Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,012)

Search Parameters:
Keywords = air turbulence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 23770 KB  
Article
Air–Sea Interaction During Ocean Frontal Passage: A Case Study from the Northern South China Sea
by Ruichen Zhu, Jingjie Yu, Xingzhi Zhang, Haiyuan Yang and Xin Ma
Remote Sens. 2025, 17(17), 3024; https://doi.org/10.3390/rs17173024 - 1 Sep 2025
Abstract
The northern South China Sea has abundant frontal systems near coastal and island regions, which play crucial roles in regional ocean dynamics and ecosystem. While previous studies have established preliminary understanding of their spatial distribution, seasonal variability, and dynamic characteristics, the atmospheric response [...] Read more.
The northern South China Sea has abundant frontal systems near coastal and island regions, which play crucial roles in regional ocean dynamics and ecosystem. While previous studies have established preliminary understanding of their spatial distribution, seasonal variability, and dynamic characteristics, the atmospheric response to these frontal systems remains poorly understood. This study integrates observations from a moored buoy deployed on the continental shelf of the South China Sea with satellite remote sensing data to analyze oceanic and atmospheric variations during frontal passage. The results reveal that the ocean front can not only induce pronounced oceanic changes characterized by significant cooling, saltiness, and surface current acceleration, but also exert substantial influence on the overlying atmosphere, with consistent decreasing trends in air temperature, humidity, and atmospheric pressure, all of which rapidly recovered following frontal retreat. Notably, when the front directly traversed the buoy location, diurnal temperature cycles were markedly suppressed, while turbulent heat flux and downfront wind-stress curl reached peak magnitudes. These findings demonstrate that ocean fronts and associated sea surface temperature gradients can trigger intense air–sea exchange processes at the ocean–atmosphere interface. Full article
(This article belongs to the Special Issue Satellite Remote Sensing for Ocean and Coastal Environment Monitoring)
Show Figures

