Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (615)

Search Parameters:
Keywords = adsorption–desorption cycles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2088 KB  
Article
Synthesis and Characterization of Rosa Canina-Fe3O4/Chitosan Nanocomposite and Treatment of Safranin O Dye from Wastewater
by Tugba Ceylan, İlknur Tosun Satır and Bediha Akmeşe
Water 2025, 17(19), 2894; https://doi.org/10.3390/w17192894 - 5 Oct 2025
Abstract
In response to the increasing demand for environmentally friendly and cost-effective adsorbents in wastewater treatment, this study reports the green synthesis, characterization, and application of a magnetic epichlorohydrin Rosa canina (m-ECH-RC) nanocomposite for removing Safranin O (SO), a commonly used cationic dye in [...] Read more.
In response to the increasing demand for environmentally friendly and cost-effective adsorbents in wastewater treatment, this study reports the green synthesis, characterization, and application of a magnetic epichlorohydrin Rosa canina (m-ECH-RC) nanocomposite for removing Safranin O (SO), a commonly used cationic dye in textile effluents. The synthesized material was characterized using Brunauer–Emmett–Teller (BET), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and zeta potential analyses to reveal its surface morphology, pore structure, functional groups, crystallinity, and colloidal stability. Adsorption performance was systematically tested under various conditions, including pH, adsorbent dose, contact time, ionic strength, and initial dye concentration. Kinetic analyses revealed that the adsorption process of Safranin O dye mainly obeys pseudo-second-order kinetics, but intraparticle and film diffusion also contribute to the process. As a result of the Isotherm analysis, it was found that the adsorption process conformed to the Langmuir model. Testing on real textile wastewater samples demonstrated a removal efficiency of 75.09% under optimized conditions. Reusability experiments further revealed that the material maintained high adsorption–desorption performance for up to five cycles, emphasizing its potential for practical use. These findings suggest that m-ECH-RC is a viable and sustainable adsorbent for treating dye-laden industrial effluents. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
15 pages, 2135 KB  
Article
Novel Synthesis of Phosphorus-Doped Porous Carbons from Lotus Petiole Using Sodium Phytate for Selective CO2 Capture
by Yue Zhi, Jiawei Shao, Junting Wang, Xiaohan Liu, Qiang Xiao, Muslum Demir, Utku Bulut Simsek, Linlin Wang and Xin Hu
Molecules 2025, 30(19), 3990; https://doi.org/10.3390/molecules30193990 - 5 Oct 2025
Abstract
Developing sustainable and high-performance sorbents for efficient CO2 capture is essential for mitigating climate change and reducing industrial emissions. In this study, phosphorus-doped porous carbons (LPSP-T) were synthesized via a one-step activation–doping strategy using lotus petiole biomass as a precursor and sodium [...] Read more.
Developing sustainable and high-performance sorbents for efficient CO2 capture is essential for mitigating climate change and reducing industrial emissions. In this study, phosphorus-doped porous carbons (LPSP-T) were synthesized via a one-step activation–doping strategy using lotus petiole biomass as a precursor and sodium phytate as a dual-function activating and phosphorus-doping agent. The simultaneous activation and phosphorus incorporation at various temperatures (650–850 °C) under a nitrogen atmosphere produced carbons with tailored textural properties and surface functionalities. Among them, LPSP-700 exhibited the highest specific surface area (525 m2/g) and a hierarchical porous structure, with abundant narrow micropores (<1 nm) and phosphorus-containing surface groups that synergistically enhanced CO2 capture performance. The introduction of P functionalities not only improved the surface polarity and binding affinity toward CO2 but also promoted the formation of a well-connected pore network. As a result, LPSP-700 delivered a CO2 uptake of 2.51 mmol/g at 25 °C and 1 bar (3.34 mmol/g at 0 °C), along with a high CO2/N2 selectivity, fast CO2 adsorption kinetics and moderate isosteric heat of adsorption (Qst). Furthermore, the dynamic CO2 adsorption capacity (0.81 mmol/g) was validated by breakthrough experiments, and cyclic adsorption–desorption tests revealed excellent stability with negligible loss in performance over five cycles. Correlation analysis revealed pores < 2.02 nm as the dominant contributors to CO2 uptake. Overall, this work highlights sodium phytate as an effective dual-role agent for simultaneous activation and phosphorus doping and validates LPSP-700 as a sustainable and high-performance sorbent for CO2 capture under post-combustion conditions. Full article
(This article belongs to the Special Issue Porous Carbons for CO2 Adsorption and Capture)
Show Figures

