Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,953)

Search Parameters:
Keywords = adhesive content

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3481 KB  
Article
Development and Characterization of Scented PLA-Based Biocomposites Reinforced with Spent Coffee Grounds and Lignin for FDM 3D Printing
by Zeineb Siala, Ahmed Koubaa, Sofiane Guessasma, Nicolas Stephant, Ahmed Elloumi and Martin Beauregard
Polymers 2025, 17(21), 2836; https://doi.org/10.3390/polym17212836 (registering DOI) - 24 Oct 2025
Abstract
This study investigates the development of biodegradable, scented bio-composite filaments incorporating industrial residues, specifically spent coffee grounds (SCG) and lignin (LI), into a PLA matrix for FDM 3D printing. Two fragrance additives, essential oil (EO) and microencapsulated fragrance powder (FP), were introduced (3%) [...] Read more.
This study investigates the development of biodegradable, scented bio-composite filaments incorporating industrial residues, specifically spent coffee grounds (SCG) and lignin (LI), into a PLA matrix for FDM 3D printing. Two fragrance additives, essential oil (EO) and microencapsulated fragrance powder (FP), were introduced (3%) to enhance sensory properties. The research investigates the effects of filler content (5%, 10%, and 15%) and fragrance additives on the surface chemistry (FTIR), thermal stability (TGA and DSC), mechanical properties (Tensile, flexural and impact), microstructure, and dimensional stability (Water absorption test and thickness swelling). Incorporating industrial residues and additives into PLA reduced the thermal stability, the degradation temperature and the glass transition temperature but increased the residual mass and the crystallinity. The effect of lignin was more pronounced than that of SCG, significantly influencing these thermal properties. Increasing the filler content of spent coffee grounds and lignin also led to a progressive decrease in tensile, flexural, and impact strength due to poor interfacial adhesion and increased void formation. However, lignin-based biocomposites exhibited enhanced stiffness at lower concentrations (≤10%), while biocomposites containing 15% SCG doubled their elongation at break compared to pure PLA. Adding fragrance reduced the mechanical strength but improved ductility due to plasticizer-like interactions. Microstructural analysis revealed heterogeneity in the biocomposites’ fracture surface characterized by the presence of pores, filler agglomeration, and delamination, indicating uneven filler dispersion and limited interfacial adhesion, particularly at high filler concentrations. The water absorption and dimensional stability of 3D-printed biocomposites increased progressively with the addition of residues. The presence of essential oil slightly improved water resistance by forming hydrogen bonds that limited moisture absorption. This article adds significant value by extending the potential applications of biocomposites beyond conventional engineering uses, making them particularly suitable for the fashion and design sectors, where multi-sensory and sustainable materials are increasingly sought after. Full article
Show Figures

Figure 1

17 pages, 6471 KB  
Article
Bio-Adhesive Lignin-Reinforced Epoxy Acrylate (EA)-Based Composite as a DLP 3D Printing Material
by Jeonghong Ha and Jong Wan Ko
Polymers 2025, 17(21), 2833; https://doi.org/10.3390/polym17212833 - 23 Oct 2025
Abstract
Digital light processing (DLP) 3D printing is a powerful additive manufacturing technique but is limited by the relatively low mechanical strength of cured neat resin parts. In this study, a renewable bio-adhesive lignin was introduced as a reinforcing filler into a bisphenol A-type [...] Read more.
Digital light processing (DLP) 3D printing is a powerful additive manufacturing technique but is limited by the relatively low mechanical strength of cured neat resin parts. In this study, a renewable bio-adhesive lignin was introduced as a reinforcing filler into a bisphenol A-type epoxy acrylate (EA) photocurable resin to enhance the mechanical performance of DLP-printed components. Lignin was incorporated at low concentrations (0–0.5 wt%), and three dispersion methods—magnetic stirring, planetary mixing, and ultrasonication—were compared to optimize the filler distribution. Cure depth tests and optical microscopy confirmed that ultrasonication (40 kHz, 5 h) achieved the most homogeneous dispersion, yielding a cure depth nearly matching that of the neat resin. DLP printing of tensile specimens demonstrated that as little as 0.025 wt% lignin increased tensile strength by ~39% (from 44.9 MPa to 62.2 MPa) compared to the neat resin, while maintaining similar elongation at break. Surface hardness also improved by over 40% at this optimal lignin content. However, higher lignin loadings (≥0.05 wt%) led to particle agglomeration, resulting in diminished mechanical gains and impaired printability (e.g., distortion and incomplete curing at 1 wt%). Fractographic analysis of broken specimens revealed that well-dispersed lignin particles act to deflect and hinder crack propagation, thereby enhancing fracture resistance. Overall, this work demonstrates a simple and sustainable approach to reinforce DLP 3D-printed polymers using biopolymer lignin, achieving significant improvements in mechanical properties while highlighting the value of bio-derived additives for advanced photopolymer 3D printing applications. Full article
Show Figures