Figure 1

30 pages, 1931 KB  
Article
Quantification of Urticating Setae of Oak Processionary Moth (Thaumetopoea processionea) and Exposure Hazards
by Paula Halbig, Horst Delb and Axel Schopf
Int. J. Environ. Res. Public Health 2025, 22(9), 1361; https://doi.org/10.3390/ijerph22091361 - 29 Aug 2025
Viewed by 87
Abstract
Potential climatic and land-use changes may favor an increase in the population densities and range expansion of oak processionary moth (OPM) in Central and Western Europe in the future. This could lead to more significant threats to human and animal health, caused by [...] Read more.
Potential climatic and land-use changes may favor an increase in the population densities and range expansion of oak processionary moth (OPM) in Central and Western Europe in the future. This could lead to more significant threats to human and animal health, caused by the urticating setae released by OPM larvae, and more severe oak defoliation by the larvae. To cope with the public health issue, a basis for OPM hazard assessment and management was created by quantifying the setae formation potential of OPM. While a single larva forms ca. 857,000 setae during its lifespan, a single infested oak tree may be contaminated with up to 10–24 billion (109) setae during an OPM outbreak. Moreover, the possible setae contamination threat to humans through airborne setae dispersion was studied in worst-case exposure simulations in the field. The highest airborne setae concentration was straight downwind, but turbulences up to 150° from the air flow were observed. The findings of this study will improve biohazard quantification as a basis for decision-making on preventive or mechanical control measures and enable an effective protection of human health. This study provides applicable information to derive warnings and recommendations for the public, as well as land managers and authorities. Full article
(This article belongs to the Special Issue Feature Papers in Environmental Exposure and Toxicology)
23 pages, 9509 KB  
Article
Realizable k-ε Model-Based Gradual-Radius Volute Tongue on Aerodynamic Performance and Noise of Multi-Wing Centrifugal Fan
by Yizhe Huang, Hening Zhang, Ziyi Liu, Xin Zhan, Ren Xu and Runze Chen
Appl. Sci. 2025, 15(17), 9471; https://doi.org/10.3390/app15179471 - 28 Aug 2025
Viewed by 274
Abstract
The multi-wing centrifugal fan is an important part of air conditioning systems, particularly in the automotive domain. Due to the compact structure and short blade passage of the fan, it may reduce the aerodynamic performance and generate noise. As a key part of [...] Read more.
The multi-wing centrifugal fan is an important part of air conditioning systems, particularly in the automotive domain. Due to the compact structure and short blade passage of the fan, it may reduce the aerodynamic performance and generate noise. As a key part of the multi-wing centrifugal fan, the volute tongue has an important impact on the aerodynamic performance and noise of the multi-wing centrifugal fan. In this paper, the volute tongue of a multi-wing centrifugal fan is modified for air conditioning systems, and a novel gradient-radius volute tongue is designed. Specifically, a simulation calculation model for the multi-wing centrifugal fan is developed based on the Realizable kε turbulence model and the Ffowcs Williams–Hawkings (FW-H) equation. The simulation results are analyzed, and the reliability of the proposed method is assessed by comparing the total pressure efficiency and noise levels with the corresponding experimental measurements. Subsequently, the aerodynamic performance and noise characteristics of the gradient-radius volute tongue are investigated, with particular attention given to variations in the flow field, pressure pulsation, and noise before and after the modification. The results indicate that the gradient-radius volute tongue effectively attenuates the pressure pulsations arising from the interaction between the volute and the airflow, thereby reducing the tongue-region noise. Compared with the original fan, a noise reduction of 3.5 dB is achieved through the implementation of the gradient-radius volute tongue. Full article
38 pages, 12663 KB  
Article
A Transformer-Based Hybrid Neural Network Integrating Multiresolution Turbulence Intensity and Independent Modeling of Multiple Meteorological Features for Wind Speed Forecasting
by Hongbin Liu, Ziyan Wang, Yizhuo Liu, Jie Zhou, Chen Chen, Haoyuan Ma, Xi Huang, Hongqing Wang and Xiaodong Ji
Energies 2025, 18(17), 4571; https://doi.org/10.3390/en18174571 - 28 Aug 2025
Viewed by 255
Abstract
Aiming at the nonlinear, nonstationary, and multiscale fluctuation characteristics of wind speed series, this study proposes a wind speed-forecasting framework that integrates multi-resolution turbulence intensity features and a Transformer-based hybrid neural network. Firstly, based on multi-resolution turbulence intensity and stationary wavelet transform (SWT), [...] Read more.
Aiming at the nonlinear, nonstationary, and multiscale fluctuation characteristics of wind speed series, this study proposes a wind speed-forecasting framework that integrates multi-resolution turbulence intensity features and a Transformer-based hybrid neural network. Firstly, based on multi-resolution turbulence intensity and stationary wavelet transform (SWT), the original wind speed series is decomposed into eight pairs of mean wind speeds and turbulence intensities at different time scales, which are then modeled and predicted in parallel using eight independent LSTM sub-models. Unlike traditional methods treating meteorological variables such as air pressure, temperature, and wind direction as static input features, WaveNet, LSTM, and TCN neural networks are innovatively adopted here to independently model and forecast these meteorological series, thoroughly capturing their dynamic influences on wind speed. Finally, a Transformer-based self-attention mechanism dynamically integrates multiple outputs from the four sub-models to generate final wind speed predictions. Experimental results averaged over three datasets demonstrate superior accuracy and robustness, with MAE, RMSE, MAPE, and R2 values around 0.65, 0.87, 23.24%, and 0.92, respectively, for a 6 h forecast horizon. Moreover, the proposed framework consistently outperforms all baselines across four categories of comparative experiments, showing strong potential for practical applications in wind power dispatching. Full article
Show Figures