Figure 1

14 pages, 2778 KB  
Article
Evaluation of Fluoride Adsorptive Removal by Metallic Phosphates
by Ruijie Wang, Yingpeng Gu, Mengfei Ma and Yue Sun
Appl. Sci. 2025, 15(19), 10454; https://doi.org/10.3390/app151910454 - 26 Sep 2025
Abstract
Currently, various techniques are efficient in eliminating high quantities of fluoride from water, while the deep treatment of a low concentration of fluoridated water is inadequate. In this work, four metallic phosphates were synthesized, including YP, ZrP, CeP, and LaP, to enhance the [...] Read more.
Currently, various techniques are efficient in eliminating high quantities of fluoride from water, while the deep treatment of a low concentration of fluoridated water is inadequate. In this work, four metallic phosphates were synthesized, including YP, ZrP, CeP, and LaP, to enhance the elimination of fluoride. The X-ray diffractometer data demonstrated that ZrP was amorphous, while CeP, LaP, and YP were highly crystalline. YP had a strong fluoride removal ability in a neutral environment, and ZrP exhibited a superior fluoride adsorption effect in acidic media. The adsorption kinetic results suggested that YP, CeP, and LaP could achieve the adsorption equilibrium within 150 min, which was faster than ZrP. YP had the largest fluoride adsorption capacity fitted by Langmuir of 31.61 mg/g at 298 K, followed by ZrP, which was greater than those of CeP and LaP. All four metallic phosphates showed high selectivity in the interference of competing anions and organics, with YP and ZrP exhibiting superior selectivity than CeP and LaP. The adsorption mechanism was ligand exchange between metallic phosphate particles and fluoride, which was validated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The adsorption rate of metallic phosphates remained essentially stable in five consecutive adsorption–desorption cycles. Overall, metallic phosphates, especially YP and ZrP, have enormous potential in enhancing fluoride removal in the treatment of fluoridated water. Full article
(This article belongs to the Special Issue Innovative Approaches and Materials for Water Treatment)
Show Figures

Figure 1

22 pages, 4674 KB  
Article
Fe3O4/Poly(acrylic acid) Composite Hydrogel for the Removal of Methylene Blue and Crystal Violet from Aqueous Media
by Fiorela Ccoyo Ore, Flor de Liss Meza López, Ana Cecilia Valderrama Negrón and Michael Azael Ludeña Huaman
Chemistry 2025, 7(5), 156; https://doi.org/10.3390/chemistry7050156 - 26 Sep 2025
Abstract
An increase in the production of cationic dyes is expected over the next decade, which will have an impact on health and the environment. This work reports an adsorbent hydrogel composed of poly(acrylic acid) [poly(AA)] and Fe3O4 particles, prepared by [...] Read more.
An increase in the production of cationic dyes is expected over the next decade, which will have an impact on health and the environment. This work reports an adsorbent hydrogel composed of poly(acrylic acid) [poly(AA)] and Fe3O4 particles, prepared by radical polymerization and in situ co-precipitation of Fe3+ and Fe2+. This Fe3O4/poly(AA) composite hydrogel was used to evaluate its potential for removing the cationic dyes methylene blue (MB) and crystal violet (CV) from aqueous solutions. Instrumental characterization of the hydrogel was performed by FTIR, XRD, TGA, VSM, and physicochemical analysis (swelling and response to changes in pH). The results show that the incorporation of Fe3O4 particles improves the adsorption capacity of MB and CV dyes to a maximum adsorption of 571 and 321 mg/g, respectively, under the best conditions (pH 6.8, dose 1 g/L, time 24 h). The adsorption data best fit the pseudo-first order (PFO) kinetic model and the Freundlich isothermal model, indicating mass transfer via internal and/or external diffusion and active sites with different adsorption potentials. Moreover, the thermodynamic analysis confirmed that the adsorption process was spontaneous and exothermic, with physisorption as the dominant mechanism. In addition, the Fe3O4/poly(AA) hydrogel is capable of removing 95% of the dyes after ten consecutive adsorption–desorption cycles, demonstrating the potential of hydrogels loaded with Fe3O4 particles for the treatment of wastewater contaminated with dyes. Full article
(This article belongs to the Section Catalysis)
Show Figures