Figure 1

22 pages, 3648 KB  
Article
Hybrid Mortar Composites Incorporating Oyster Shell Filler and Recycled Fibers from Disposable Masks
by René Sebastián Mora-Ortiz, Sergio Alberto Díaz Alvarado, Ebelia Del Angel-Meraz, Francisco Magaña-Hernández, Mayra Agustina Pantoja Castro and Emmanuel Munguía-Balvanera
Materials 2025, 18(21), 4854; https://doi.org/10.3390/ma18214854 - 23 Oct 2025
Abstract
This study presents the development of hybrid masonry mortars by incorporating two waste materials: recycled plastic strips from disposable face masks (FM) as mechanical reinforcement and calcined oyster shell powder (OSP) as a filler. The objective was to evaluate the combined effect of [...] Read more.
This study presents the development of hybrid masonry mortars by incorporating two waste materials: recycled plastic strips from disposable face masks (FM) as mechanical reinforcement and calcined oyster shell powder (OSP) as a filler. The objective was to evaluate the combined effect of FM and OSP on the mechanical behavior of mortars. Three types of mixes were prepared: a reference mix, a mix with 5% OSP (by cement weight), and mixes with 5% OSP reinforced with FM strips. FM strips were incorporated at three different lengths, dividing the FM-reinforced group into three subgroups (0.1%, 0.2%, 0.5%, and 0.8%). The results showed an approximately 10% increase in compressive strength with the addition of 5% OSP compared to the control mortar, as well as an improvement in bond strength of about 21%. Furthermore, an optimum content of 0.2% of 6 mm strips allowed for adequate dispersion and maintained indirect tensile strengths similar to the control + OSP. OSP acted as a reactive filler, increasing compressive strength and improving both density and adhesion. However, higher FM contents or longer strips increased porosity and water absorption, while reducing strength. This combination represents an innovative strategy for valorizing post-pandemic and marine waste. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Graphical abstract

21 pages, 2744 KB  
Article
Genomic Surveillance and Resistance Profiling of Multidrug-Resistant Acinetobacter baumannii Clinical Isolates: Clonal Diversity and Virulence Insights
by Maria Vittoria Ristori, Ilaria Pirona, Lucia De Florio, Sara Elsa Aita, Gabriele Macari, Silvia Spoto, Raffaele Antonelli Incalzi and Silvia Angeletti
Microorganisms 2025, 13(11), 2429; https://doi.org/10.3390/microorganisms13112429 - 23 Oct 2025
Abstract
Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen that poses critical challenges in hospital settings due to its environmental resilience and high resistance to antibiotics. Genomic surveillance has become essential for identifying transmission patterns, guiding antimicrobial stewardship, and informing infection control policies. We conducted [...] Read more.
Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen that poses critical challenges in hospital settings due to its environmental resilience and high resistance to antibiotics. Genomic surveillance has become essential for identifying transmission patterns, guiding antimicrobial stewardship, and informing infection control policies. We conducted whole-genome sequencing on 44 A. baumannii isolates collected between 2022 and 2023 from diverse wards in an Italian hospital. Illumina-based sequencing was followed by a comprehensive bioinformatics pipeline, including genome assembly, taxonomic validation, MLST, SNP-based phylogeny, pan-genome analysis, antimicrobial resistance (AMR) gene profiling, and virulence factor prediction. Most isolates were classified as ST2; SAMPLE-34 was ST1 and genetically distinct. Phylogenetic analysis revealed four clonal clusters with cluster-specific AMR and accessory gene content. The pan-genome included 5050 genes, with notable variation linked to hospital ward origin. ICU and internal medicine strains carried higher loads of AMR genes, especially against aminoglycosides, β-lactams, and quinolones. Virulence profiling highlighted widespread immune evasion mechanisms; “Acenovactin” was predominant, while some isolates lacked key adhesion or toxin factors. Our findings underscore the clinical relevance of integrating genomic epidemiology into routine hospital surveillance. Identifying clonal clusters and resistance signatures supports real-time outbreak detection, risk stratification, and targeted infection prevention strategies. Full article
(This article belongs to the Collection Feature Papers in Antimicrobial Agents and Resistance)
Show Figures