Figure 1

24 pages, 6119 KB  
Article
Dynamic Response of Methane Explosion and Roadway Surrounding Rock in Restricted Space: A Simulation Analysis of Fluid-Solid Coupling
by Qiangyu Zheng, Peijiang Ding, Zhenguo Yan, Yaping Zhu and Jinlong Zhang
Appl. Sci. 2025, 15(17), 9454; https://doi.org/10.3390/app15179454 - 28 Aug 2025
Viewed by 197
Abstract
A methane-air premixed gas explosion is one of the most destructive disasters in the process of coal mining, and the dynamic coupling between the shock wave triggered by the explosion and the surrounding rock of the roadway can lead to the destabilization of [...] Read more.
A methane-air premixed gas explosion is one of the most destructive disasters in the process of coal mining, and the dynamic coupling between the shock wave triggered by the explosion and the surrounding rock of the roadway can lead to the destabilization of the surrounding rock structure, the destruction of equipment, and casualties. The aim of this study is to systematically reveal the propagation characteristics of the blast wave, the spatial and temporal evolution of the wall load, and the damage mechanism of the surrounding rock by establishing a two-way fluid-solid coupling numerical model. Based on the Ansys Fluent fluid solver and Transient Structure module, a framework for the co-simulation of the fluid and solid domains has been constructed by adopting the standard kε turbulence model, finite-rate/eddy-dissipation (FR/ED) reaction model, and nonlinear finite-element theory, and by introducing a dynamic damage threshold criterion based on the Drucker–Prager and Mohr–Coulomb criteria. It is shown that methane concentration significantly affects the kinetic behavior of explosive shock wave propagation. Under chemical equivalence ratio conditions (9.5% methane), an ideal Chapman–Jouguet blast wave structure was formed, exhibiting the highest energy release efficiency. In contrast, lean ignition (7%) and rich ignition (12%) conditions resulted in lower efficiencies due to incomplete combustion or complex combustion patterns. In addition, the pressure time-history evolution of the tunnel enclosure wall after ignition triggering exhibits significant nonlinear dynamics, which can be divided into three phases: the initiation and turbulence development phase, the quasi-steady propagation phase, and the expansion and dissipation phase. Further analysis reveals that the closed end produces significant stress aggregation due to the interference of multiple reflected waves, while the open end increases the stress fluctuation due to turbulence effects. The spatial and temporal evolution of the strain field also follows a three-stage dynamic pattern: an initial strain-induced stage, a strain accumulation propagation stage, and a residual strain stabilization stage and the displacement is characterized by an initial phase of concentration followed by gradual expansion. This study not only deepens the understanding of methane-air premixed gas explosion and its interaction with the roadway’s surrounding rock, but also provides an important scientific basis and technical support for coal mine safety production. Full article
(This article belongs to the Special Issue Advanced Blasting Technology for Mining)
Show Figures

Figure 1

16 pages, 1205 KB  
Article
Design and Simulation of Cross-Medium Two-Hop Relaying Free-Space Optical Communication System Based on Multiple Diversity and Multiplexing Technologies
by Min Guo, Pengxiang Wang and Yan Wu
Photonics 2025, 12(9), 867; https://doi.org/10.3390/photonics12090867 - 28 Aug 2025
Viewed by 181
Abstract
To address the issues of link mismatch and channel impairment in wireless optical communication across atmospheric-oceanic media, this paper proposes a two-hop relay transmission architecture based on the multiple-input multiple-output (MIMO)-enhanced multi-level hybrid multiplexing. The system implements decode-and-forward operations via maritime buoy/ship relays, [...] Read more.
To address the issues of link mismatch and channel impairment in wireless optical communication across atmospheric-oceanic media, this paper proposes a two-hop relay transmission architecture based on the multiple-input multiple-output (MIMO)-enhanced multi-level hybrid multiplexing. The system implements decode-and-forward operations via maritime buoy/ship relays, achieving physical layer isolation between atmospheric and oceanic channels. The transmitter employs coherent orthogonal frequency division multiplexing technology with quadrature amplitude modulation to achieve frequency division multiplexing of baseband signals, combines with orthogonal polarization modulation to generate polarization-multiplexed signal beams, and finally realizes multi-dimensional signal transmission through MIMO spatial diversity. To cope with cross-medium environmental interference, a composite channel model is established, which includes atmospheric turbulence (Gamma–Gamma model), rain attenuation, and oceanic chlorophyll absorption and scattering effects. Simulation results show that the multi-level hybrid multiplexing method can significantly improve the data transmission rate of the system. Since the system adopts three channels of polarization-state data, the data transmission rate is increased by 200%; the two-hop relay method can effectively improve the communication performance of cross-medium optical communication and fundamentally solve the problem of light transmission in cross-medium planes; the use of MIMO technology has a compensating effect on the impacts of both atmospheric and marine environments, and as the number of light beams increases, the system performance can be further improved. This research provides technical implementation schemes and reference data for the design of high-capacity optical communication systems across air-sea media. Full article
(This article belongs to the Special Issue Emerging Technologies for 6G Space Optical Communication Networks)
Show Figures