Graphical abstract

28 pages, 1509 KB  
Review
Life After Adsorption: Regeneration, Management, and Sustainability of PFAS Adsorbents in Water Treatment
by Magdalena Andrunik and Marzena Smol
Water 2025, 17(19), 2813; https://doi.org/10.3390/w17192813 - 25 Sep 2025
Abstract
Per- and polyfluoroalkyl substances (PFASs) represent one of the most challenging classes of persistent organic pollutants, and adsorption is currently one of the most widely deployed method for their removal from water. However, the long-term sustainability of adsorption-based treatment depends on how adsorbents [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) represent one of the most challenging classes of persistent organic pollutants, and adsorption is currently one of the most widely deployed method for their removal from water. However, the long-term sustainability of adsorption-based treatment depends on how adsorbents are regenerated, managed after exhaustion, and integrated into broader environmental and regulatory frameworks. This review synthesises recent advances in regeneration strategies for PFAS-saturated adsorbents, including thermal, solvent-based, chemical, hybrid, and emerging methods, and provides a targeted analysis of policy and regulatory frameworks governing PFAS management in water. Evidence from the literature is critically assessed with attention to regeneration efficiencies, adsorbent stability, secondary waste generation, and long-term reuse potential. Life cycle assessment (LCA) studies are also examined to evaluate the environmental and cost implications of different management options. The analysis highlights that while solvent and chemical regeneration achieve high short-term recovery, thermal processes offer partial destructive potential, and electrochemical methods are emerging as promising but unproven alternatives. Persistent challenges include incomplete PFAS desorption, performance decline over multiple cycles, energy intensity, and secondary waste burdens. Advancing sustainable PFAS treatment requires integrated evaluation frameworks linking technical performance with environmental impact and cost, supported by policy drivers that incentivize regeneration and safe end-of-life management. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 1418 KB  
Article
Mesoporous Silica Xerogels Prepared by p-toluenesulfonic Acid-Assisted Synthesis: Piperazine-Modification and CO2 Adsorption
by Stela Grozdanova, Ivalina Trendafilova, Agnes Szegedi, Pavletta Shestakova, Yavor Mitrev, Ivailo Slavchev, Svilen Simeonov and Margarita Popova
Nanomaterials 2025, 15(19), 1459; https://doi.org/10.3390/nano15191459 - 23 Sep 2025
Viewed by 120
Abstract
p-toluenesulfonic acid (pTSA) was used for the synthesis of porous silica xerogels while applying different synthesis conditions. Key parameters included acid concentration, drying temperature and the method of acid removal. The resulting organic–inorganic composites were investigated by nitrogen physisorption, X-ray powder diffraction [...] Read more.
p-toluenesulfonic acid (pTSA) was used for the synthesis of porous silica xerogels while applying different synthesis conditions. Key parameters included acid concentration, drying temperature and the method of acid removal. The resulting organic–inorganic composites were investigated by nitrogen physisorption, X-ray powder diffraction (XRD), solid-state NMR and thermal analysis. The results demonstrated that both the drying temperature and quantity of the pTSA significantly influenced the pore structure of the xerogels. The utilization of such strong acids like pTSA yielded high surface area and pore volume, as well as narrow pore size distribution. Environmentally friendly template removal by solvent extraction produced materials with superior textural properties compared to traditional calcination, enabling the recovery and reuse of pTSA with over 95% efficiency. A selected mesoporous silica xerogel was modified by a simple two-step post-synthesis procedure with 1-(2-Hydroxyethyl) piperazine (HEP). High CO2 adsorption capacity was determined for the HEP-modified material in dynamic conditions. The isosteric heat of adsorption revealed the stronger interaction between functional groups and CO2 molecules. Total CO2 desorption could be achieved at 60 °C. Leaching of the silica functional groups could not be detected even after four consecutive adsorption cycles. These findings provide valuable insights into the sustainable synthesis of tunable piperazine-modified mesoporous silica xerogels with potential applications in CO2 capture. Full article
Show Figures