Figure 1

19 pages, 5487 KB  
Article
Effect of Addition of Cr on the Structural Properties of Copper Films on BaTiO3 Ceramic Substrates
by Fengtian Shi, Heda Bai, Yuanhao Liao, Jin Li and Xiangli Liu
Materials 2025, 18(21), 4851; https://doi.org/10.3390/ma18214851 - 23 Oct 2025
Abstract
In the application of ceramic dielectric filters, to achieve electromagnetic shielding of signals and subsequent integrated applications, it is necessary to carry out metallization treatment on their surfaces. The quality of metallization directly affects the performance of the filter. However, when in use, [...] Read more.
In the application of ceramic dielectric filters, to achieve electromagnetic shielding of signals and subsequent integrated applications, it is necessary to carry out metallization treatment on their surfaces. The quality of metallization directly affects the performance of the filter. However, when in use, the filter may encounter harsh environmental conditions. Therefore, the surface-metallized film needs to have strong corrosion resistance to ensure its long-term stability during use. In this paper, Cu films and copper–chromium alloy films were fabricated on Si (100) substrates and BaTiO3 ceramic substrates by HiPIMS technology. The effects of different added amounts of Cr on the microstructure, electrical conductivity, and corrosion resistance of the Cu films were studied. The results show that with an increase in Cr content, the preferred orientation of the (111) crystal plane gradually weakens, and the grains of the Cu-Cr alloy film gradually decrease. The particles on the film surface are relatively coarse, increasing the surface roughness of the film. However, after doping, the film still maintains a relatively low surface roughness. After doping with Cr, the resistivity of the film increases with the increase in Cr content. The film–substrate bonding force shows a trend of first increasing and then decreasing with the increase in Cr content. Among them, when the Cr content is 2 at.%, the film–substrate bonding force is the greatest. The Cu-Cr alloy film has good corrosion resistance in static corrosion. With the increase in Cr content, the Tafel slope of the cathode increases, and the polarization resistance Rp also increases with the increase in Cr content. After the addition of Cr, both the oxide film resistance and the charge transfer resistance of the electrode reaction of the Cu-Cr alloy film are greater than those of the Cu film. This indicates that the addition of Cr reduces the corrosion rate of the alloy film and enhances its corrosion resistance in a NaCl solution. 2 at.% Cr represents a balanced trade-off in composition. While ensuring the film is dense, uniform, and has good electrical conductivity, the adhesion between the film and the substrate is maximized, and the corrosion resistance of the Cu film is also improved. Full article
(This article belongs to the Special Issue Advanced Thin Films: Structural, Optical, and Electrical Properties)
Show Figures