Figure 1

35 pages, 15457 KB  
Article
The Impact of the Continental Environment on Boundary Layer Evolution for Landfalling Tropical Cyclones
by Gabriel J. Williams
J 2025, 8(3), 31; https://doi.org/10.3390/j8030031 - 28 Aug 2025
Viewed by 246
Abstract
Although numerous observational and theoretical studies have examined the mean and turbulent structure of the tropical cyclone boundary layer (TCBL) over the open ocean, there have been comparatively fewer studies that have examined the kinematic and thermal structure of the TCBL across the [...] Read more.
Although numerous observational and theoretical studies have examined the mean and turbulent structure of the tropical cyclone boundary layer (TCBL) over the open ocean, there have been comparatively fewer studies that have examined the kinematic and thermal structure of the TCBL across the land–ocean interface. This study examines the impact of different continental environments on the thermodynamic evolution of the TCBL during the landfall transition using high-resolution, full-physics numerical simulations. During landfall, the changes in the wind field within the TCBL due to the development of the internal boundary layer (IBL), combined with the formation of a surface cold pool, generates a pronounced thermal asymmetry in the boundary layer. As a result, the maximum thermodynamic boundary layer height occurs in the rear-right quadrant of the storm relative to its motion. In addition, azimuthal and vertical advection by the mean flow lead to enhanced turbulent kinetic energy (TKE) in front of the vortex (enhancing dissipative heating immediately onshore) and onshore precipitation to the left of the storm track (stabilizing the environment). The strength and depth of thermal asymmetry in the boundary layer depend on the contrast in temperature and moisture between the continental and storm environments. Dry air intrusion enhances cold pool formation and stabilizes the onshore boundary layer, reducing mechanical mixing and accelerating the decay of the vortex. The temperature contrast between the continental and storm environments establishes a coastal baroclinic zone, producing stronger baroclinicity and inflow on the left of the track and weaker baroclinicity on the right. The resulting gradient imbalance in the front-right quadrant triggers radial outflow through a gradient adjustment process that redistributes momentum and mass to restore dynamical balance. Therefore, the surface thermodynamic conditions over land play a critical role in shaping the evolution of the TCBL during landfall, with the strongest asymmetries in thermodynamic boundary layer height emerging when there are large thermal contrasts between the hurricane and the continental environment. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

18 pages, 24806 KB  
Article
Integrating Remote Sensing Data into WRF to Improve 2 M Air Temperature Simulations in the Three-River Source Region of the Tibetan Plateau
by Yuteng Wang, Lin Zhao, Xianhong Meng, Lunyu Shang, Zhaoguo Li, Hao Chen, Mingshan Deng, Yingying An and Yuanpu Liu
Remote Sens. 2025, 17(17), 2985; https://doi.org/10.3390/rs17172985 - 27 Aug 2025
Viewed by 305
Abstract
The Three-River Source Region (TRSR) of the Tibetan Plateau (TP) is a critical headwater area with complex alpine terrain and significant climate variability. Accurately simulating 2 m air temperature (T2) in this region remains challenging for models such as the Weather [...] Read more.
The Three-River Source Region (TRSR) of the Tibetan Plateau (TP) is a critical headwater area with complex alpine terrain and significant climate variability. Accurately simulating 2 m air temperature (T2) in this region remains challenging for models such as the Weather Research and Forecasting (WRF) model. This study integrated remote sensing data into the WRF model to improve T2 simulations over the TRSR. Two simulations were conducted for 2020: a control simulation with default static vegetation parameters (EXPcontrol) and a sensitivity simulation with realistic vegetation and associated surface albedo of 2020 from the Global Land Surface Satellite (GLASS) datasets (EXPglass). Results showed that incorporating the GLASS-derived datasets significantly alleviated the cold bias in simulated T2 during winter and spring, while maintaining comparable performance in summer and autumn. The EXPglass run achieved better agreement with observations (R = 0.98, p < 0.01) and reduced root-mean-square error (RMSE) by 36.4% compared to EXPcontrol. Energy balance analysis indicated that the GLASS-derived datasets enhanced solar energy absorption and increased net radiation. Consequently, EXPglass produced greater turbulent heat fluxes and warmer surface skin temperature (TSK) and T2. This study underscores the importance of accurate land surface characterization and highlights the utility of remote sensing data for improving regional climate model performance in high-altitude regions. Full article
Show Figures