Figure 1

25 pages, 4992 KB  
Article
Eco-Friendly Synthesis of Silver–Cellulose Nanocomposite Adsorbent from Agricultural Residues for Binary Dye System Remediation
by Doaa S. Al-Raimi, Reem M. Alghanmi, Ghalia S. Aljeddani and Ragaa A. Hamouda
Polymers 2025, 17(18), 2555; https://doi.org/10.3390/polym17182555 - 22 Sep 2025
Viewed by 195
Abstract
This work reports a one-step, green synthesis of silver-micro cellulose nanocomposite (Ag@Ce NCs) using Azadirachta indica A. Juss leaf extract to load micro-cellulose isolated from peanut shells with silver nanoparticles, followed by comprehensive physicochemical characterization (FTIR, TEM, EDX-SEM, zeta potential, and XRD). The [...] Read more.
This work reports a one-step, green synthesis of silver-micro cellulose nanocomposite (Ag@Ce NCs) using Azadirachta indica A. Juss leaf extract to load micro-cellulose isolated from peanut shells with silver nanoparticles, followed by comprehensive physicochemical characterization (FTIR, TEM, EDX-SEM, zeta potential, and XRD). The composite has pHPZC ≈ 5.0 and was tested for simultaneous removal of methylene blue (MB) and safranin O (SO) under batch conditions across various pH levels, doses, contact times, initial concentrations, ionic strengths, and temperatures. The high removal efficiencies observed at pH 10 for MB and 6.0 for SO. The adsorption reached the maximum at 45 min before partially declining, indicating reversible binding on saturated surfaces. Isotherm study favored the Langmuir model, with similar affinities (KL ≈ 0.106, and 0.110 L/mg) and monolayer capacities of 17.99 mg/g for MB and 14.90 mg/g for SO, suggesting non-selective competition on uniform sites. Kinetic data fitted the pseudo-second-order model, while thermodynamic analysis indicated mainly exothermic and physisorption interactions. Higher ionic strength reduced removal efficiency (at 1.0 M NaCl, %RE ≈ 33–48%), highlighting salt sensitivity typical of electrostatic attraction. The adsorbent maintained about 90% of its initial performance after five adsorption–desorption cycles in 0.1 M H2SO4, indicating excellent reusability. Overall, Ag@Ce NCs provide an inexpensive, eco-friendly, and reuseable platform for treating binary mixtures of cationic dyes. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