Figure 1

12 pages, 2130 KB  
Article
Impact of Acacia and Tragacanth Gums on the Surface Characteristics of Traditional Wood-Supported Polychrome Paintings
by Xiaochen Liu, Yuemin Feng, Meng Xia, Xinyou Liu, Emanuela Carmen Beldean and Yushu Chen
Coatings 2025, 15(11), 1233; https://doi.org/10.3390/coatings15111233 - 22 Oct 2025
Viewed by 193
Abstract
Polychrome paintings on wooden artifacts are vital elements of cultural heritage, where plant-derived binders play a crucial role in color formation and durability. This study aims to systematically compare the chemical, optical, and surface characteristics of two traditional natural adhesives—acacia gum (AG) and [...] Read more.
Polychrome paintings on wooden artifacts are vital elements of cultural heritage, where plant-derived binders play a crucial role in color formation and durability. This study aims to systematically compare the chemical, optical, and surface characteristics of two traditional natural adhesives—acacia gum (AG) and tragacanth gum (TG)—to better understand their influence on the preservation and reproduction of wood-supported polychrome coatings. Fourier-transform infrared spectroscopy (FTIR) confirmed their polysaccharide-rich structures, with distinct ester and glycosidic linkages, while rheological tests demonstrated that TG exhibited higher viscosity at 1–3% concentrations, whereas AG showed a sharper increase at 5%, reflecting different molecular architectures. Colorimetric analysis combined with two-way ANOVA revealed that gum type significantly influenced color development in blue and red coatings (p < 0.001), while yellow and green coatings remained largely unaffected. Gum concentration (1–5%) generally showed no significant effect on color. All coatings exhibited a matte appearance (<3 GU), with statistical analysis indicating that gloss was mainly determined by pigment particle distribution rather than adhesive type. Surface roughness increased notably with gum concentration (p < 0.001), demonstrating that binder content strongly affects coating microtexture. Overall, pigment type was the dominant factor for color, whereas gum concentration critically influenced surface morphology. These findings provide practical guidance for optimizing natural adhesives in the conservation of traditional polychrome artifacts. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

13 pages, 1708 KB  
Article
Preparation and Properties of Composite Coatings Fabricated from Carved Lacquer Waste and Waterborne Acrylic Resin
by Xinyue Du, Yuemin Feng, Alin Olarescu, Yushu Chen and Xinyou Liu
Coatings 2025, 15(10), 1230; https://doi.org/10.3390/coatings15101230 - 21 Oct 2025
Viewed by 220
Abstract
This study developed a waterborne UV-curable acrylic composite coating incorporated with carved lacquer powder and systematically investigated the effects of powder and deionized water content on its properties. The results showed that the carved lacquer powder content significantly influenced the optical, mechanical, and [...] Read more.
This study developed a waterborne UV-curable acrylic composite coating incorporated with carved lacquer powder and systematically investigated the effects of powder and deionized water content on its properties. The results showed that the carved lacquer powder content significantly influenced the optical, mechanical, and curing behaviors of the coating, while the water content had negligible impact. Specifically, increasing the powder content reduced lightness, enhanced red hue, and decreased gloss. An optimal comprehensive performance was achieved at 20% powder content, with adhesion reaching grade 5, flexibility of 10 mm, and impact resistance of 6 kg·cm. FTIR analysis confirmed that high powder content (≥20%) led to incomplete curing due to UV shielding. The coatings showed moderate resistance to water, acid, and saline environments but poor alkaline resistance due to the chemical instability of cinnabar. SEM revealed increased surface roughness at high powder loading (30%). More importantly, this work presents a sustainable approach to recycle carved lacquer waste and demonstrates a viable strategy for incorporating traditional cultural heritage materials into advanced functional coatings. The study demonstrates that carved lacquer powder can be effectively integrated into UV-curable coatings to achieve unique decorative effects, and a content of approximately 20% is recommended to achieve balanced properties. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

