%). Alginate, as a mannuronic acid polymer, was obtained at 9% yield with 0.1 M HCl, 42% yield with 0.1 M NaOH, and 27% with pressurized hot water for 30 min. High-temperature, short-duration PLE further improved alginate yield, while MEF showed limited gains due to high ionic content but demonstrated potential under optimized settings. The results support a cascading biorefinery approach in which different polysaccharide fractions can be sequentially obtained, contributing to more sustainable seaweed valorization. Full article
(This article belongs to the Special Issue Polysaccharides from Marine Environment)
Show Figures

Figure 1

18 pages, 5544 KB  
Article
Functional Analysis of Maize SDG102 Gene in Response to Setosphaeria turcica
by Xin Qi, Xing Zhang, Xiaoxiao Ma, Xinyi Zhao, Xinyang Liu, Xiaoshuang Wei, Huai Tian, Yang Liu, Jianhua Zhang and Zhenhui Wang
Plants 2025, 14(22), 3463; https://doi.org/10.3390/plants14223463 - 13 Nov 2025
Abstract
Northern corn leaf blight (NCLB), caused by the fungal pathogen Setosphaeria turcica, is a devastating foliar disease that significantly threatens maize production in China. Previous studies have demonstrated that SET domain gene 102 (SDG 102), a gene encoding an H3K36 [...] Read more.
Northern corn leaf blight (NCLB), caused by the fungal pathogen Setosphaeria turcica, is a devastating foliar disease that significantly threatens maize production in China. Previous studies have demonstrated that SET domain gene 102 (SDG 102), a gene encoding an H3K36 methyltransferase, plays a crucial role in regulating maize growth, development, and stress responses. This study used the wild-type (WT), SDG102 overexpression line (OE), and silencing line (SL) of the corn inbred line B73 as materials. After artificial inoculation with S. turcica, the phenotypic characteristics, disease index, yield, and other related traits of different strains were compared, and RNA-Seq was used to analyze the changes in the gene expression profile. The results showed that overexpression of SDG102 significantly inhibited pathogen spore germination and hyphal growth and enhanced the activity of antioxidant enzymes and the ability to scavenge reactive oxygen species in plants prior to S. turcica infection, the opposite trend was observed in SDG102 silencing lines. Compared with the wild-type, 1546 and 1837 differentially expressed genes (DEGs) responsive to S. turcica were identified in OE and SL, respectively. These differentially expressed genes primarily function in pathways such as plant–pathogen interactions, plant hormone signaling, and secondary metabolite biosynthesis. In the OE lines, genes related to plant–pathogen interactions, reactive oxygen species (ROS) production, and key phenylpropanoid biosynthesis genes exhibited higher expression levels. Furthermore, SDG102 regulates the synthesis of auxin (JA) and abscisic acid (SA) as well as the transcription of their signaling pathway genes, thereby influencing maize resistance to large leaf spot disease. Under corn leaf blight conditions, SDG102 overexpression increased yield by 9.29% compared to WT, while SL reduced yield by 10.10%. In conclusion, SDG102 enhances maize resistance to NCLB by positively regulating the expression of disease resistance genes, antioxidant enzyme activity, and hormone-mediated defense pathways. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

19 pages, 3832 KB  
Article
Human Hepatocytes in Experimental Steatosis: Influence of Donor Sex and Sex Hormones
by Lena Seidemann, Carolin Marie Rohm, Anna Stilkerich, René Hänsel, Christina Götz, Daniel Seehofer and Georg Damm
Biomedicines 2025, 13(11), 2770; https://doi.org/10.3390/biomedicines13112770 - 12 Nov 2025
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a sexually dimorphic condition, with higher prevalence in men than in women. Sex differences in hepatic lipid metabolism and the modulatory role of sex hormones have been described but are still insufficiently understood. The [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a sexually dimorphic condition, with higher prevalence in men than in women. Sex differences in hepatic lipid metabolism and the modulatory role of sex hormones have been described but are still insufficiently understood. The aim of this study was to introduce the variables sex and sex hormones into a human in vitro model of hepatic steatosis. Methods: Primary human hepatocytes (PHHs) were isolated from male and female donors, treated with free fatty acids (FFA) to induce steatosis, and further exposed to physiological concentrations of estrogen, progesterone, or testosterone. Intracellular triacylglyceride (TAG) content, lipid droplet (LD) formation, FFA uptake, and very-low-density lipoprotein (VLDL) excretion were assessed. In parallel, the expression of lipid metabolism-related genes was quantified by qPCR. Results: FFA treatment induced comparable uptake and intracellular TAG storage in both sexes. However, female PHHs secreted approximately twice as many VLDL particles as male cells. Steatosis significantly increased expression of LDLR, CPT2, and PLA1A only in male PHHs. Sex hormones exerted distinct, sex-specific effects: estrogen reduced TAG accumulation in female PHHs; whereas testosterone reduced TAG in male but increased it in female PHHs after prolonged treatment. LD characterization confirmed sex- and hormone-dependent differences in lipid storage patterns. In male PHHs, progesterone promoted lipid storage and increased apoB-100 secretion, accompanied by reduced LDLR and APOA5 expression, and testosterone increased the FFA-mediated CPT2 even further. Conclusions: Sex and sex hormones distinctly shape hepatocellular lipid handling under steatotic conditions. While female PHHs demonstrated greater lipid excretion capacity, male PHHs exhibited stronger transcriptional responses. Sex-specific responses to estrogen and testosterone resembled clinical observations on sex hormone effects. These findings highlight the need to account for sex-specific differences in MASLD pathophysiology and therapeutic strategies. Full article
(This article belongs to the Special Issue State-of-the-Art Hepatic and Gastrointestinal Diseases in Germany)
Show Figures

Figure 1

Back to TopTop