Graphical abstract

22 pages, 23385 KB  
Article
Structure, Mechanisms, and Impacts of Nocturnal Downslope Wind Events in the Taklimakan Desert
by Mohamed Elshora, Lian Su, Tianwen Wei and Haiyun Xia
Remote Sens. 2025, 17(17), 2984; https://doi.org/10.3390/rs17172984 - 27 Aug 2025
Viewed by 328
Abstract
This study used reanalysis and lidar observations to investigate nocturnal downslope wind events in the Taklimakan desert, revealing their vertical structure, influencing factors, climatology, and impacts on boundary layer dynamics and dust emissions. 125 events were detected along the northern slope of the [...] Read more.
This study used reanalysis and lidar observations to investigate nocturnal downslope wind events in the Taklimakan desert, revealing their vertical structure, influencing factors, climatology, and impacts on boundary layer dynamics and dust emissions. 125 events were detected along the northern slope of the Kunlun Mountains, impacting Minfeng. Due to its weakness after onset, downslope flow is deflected horizontally when it encounters the opposing synoptic winds. The continued radiative cooling, dense air drainage, and adiabatic warming intensify downslope flow as the night progresses, causing it to gradually sink and overcome the opposing synoptic winds. Downslope wind events typically occur between an hour before and two hours after sunset, with the strongest occurring at or before sunset due to the longer period of radiative cooling and the coincidence with early evening instability conditions. Strong events occur under weak stability conditions as a stable atmosphere with a strong inversion layer can inhibit sinking motion. Most events, even the strongest ones, occur under dry conditions due to enhanced radiative cooling. Mechanical turbulence occurs when downslope flow hits the surface, whereas thermal turbulence occurs when warmer, downslope air weakens the lower atmosphere’s temperature inversion. Downslope wind events significantly raise dust emissions in the Taklimakan desert. Full article
Show Figures

Figure 1

22 pages, 6742 KB  
Article
Multiscale Evaluation of an Electrically Heated Thermal Battery for High-Temperature Industrial Energy Storage
by Munevver Elif Asar, Daniel McKinley, Bao Truong, Joey Kabel and Daniel Stack
Energies 2025, 18(17), 4461; https://doi.org/10.3390/en18174461 - 22 Aug 2025
Viewed by 490
Abstract
Industrial processes such as cement, steel, and glass manufacturing rely heavily on fossil fuels for high-temperature heat, presenting a significant challenge for decarbonization. To enable continuous thermal output from intermittent renewable electricity, Electrified Thermal Solutions, Inc. is developing the Joule Hive™ Thermal Battery [...] Read more.
Industrial processes such as cement, steel, and glass manufacturing rely heavily on fossil fuels for high-temperature heat, presenting a significant challenge for decarbonization. To enable continuous thermal output from intermittent renewable electricity, Electrified Thermal Solutions, Inc. is developing the Joule Hive™ Thermal Battery (JHTB), an electrically heated energy storage system capable of delivering process heat up to 1800 °C. The system employs electrically conductive firebricks (E-Bricks) as both heating elements and thermal storage media, arranged with insulating bricks (I-Bricks) to facilitate gas flow and heat exchange. The work combines experimental and numerical studies to evaluate the thermal, electrical, and structural performance of the JHTB. A small-scale charging experiment was conducted on a single E-Brick circuit in a 1500 °C furnace, showing good agreement with coupled thermal-electric finite element models that account for Joule heating, temperature-dependent properties, radiation, and natural convection. Structural modeling assessed stress induced by thermal gradients. In addition, a high-fidelity conjugate heat transfer model of the full JHTB core was developed to assess system-scale discharge performance, solving conservation equations with SST k-ω turbulence and radiation models. Simulations for two air channel geometries demonstrated the battery’s ability to deliver 5 MW of heat for at least five hours with air temperatures higher than 1000 °C, validating its potential for industrial decarbonization. Full article
(This article belongs to the Special Issue Highly Efficient Thermal Energy Storage (TES) Technologies)
Show Figures