14 pages, 1585 KB  
Article
Antioxidant-Rich Clitoria ternatea Flower Extract Promotes Proliferation and Migration of Human Corneal Epithelial Cells
by Karthini Devi Rajan, Nahdia Afiifah Abdul Jalil, Taty Anna Kamarudin and Fairus Ahmad
Plants 2025, 14(20), 3216; https://doi.org/10.3390/plants14203216 - 20 Oct 2025
Viewed by 216
Abstract
A corneal abrasion results from the disruption or loss of cells in the corneal epithelium. If inadequately treated, it can compromise visual clarity. The wound healing process of a corneal abrasion involves epithelial migration, proliferation and adhesion. Clitoria ternatea flower extract (CTE) is [...] Read more.
A corneal abrasion results from the disruption or loss of cells in the corneal epithelium. If inadequately treated, it can compromise visual clarity. The wound healing process of a corneal abrasion involves epithelial migration, proliferation and adhesion. Clitoria ternatea flower extract (CTE) is rich in flavonoids, anthocyanins and other bioactive compounds. It has antioxidant, anti-inflammatory and wound-healing properties. This study explores the potential of CTE to be used as a natural supplement to improve corneal wound healing. Phytochemical profiling via LC–MS identified a total of 51 distinct bioactive constituents. The anthocyanin content, quantified in terms of cyanidin-3-glucoside equivalent, was quantified at 33.06 mg per gram of extract. The extract exhibited 33.8% DPPH radical scavenging activity and a total polyphenol content equivalent to 24.14 mg/g gallic acid. Human telomerase-immortalized corneal epithelial (hTCEpi) cells maintained in keratinocyte basal medium were utilized to determine cytotoxicity and wound-healing effects. The optimal extract concentration of 0.08 mg/mL, quantified via MTT assay, resulting in enhanced cell viability. Scratch assays demonstrated a higher percentage of wound closure in the CTE-treated group at 6 and 12 h relative to the untreated group, with statistical significance (p < 0.05). The gene expressions of CK3 and Cx43, quantified via qRT-PCR, showed no significant differences between groups. However, within the CTE-treated group, CK3 expression increased at 12 h relative to 0 h and 6 h, and Cx43 expression rose significantly at 12 h compared with 0 h (p < 0.05). Immunofluorescence confirmed positive protein expression of both markers. These findings suggest that CTE possesses potent antioxidant properties and promotes corneal epithelial wound healing through upregulation of CK3 and Cx43 in vitro. Full article
(This article belongs to the Special Issue Phytochemistry and Pharmacological Properties of Medicinal Plants)
Show Figures

Figure 1

24 pages, 22342 KB  
Article
Study on the Adsorption Characteristics of Microbial-Reed Fiber and Its MICP Solidified Saline Soil Test
by Yimo Du, Zhenyu Bai, Xiaoli Wang, Ruze Wang and Wen Zhang
Appl. Sci. 2025, 15(20), 11198; https://doi.org/10.3390/app152011198 - 19 Oct 2025
Viewed by 180
Abstract
In response to the issues of increased brittleness and insufficient toughness in microbially solidified saline sandy soils in cold and arid plateau regions, this study investigated saline sandy soils and indigenous microorganisms from the Qaidam Basin, Qinghai. A dual-reinforcement method combining microbial-induced calcium [...] Read more.
In response to the issues of increased brittleness and insufficient toughness in microbially solidified saline sandy soils in cold and arid plateau regions, this study investigated saline sandy soils and indigenous microorganisms from the Qaidam Basin, Qinghai. A dual-reinforcement method combining microbial-induced calcium carbonate precipitation (MICP) with alkali-modified reed fiber (ARF) was proposed to enhance both strength and ductility. The study explored the adsorption characteristics and solidification mechanisms of this approach. Key innovations include: (1) alkali modification significantly improved the interfacial bonding between reed fibers and sand particles, with pull-out tests indicating a 1.24-fold increase in adhesion strength; (2) an orthogonal experimental design identified optimal parameters—fiber length of 15 mm, fiber content of 0.5%, and cementation solution concentration of 3 mol/L—leading to the development of a synergistic “microbial cementation–fiber bridging” enhancement model. Experimental results showed that the proposed method increased the unconfined compressive strength (UCS) of the solidified soil to 2082.85 kPa, 2.99 times higher than that of traditional MICP-treated soil, while it significantly enhanced the ductility of the soil. This approach offers a mechanically robust and environmentally adaptive solution within the ambient temperature range of 0–35 °C for the ecological restoration of saline soils in high-altitude regions. Full article
(This article belongs to the Special Issue Advanced Technology in Geotechnical Engineering)
Show Figures