19 pages, 3413 KB  
Article
Activated Carbon-Modified Porous Carbon Nitride Decorated with Molybdenum Disulfide for Enhanced Photocatalytic Degradation of Rhodamine B
by Kunyang Li, Di Wang, Ning Tang, Zhou Zhou, Wen Zhang, Bohan Liu and Yiying Yue
Catalysts 2025, 15(9), 875; https://doi.org/10.3390/catal15090875 - 12 Sep 2025
Viewed by 387
Abstract
Photocatalytic technology offers significant potential for pollutant remediation through efficient, cost-effective mineralization but faces inherent limitations, including catalyst agglomeration and rapid charge recombination. To address these challenges, we developed activated carbon-modified porous graphitic carbon nitride (APCN) synthesized through the co-polycondensation of dicyandiamide with [...] Read more.
Photocatalytic technology offers significant potential for pollutant remediation through efficient, cost-effective mineralization but faces inherent limitations, including catalyst agglomeration and rapid charge recombination. To address these challenges, we developed activated carbon-modified porous graphitic carbon nitride (APCN) synthesized through the co-polycondensation of dicyandiamide with NH4Cl and fir-wood-derived activated carbon (AC). The incorporated AC effectively prevented the agglomeration of carbon nitride frameworks, thereby enhancing the specific surface area (SBET) of APCN. This matrix was subsequently composited with hydrothermally prepared (1T/2H) mixed-phase MoS2 through ultrasonication, forming a MoS2/APCN heterostructure. Characterizations including Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and N2 adsorption–desorption isotherms (BET) confirmed that MoS2 was successfully loaded onto APCN via an ultrasonic synthesis method. The composite exhibited outstanding photocatalytic activity, degrading 95.5% RhB in 40 min (pH = 7) and 97.4% in 25 min (pH = 3.5), with 87.3% efficiency retention after four cycles (pH = 7). Crucially, AC enhanced visible-light absorption and functioned as an electron-mediating component. Photoelectrochemical analyses and radical-trapping experiments confirmed a direct Z-scheme charge transfer mechanism, wherein conductive AC accelerates electron transport and suppresses carrier recombination. This study establishes both an efficient RhB degradation photocatalyst and a sustainable strategy for valorizing agricultural waste in advanced material design. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

17 pages, 2631 KB  
Article
Adsorption of Phosphates from Wastewater Using MgAlFe-Layered Double Hydroxides
by Oanamari Daniela Orbuleţ, Liliana Bobirică, Mirela Enache (Cişmaşu), Ramona Cornelia Pațac, Magdalena Bosomoiu and Cristina Modrogan
Environments 2025, 12(9), 316; https://doi.org/10.3390/environments12090316 - 7 Sep 2025
Viewed by 809
Abstract
Phosphates pollution, primarily from agricultural runoff and wastewater discharge, is a major contributor to water eutrophication, adversely affecting aquatic ecosystems. This study reports the synthesis, characterization, and phosphates adsorption performance of a MgAlFe-layered double hydroxide (MgAlFe-LDH) with a 2:1:1 cationic ratio. The material [...] Read more.
Phosphates pollution, primarily from agricultural runoff and wastewater discharge, is a major contributor to water eutrophication, adversely affecting aquatic ecosystems. This study reports the synthesis, characterization, and phosphates adsorption performance of a MgAlFe-layered double hydroxide (MgAlFe-LDH) with a 2:1:1 cationic ratio. The material was prepared via co-precipitation and characterized using digital microscopy, XRD, BET, XPS, and FTIR. Adsorption experiments were conducted at pH 3 and 9 to investigate equilibrium, kinetics, and reusability. The MgAlFe-LDH exhibited a high maximum adsorption capacity (q_max ≈ 215 mg/g) largely independent of pH, with adsorption well described by the Langmuir model. Kinetic studies revealed a pseudo-first-order mechanism, indicating that adsorption is dominated by surface diffusion and electrostatic interactions. Phosphate removal occurs through a dual mechanism involving rapid electrostatic attraction at protonated surface sites and slower ion exchange in the LDH interlayers. The material retained over 75% of its adsorption capacity after five consecutive adsorption–desorption cycles, highlighting its potential for sustainable phosphate recovery. Overall, the MgAlFe-LDH represents a promising, reusable adsorbent for phosphorus removal from wastewater, supporting circular economy strategies. Full article
(This article belongs to the Special Issue Advanced Technologies of Water and Wastewater Treatment (2nd Edition))
Show Figures