Figure 1

19 pages, 3793 KB  
Article
Assessment of Oscillating Wings to Deliver Air Mass Flow Under Power and Thrust Constraints
by Emin Burak Ozyilmaz and Mustafa Kaya
Aerospace 2025, 12(8), 740; https://doi.org/10.3390/aerospace12080740 - 20 Aug 2025
Viewed by 321
Abstract
An oscillating wing was evaluated for its ability to deliver air mass flow. The evaluation was based on exploring the oscillation parameters that provide a given mass flow rate at the least power requirement with the highest possible thrust generation. Wing oscillation was [...] Read more.
An oscillating wing was evaluated for its ability to deliver air mass flow. The evaluation was based on exploring the oscillation parameters that provide a given mass flow rate at the least power requirement with the highest possible thrust generation. Wing oscillation was defined as coupled pitch and plunge motions. The support vector regression algorithm was implemented as a machine learning tool to link the oscillation parameters to power and thrust values. The required power and generated thrust values were computed by solving the unsteady turbulent flows around the wings. The results were also compared to the performance of an axial flow fan that delivered the same amount of air mass flow. It was found that an oscillating wing is compatible with an axial fan in terms of power requirement and thrust generation. Full article
(This article belongs to the Special Issue Recent Advances in Applied Aerodynamics (2nd Edition))
Show Figures

Figure 1

22 pages, 5275 KB  
Article
Effect of Pressure Gradient on Flow and Heat Transfer over Surface-Mounted Heated Blocks in a Narrow Channel
by Dildar Gürses and Erhan Pulat
Appl. Sci. 2025, 15(16), 9099; https://doi.org/10.3390/app15169099 - 18 Aug 2025
Viewed by 277
Abstract
In this study, pressure gradient effects on heat transfer from block-like electronic chips are investigated computationally. The pressure gradient is provided by the slope given to the upper plate and starts just before the first block. Tilt angles of −2°, 0°, 2°, 4° [...] Read more.
In this study, pressure gradient effects on heat transfer from block-like electronic chips are investigated computationally. The pressure gradient is provided by the slope given to the upper plate and starts just before the first block. Tilt angles of −2°, 0°, 2°, 4° and 6° have been used. Air is used as the fluid, and it enters the duct at a constant speed with a uniform velocity profile. Calculations were made for Re numbers (Re = 6000, 9015, and 11,993) defined according to the channel height. For this purpose, conservation and SST k-ω turbulence model equations are solved by using ANSYS-Fluent 20.1 software for two-dimensional, incompressible, and turbulent flow conditions. Velocity, temperature, pressure, and turbulence kinetic energy distributions were obtained and compared for the considered slope angles. The effects of all changing conditions on heat transfer were discussed by calculating local and average Nusselt values, the reattachment lengths after the last block were calculated by plotting, and a comparison was made by plotting the pressure values on the block in the middle of the channel and at the top of the channel. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

24 pages, 12273 KB  
Article
Application of Airfoil Arrays on Building Façades as a Passive Design Strategy to Improve Indoor Ventilation
by Ardalan Aflaki and Atiye Jarrahi
Architecture 2025, 5(3), 64; https://doi.org/10.3390/architecture5030064 - 18 Aug 2025
Viewed by 375
Abstract
Natural ventilation could be established as an effective passive design strategy for increasing air changes per hour in a built environment. Modern air conditioning systems often fail to provide sufficient fresh air, potentially causing health issues for occupants. In contrast, natural ventilation offers [...] Read more.
Natural ventilation could be established as an effective passive design strategy for increasing air changes per hour in a built environment. Modern air conditioning systems often fail to provide sufficient fresh air, potentially causing health issues for occupants. In contrast, natural ventilation offers an effective alternative for maintaining sufficient indoor air quality in buildings. This study explores the application of grouped airfoil arrays on building façades as an innovative passive design to enhance the air change rate. Numerical simulations were conducted to analyze various airfoil configurations, determining the most effective design for building a façade. Three groups, including symmetrical, semi-symmetrical, and flat-bottomed grouped airfoils, were selected according to their aerodynamic properties and potential impacts on airflow dynamics. For this purpose, a typical high-rise residential building was selected as a case study for field measurement and CFD simulation. The results indicated that symmetrical airfoil arrays could increase the air changes per hour (ACH) up to 23 times per hour with a wind velocity of 0.37 m/s at 10 m above ground, whereas their bidirectional performance ensured stable airflow regardless of wind direction. Although semi-symmetrical airfoil arrays maximize air capture and induce beneficial turbulence, the ACH within a residential unit was boosted up to 16 times per hour under the same outdoor wind velocity conditions. The ACH was 14 times per hour for the flat-bottom airfoils, serving as a comparative baseline and providing insights into the performance advantages of more complex designs. Full article
Show Figures