Figure 1

28 pages, 3837 KB  
Article
Thai Medicinal Flowers as Natural Antioxidants and Antibacterial Agents Against Pathogenic Enteric Bacteria: A Comparative Study of Mesua ferrea, Mammea siamensis, and Clitoria ternatea
by Sureeporn Suriyaprom, Nitsanat Cheepchirasuk, Pornpimon Ngamsaard, Varachaya Intachaisri, Angkhana Inta and Yingmanee Tragoolpua
Antibiotics 2025, 14(10), 1038; https://doi.org/10.3390/antibiotics14101038 - 16 Oct 2025
Viewed by 460
Abstract
Thai medicinal flowers, namely Mesua ferrea L. (Bunnak), Mammea siamensis T. Anderson (Saraphi), and Clitoria ternatea (Anchan) have long been valued for their traditional medicinal. This study investigated their phytochemical composition and bioactivities, with a particular focus on antioxidant and antibacterial properties. Methods: [...] Read more.
Thai medicinal flowers, namely Mesua ferrea L. (Bunnak), Mammea siamensis T. Anderson (Saraphi), and Clitoria ternatea (Anchan) have long been valued for their traditional medicinal. This study investigated their phytochemical composition and bioactivities, with a particular focus on antioxidant and antibacterial properties. Methods: Ethanolic flower extracts were analyzed by high-performance liquid chromatography (HPLC) and liquid chromatography–mass spectrometry (LC–MS). Antioxidant activities were determined by DPPH, ABTS, and FRAP assays. Antibacterial activity against Escherichia coli, E. coli O157:H7, Salmonella Typhi, Shigella dysenteriae, and Vibrio cholerae were assessed by agar well diffusion, broth dilution methods, and time–kill assays. Biofilm formation, biofilm disruption, and bacterial adhesion to Caco-2 cells were evaluated. Morphological changes in E. coli O157:H7 were examined using scanning electron microscopy (SEM), and leakage of intracellular contents (DNA, RNA, proteins) were quantified. Results: HPLC analysis revealed the highest level of gallic acid in M. ferrea and quercetin in M. siamensis. LC–MS analysis identified fifteen putative metabolites across the flower extracts, including quercetin, kaempferol, catechin, and luteolin derivatives, with species-specific profiles. C. ternatea extract exhibited the greatest total flavonoid content and antioxidant activity. Among the extracts, M. ferrea exhibited the strongest inhibitory effect, with inhibition zone of 13.00–15.00 mm and MIC/MBC values of 31.25–62.5 mg/mL. All extracts exhibited time-dependent bactericidal activity, significantly inhibited biofilm formation, disrupted established biofilms, and reduced bacterial adhesion to intestinal epithelial cells. SEM revealed membrane disruption in E. coli O157:H7 and leakage of intracellular components. Conclusions: Thai medicinal flower extracts, particularly M. ferrea, possess strong antioxidant and antibacterial activities. Their ability to inhibit biofilm formation, interfere with bacterial adhesion, and disrupt bacterial membranes highlights their potential as natural alternatives for preventing or controlling enteric bacterial infections. Full article
Show Figures

Figure 1

22 pages, 6280 KB  
Article
Adhesion of Polypropylene, Steel, and Basalt Fibres to a Geopolymer Matrix with Water Treatment Sludge Addition
by Mateusz Sitarz, Tomasz Zdeb, Tomasz Tracz and Michał Łach
Materials 2025, 18(20), 4727; https://doi.org/10.3390/ma18204727 - 15 Oct 2025
Viewed by 332
Abstract
This study investigates the adhesion of polypropylene (PP), steel and basalt fibres to geopolymer matrices of varying composition. Geopolymers formed via alkali activation of fly ash (FA) and ground granulated blast-furnace slag (GGBFS) offer significant environmental advantages over Portland cement by reducing CO [...] Read more.
This study investigates the adhesion of polypropylene (PP), steel and basalt fibres to geopolymer matrices of varying composition. Geopolymers formed via alkali activation of fly ash (FA) and ground granulated blast-furnace slag (GGBFS) offer significant environmental advantages over Portland cement by reducing CO2 emissions and energy consumption. The addition of water treatment sludge (WTS) was also investigated as a partial or complete replacement for FA. Pull-out tests showed that replacing FA with WTS significantly reduces the mechanical properties of the matrix and at the same time the adhesion to the fibres tested. The addition of 20% WTS reduced the compressive strength by more than 50% and full replacement to less than 5% of the reference value. Steel fibres showed the highest adhesion (9.3 MPa), while PP fibres had the lowest, with adhesion values three times lower than steel. Increased GGBFS content improved fibre adhesion, while the addition of WTS weakened it. Calculated critical fibre lengths ranged from 50 to 70 mm in WTS-free matrices but increased significantly in WTS-containing matrices due to reduced matrix strength. The compatibility of the fibres with the geopolymer matrix was also confirmed via SEM microstructural observations, where a homogeneous transition zone was observed in the case of steel fibres, while numerous discontinuities at the interface were observed in the case of other fibres, the surface of which is made of organic polymers. These results highlight the potential of fibre-reinforced geopolymer composites for sustainable construction. Full article
Show Figures