Figure 1

23 pages, 3715 KB  
Article
Synthesis of Porous Materials on Hybrid Wormlike Micelles of Zwitterionic and Anionic Surfactants for Efficient Oilfield Wastewater Treatment
by Fei Liu, Zhenzhen Li, Chenye Yang, Ya Wu and Ying Tang
Gels 2025, 11(9), 714; https://doi.org/10.3390/gels11090714 - 5 Sep 2025
Viewed by 274
Abstract
Addressing the challenge of sulfonated lignite (SL) removal from oilfield wastewater, this study introduces a novel hierarchical MgFe-layered double hydroxide (LDH) adsorbent. The material was fabricated via in situ co-precipitation, utilizing a template formed by the NaCl-induced co-assembly of oleylaminopropyl betaine (OAPB) and [...] Read more.
Addressing the challenge of sulfonated lignite (SL) removal from oilfield wastewater, this study introduces a novel hierarchical MgFe-layered double hydroxide (LDH) adsorbent. The material was fabricated via in situ co-precipitation, utilizing a template formed by the NaCl-induced co-assembly of oleylaminopropyl betaine (OAPB) and sodium dodecyl sulfate (SLS) into zwitterionic, anionic, shear-responsive viscoelastic gels. This gel-templating approach yielded an LDH structure featuring a hierarchical pore network spanning 1–80 nm and a notably high specific surface area of 199.82 m2/g, as characterized by SEM and BET. The resulting MgFe-LDH demonstrated exceptional efficacy, achieving a SL removal efficiency exceeding 96% and a maximum adsorption capacity of 90.68 mg/g at neutral pH. Adsorption kinetics were best described by a pseudo-second-order model (R2 > 0.99), with intra-particle diffusion identified as the rate-determining step. Equilibrium adsorption data conformed to the Langmuir isotherm, signifying monolayer uptake. Thermodynamic analysis confirmed the process was spontaneous (ΔG < 0) and exothermic (ΔH = −20.09 kJ/mol), driven primarily by electrostatic interactions and ion exchange. The adsorbent exhibited robust recyclability, maintaining over 79% of its initial capacity after three adsorption–desorption cycles. This gel-directed synthesis presents a sustainable pathway for developing high-performance adsorbents targeting complex contaminants in oilfield effluents. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

18 pages, 1750 KB  
Article
CO2 Adsorption by Amino-Functionalized Graphene–Silica Gels
by Marina González-Barriuso, Ángel Yedra and Carmen Blanco
Gels 2025, 11(9), 702; https://doi.org/10.3390/gels11090702 - 2 Sep 2025
Viewed by 368
Abstract
This work evaluates the CO2-adsorption relevance and cycling stability of graphene oxide–silica (GO-SiO2) and reduced graphene oxide–silica (rGO-SiO2) gels after amine functionalization, demonstrating high-capacity retention under repeated adsorption–desorption cycles: rGO-SiO2-APTMS retains ≈96.3% of its initial [...] Read more.
This work evaluates the CO2-adsorption relevance and cycling stability of graphene oxide–silica (GO-SiO2) and reduced graphene oxide–silica (rGO-SiO2) gels after amine functionalization, demonstrating high-capacity retention under repeated adsorption–desorption cycles: rGO-SiO2-APTMS retains ≈96.3% of its initial uptake after 50 cycles, while GO-SiO2-APTMS retains ≈90.0%. The use of surfactants to control the organization of inorganic and organic molecules has enabled the development of ordered mesostructures, such as mesoporous silica and organic/inorganic nanocomposites. Owing to the outstanding properties of graphene and its derivatives, synthesizing mesostructures intercalated between graphene sheets offers nanocomposites with novel morphologies and enhanced functionalities. In this study, GO-SiO2 and rGO-SiO2 gels were synthesized and characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TG), mass spectrometry (MS), N2 adsorption–desorption isotherms, and transmission electron microscopy (TEM). The resulting materials exhibit a laminar architecture, with mesoporous silica domains grown between graphene-based layers; the silica contents are 83.6% and 87.6%, and the specific surface areas reach 446 and 710 m2·g−1, respectively. The laminar architecture is retained regardless of the surfactant-removal route; however, in GO-SiO2 obtained by solvent extraction, a fraction of the surfactant remains partially trapped. Together with their high surface area, hierarchical porosity, and amenability to surface functionalization, these features establish amine-grafted graphene–silica gels, particularly rGO-SiO2-APTMS, as promising CO2-capture adsorbents. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