Figure 1

22 pages, 10891 KB  
Article
DNS Study of Freely Propagating Turbulent Lean-Premixed Flames with Low-Temperature Chemistry in the Broken Reaction Zone Regime
by Yi Zhang, Yinhu Kang, Xiaomei Huang, Pengyuan Zhang and Xiaolin Tang
Energies 2025, 18(16), 4357; https://doi.org/10.3390/en18164357 - 15 Aug 2025
Viewed by 340
Abstract
The novel engines nowadays with high efficiency are operated under the superpressure, supercritical, and supersonic extreme conditions that are situated in the broken reaction zone regime. In this article, the propagation and heat/radical diffusion physics of a high-pressure dimethyl ether (DME)/air turbulent lean-premixed [...] Read more.
The novel engines nowadays with high efficiency are operated under the superpressure, supercritical, and supersonic extreme conditions that are situated in the broken reaction zone regime. In this article, the propagation and heat/radical diffusion physics of a high-pressure dimethyl ether (DME)/air turbulent lean-premixed flame are investigated numerically by direct numerical simulation (DNS). A wide range of statistical and diagnostic methods, including Lagrangian fluid tracking, Joint Probability Density Distribution (JPDF), and chemical explosive mode analysis (CEMA), are applied to reveal the local combustion modes and dynamics evolution, as well as the roles of heat/mass transport and cool/hot flame interaction in the turbulent combustion, which would be beneficial to the design of novel engines with high performances. It is found that the three-staged combustion, including cool-flame, warm-flame, and hot-flame fronts, is a unique behavior of DME flame under the elevated-pressure, lean-premixed condition. In the broken reaction zone regime, the reaction zone thickness increases remarkably, and the heat release rate (HRR) and fuel consumption rate in the cool-flame zone are increased by 16% and 19%, respectively. The diffusion effect not only enhances flame propagation, but also suppresses the local HRR or fuel consumption. The strong turbulence interplaying with diffusive transports is the underlying physics for the enhancements in cool- and hot-flame fronts. The dominating diffusive sub-processes are revealed by the aid of the diffusion index. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

17 pages, 4080 KB  
Article
A CFD Study of Pollution Dispersion in a Historic Ventilation Corridor with an Evolving Urban Complex
by Alicja Szmelter and Joanna Szmelter
Sustainability 2025, 17(16), 7348; https://doi.org/10.3390/su17167348 - 14 Aug 2025
Viewed by 330
Abstract
Ventilation corridors can play an important role in removing harmful air pollution in cities; however, there are social pressures to use this corridor land for new buildings. The presented study employs RANS fluid flow simulations with the k-ϵ turbulence model to investigate [...] Read more.
Ventilation corridors can play an important role in removing harmful air pollution in cities; however, there are social pressures to use this corridor land for new buildings. The presented study employs RANS fluid flow simulations with the k-ϵ turbulence model to investigate how the addition of buildings in the historical ventilation corridor impedes CO traced pollution removal. The urban complex situated near Raclawicka Street in Warsaw is selected as a case study for which two urban layouts dating from 2006 and 2017 are compared. The investigation includes varying ambient wind speeds and direction, with a prescribed CO-air mixture source representing a supply of road pollution. The results provide aerodynamic and dispersion characteristics and identify several generic trends indicating that the orthogonal urban layouts help to remove the pollution faster, especially when compared to courtyard building configurations, and that the introduction of occasional wide gaps between buildings can also speed up the pollution removal in the direction perpendicular to the gaps. Furthermore, for this urban complex the addition of new buildings had predominantly a local impact. The results showed that for light and mild winds, ambient speeds have little impact on dispersion patterns, but the effects of a dynamic ambient wind reversal are pronounced. Full article
Show Figures

Figure 1

Back to TopTop