Figure 1

12 pages, 4724 KB  
Article
Optimized Optical and Thermal Properties of Al-Pigmented Low-Emissivity Coatings by CuCr2O4 Powder
by Xiaodong Ma, Xiaolong Weng, Biao Wei, Min Zhang, Lun Qi, Yaqin Wang, Le Yuan, Xiaolong Qing and Wei Luo
Materials 2025, 18(20), 4717; https://doi.org/10.3390/ma18204717 - 15 Oct 2025
Viewed by 302
Abstract
To reduce the lightness and enhance the thermal resistance of Al-pigmented low-emissivity coatings, CuCr2O4 pigment was introduced into the coating system via ball milling. The results revealed that both ball milling time and Al: CuCr2O4 mass ratio [...] Read more.
To reduce the lightness and enhance the thermal resistance of Al-pigmented low-emissivity coatings, CuCr2O4 pigment was introduced into the coating system via ball milling. The results revealed that both ball milling time and Al: CuCr2O4 mass ratio significantly affect the optical and infrared properties of the coatings. When the milling time reached 9 h, the pigment attained an optimal flake morphology, leading to the best infrared performance of the composite coating. Additionally, the CuCr2O4 content effectively suppressed the lightness of Al-pigmented coatings. Compared to Al-pigmented low-emissivity coatings, the composite coating with an Al:CuCr2O4 ratio of 10:2 exhibited a reduction in L* value from 90 to 65. Meanwhile, it retained a low average infrared emissivity of 0.42 in the 3–5 μm and 8–14 μm ranges. Moreover, the incorporation of CuCr2O4 significantly improved the Al-pigmented coating’s thermal resistance from 500 °C to 600 °C. The composite coating maintained a Grade 1 adhesion rating with heat treatment of 600 °C due to a self-healing effect. These composite coatings with low emissivity, low lightness, and high-temperature resistance are highly suitable for high-temperature and infrared stealth applications. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

23 pages, 58300 KB  
Article
The Cellulose Loading and Silylation Effects on the Mechanical Properties of Epoxy Composites: Insights from Classical and Reactive Molecular Dynamics Simulations
by Ahmad Y. Al-Maharma, Bernd Markert and Franz Bamer
Polymers 2025, 17(20), 2749; https://doi.org/10.3390/polym17202749 - 14 Oct 2025
Viewed by 290
Abstract
This study investigates the effect of silylation and cellulose loading on the mechanical properties of epoxy composites. We use the hydrolyzed 3-Aminopropyltriethoxysilane (KH550) as a crosslinker for epoxy and as a coupling agent for cellulose. The mechanical properties of the epoxy composites are [...] Read more.
This study investigates the effect of silylation and cellulose loading on the mechanical properties of epoxy composites. We use the hydrolyzed 3-Aminopropyltriethoxysilane (KH550) as a crosslinker for epoxy and as a coupling agent for cellulose. The mechanical properties of the epoxy composites are evaluated using molecular dynamics simulations. The improvement in the interfacial adhesion between epoxy and cellulose, achieved by using KH550, is demonstrated through the pulling out of cellulose from the epoxy composites. The results indicate that the nanocovalent bonds formed by KH550 at the epoxy/cellulose interface have a higher enhancement effect on the pulling force compared to increasing the cellulose content. For instance, the force needed for pulling 44.1 wt.% of raw cellulose is 93 ± 5 (kcal/mol)/Å, while the one required to pull the 28.1 wt.% of silylated cellulose is 97 ± 4 (kcal/mol)/Å. The silylated cellulose at 28.1 wt.% enhances the tensile modulus, shear modulus, and strength of the epoxy-KH550 composite by 14.55%, 15.65%, and 15.64%, respectively, compared to its counterpart reinforced with raw cellulose. Using the silylation treatment on cellulose that reinforces epoxy-KH550 at 43.9 wt.% improves the elastic modulus, shear modulus, and tensile strength of the epoxy composite by 4.23%, 4.64%, and 18.07%, respectively. Full article
(This article belongs to the Special Issue Sustainable Biopolymer Materials for Industrial Applications)
Show Figures