12 pages, 2897 KB  
Article
Dual Effects of In Situ Coal Combustion on CaO Pellets for CO2 Capture: High-Temperature Sintering and Ash Stabilization
by Yun Long, Changqing Wang, Ruichang Xu, Lei Liu, Pengxin Zeng, Zijian Zhou and Minghou Xu
Int. J. Mol. Sci. 2025, 26(17), 8535; https://doi.org/10.3390/ijms26178535 - 2 Sep 2025
Viewed by 369
Abstract
High-temperature CaO-based CO2 capture technology, energized by in situ coal combustion, exhibits substantial promise owing to its high energy efficiency, strong compatibility, and maturity. However, sorbent deactivation mechanisms under complex coal combustion conditions, particularly for industrially required pelletized sorbents, are unclear. Pelletized [...] Read more.
High-temperature CaO-based CO2 capture technology, energized by in situ coal combustion, exhibits substantial promise owing to its high energy efficiency, strong compatibility, and maturity. However, sorbent deactivation mechanisms under complex coal combustion conditions, particularly for industrially required pelletized sorbents, are unclear. Pelletized sorbents were co-fired with four representative coals (differing in Na-K, S, and Al-Si content) in this study. Key factors were decoupled, and two competing mechanisms were revealed: (1) High-temperature sintering deactivation: Single co-firing triggers localized overheating (>900 °C), causing severe sintering and pore collapse. This reduces the specific surface area by 29% and pore volume by 50%, occludes meso-/macropores, and leads to a significant drop in initial CO2 capture capacity to 0.266–0.297 g/g. Coal types and minor residual surface impurities (<1.7%) are secondary factors. (2) Si-Al ash stabilization: During repeated co-firing (1–9 cycles), Si-Al ash components enrich on sorbents (0.1–7.6%), forming a thermally protective layer. After 20 adsorption–desorption cycles, the CO2 capture capacity loss drops from 17.6% to 3.9%, improving cycle stability. These findings clarify these dual mechanisms, providing a theoretical basis for system optimization and highlighting precise control of the combustion temperature field as critical for industrial deployment. Full article
Show Figures

Figure 1

25 pages, 4436 KB  
Article
Selective Adsorption Performance of a High-Capacity Mesoporous Silica Aerogel for Fluoroquinolones
by Yifan Zhao, Lin Gu, Zhihan Liu, Junyu Zhang, Wei Xia, Peng Wang, Wenlei Zhai, Guangxin Yang, Xiaosheng Shen, Chengqi Fan and Cong Kong
Environments 2025, 12(9), 300; https://doi.org/10.3390/environments12090300 - 28 Aug 2025
Viewed by 593
Abstract
Fluoroquinolone antibiotics (FQs) are widely applied in veterinary practice and animal husbandry and frequently persist in organic waste liquids (OWLs), creating substantial environmental and health risks when untreated. A high-capacity mesoporous silica aerogel (SA-60) was produced via a cost-effective sol–gel route from water [...] Read more.
Fluoroquinolone antibiotics (FQs) are widely applied in veterinary practice and animal husbandry and frequently persist in organic waste liquids (OWLs), creating substantial environmental and health risks when untreated. A high-capacity mesoporous silica aerogel (SA-60) was produced via a cost-effective sol–gel route from water glass, followed by ambient pressure drying at 60 °C for 6 h. SA-60 exhibited pronounced selectivity, providing a maximum adsorption capacity of 630.18 mg·g−1 for enrofloxacin (ENR) in acetonitrile. Adsorption efficiency was weakly dependent on pH. Mechanistic analysis indicated combined physical and chemical interactions, with intra-particle diffusion governing the overall rate. Thermodynamic evaluation showed a spontaneous and endothermic process for ENR adsorption. Organic solvent type and water content were major determinants of adsorption efficiency. Durable performance was observed, with capacity retention above 80% after five adsorption-desorption cycles. The mesoporous architecture (surface area 249.21 m2·g−1; average pore diameter 10.81 nm) supported the high uptake. These results identify SA-60 as a sustainable adsorbent for removing hazardous FQs from OWLs, offering a simple, energy-efficient approach for the source-level control of antibiotic pollution and improved environmental management. Full article
Show Figures

Graphical abstract

20 pages, 4501 KB  
Article
Performance Study of Biomass Carbon-Based Materials in Electrocatalytic Fenton Degradation of Printing and Dyeing Wastewater
by Lie Wen, Yan An and Yanhua Lei
Catalysts 2025, 15(9), 818; https://doi.org/10.3390/catal15090818 - 28 Aug 2025
Viewed by 702
Abstract
Biomass carbon materials exhibit a significant specific surface area, carbon defects, and oxygen-containing functional groups during the electrochemical cathodic oxygen reduction (ORR) process, resulting in an enhanced adsorption–desorption of reaction intermediates (e.g., *OH and *OOH) by the catalyst. In this study, a cost-effective [...] Read more.
Biomass carbon materials exhibit a significant specific surface area, carbon defects, and oxygen-containing functional groups during the electrochemical cathodic oxygen reduction (ORR) process, resulting in an enhanced adsorption–desorption of reaction intermediates (e.g., *OH and *OOH) by the catalyst. In this study, a cost-effective biomass-derived carbon material (HBC-500) was prepared through low-temperature pyrolysis at 500 °C using Spirulina as a precursor for H2O2 production. By employing surface engineering modification of the carbon-based material to promote the ORR process’s two-electron selectivity, HBC-500 demonstrated consistent experimental results with the RRDE findings at pH = 5, yielding 238.40 mg·L−1 of hydrogen peroxide within a 90 min duration at a current density of 50 mA·cm−2. Furthermore, HBC-500 accomplished over 95% degradation within 30 min at pH = 5 and maintained approximately 91.79% electrocatalytic activity after undergoing five consecutive electrocatalytic cycles lasting 300 min. These results establish HBC-500 biomass carbon material as a highly suitable candidate for H2O2 production and Fenton degradation of organic wastewater. Full article
Show Figures

Graphical abstract

21 pages, 4140 KB  
Article
Study on the Adsorption Behavior and Mechanism of Nitrate Nitrogen in Sewage by Aminated Reed Straw
by Qi Zhang, Haodong Zhang, Zhan Yang and Zhe Qin
Water 2025, 17(17), 2546; https://doi.org/10.3390/w17172546 - 27 Aug 2025
Viewed by 706
Abstract
Nitrate pollution in water bodies has become a global environmental problem, and its excessive presence not only leads to eutrophication of water bodies but also threatens human health through the drinking water pathway. Therefore, it is urgent to develop new adsorbents with high [...] Read more.
Nitrate pollution in water bodies has become a global environmental problem, and its excessive presence not only leads to eutrophication of water bodies but also threatens human health through the drinking water pathway. Therefore, it is urgent to develop new adsorbents with high adsorption capacity, good selectivity and excellent regeneration performance to solve the problem of nitrate pollution. In this study, reed straw (RS), trimethylamine-modified reed straw (MRS) and triethylamine-modified reed straw (ERS) were prepared by quaternary amination modification for nitrate removal. The adsorption performance, desorption performance, adsorption characteristics under disturbed environment and dynamic adsorption performance were investigated experimentally, and the adsorption mechanism was analyzed by various characterization means. The adsorption performance followed the order ERS (12.25 mg·g−1) > MRS > RS, demonstrating that quaternary amination modification, particularly with triethylamine, significantly enhanced the NO3-N adsorption capacity. ERS exhibited excellent regeneration stability (over 80% after nine cycles) and high selectivity towards NO3-N in the presence of competing anions (Cl, SO42−, humic acid). In the dynamic adsorption experiment, ERS had a breakthrough time of 290 min at a packing height of 3.3 cm, with an adsorption capacity of 10.74 mg·g−1 and good adaptability to flow rate. In the actual wastewater application, the initial NO3-N removal rate was over 95%, the dynamic desorption rate reached 99.2% and the peak nitrate concentration of the desorbed solution reached 27 times of the initial value, confirming its high efficiency regeneration and enrichment ability. The study shows that the amine-modified reed straw adsorbent has a good potential for application and provides a new way for wastewater treatment plants to solve the problem of nitrate removal 12.25 mg·g−1. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

Back to TopTop