Figure 1

17 pages, 4275 KB  
Article
Influence of Surface Energy and Phase Composition on Electroadhesive Interactions
by Konstantin I. Sharov, Valentina Yu. Stepanenko, Ramil R. Khasbiullin, Vladimir V. Matveev, Uliana V. Nikulova and Aleksey V. Shapagin
Polymers 2025, 17(20), 2739; https://doi.org/10.3390/polym17202739 - 13 Oct 2025
Viewed by 281
Abstract
The aim of the study is to investigate the influence of the physicochemical characteristics of the molecular and supramolecular structure of polymers on electroadhesive interactions and their change under the action of a constant electric field. Currently, this effect is modeled in electroadhesion [...] Read more.
The aim of the study is to investigate the influence of the physicochemical characteristics of the molecular and supramolecular structure of polymers on electroadhesive interactions and their change under the action of a constant electric field. Currently, this effect is modeled in electroadhesion studies, but the range of variable parameters is limited and includes permittivity, moisture content, and surface roughness. It is important to consider other physicochemical parameters, such as material crystallinity and surface characteristics, changes in which can affect the magnitude of electroadhesive forces. In this study, the electric field strength was varied by altering the constant voltage in the range of 3–8 kV. Polyethylene, ethylene-vinyl acetate copolymers, and polyvinyl acetate were used as substrates for adhesive systems. The influence of the concentration of vinyl acetate groups, which determine the energy characteristics of the surface, and the degree of crystallinity on electroadhesive interactions under conditions of an external constant electric field and without it was traced. The degree of crystallinity was varied both by the cooling rate and the orientation during drawing. It was shown that by changing the polar component of the surface energy and the proportion of the crystalline phase in the substrate, electroadhesive interactions can be increased by 4 times to 120 Pa compared to polyethylene. The obtained laws are explained by the local dipoles induced by polar functional groups, which enhance the polymer’s surface interactions with other materials and external fields. At the same time, the fixation of macromolecules in crystalline regions complicates polarization under the influence of an electric field. Full article
Show Figures

Graphical abstract

16 pages, 4097 KB  
Article
Experimental Study on the Rotary Adhesion of Shield Cutterhead Tunneling in Clay Strata at Different Temperatures
by Tao Zhang, Zhe Yuan, Jingchun Pang, Wenqiu Li and Zeen Wan
Buildings 2025, 15(20), 3657; https://doi.org/10.3390/buildings15203657 - 11 Oct 2025
Viewed by 186
Abstract
In the process of shield tunneling in clayey strata, the fine-grained clay mineral components in the soil easily adhere to the cutter plate. The clay adhering to the cutterhead and the soil compartment then solidifies and hardens, which results in the production of [...] Read more.
In the process of shield tunneling in clayey strata, the fine-grained clay mineral components in the soil easily adhere to the cutter plate. The clay adhering to the cutterhead and the soil compartment then solidifies and hardens, which results in the production of mud cake and clogging. At present, research on cutter plates in clayey ground is limited and has focused mostly on static tests or simplified models. There is a lack of in-depth studies on the effect of temperature on clay adhesion, which is crucial for understanding the clogging risks. In this study, we independently researched and developed a rotary adhesion tester to investigate the adhesion effect and adhesion force change in a shield cutter plate under the influence of different temperatures, water contents (ω), and clay types, revealing the change rule of the adhesion effect under the joint influence of the temperature and the consistency index (Ic). This study provides experimental evidence and an empirical model for assessing the clogging risk in shield tunneling through clay strata, offering valuable insights that support the efficient operation of earth pressure balance (EPB) shields. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop