Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (685)

Search Parameters:
Keywords = air-to-air heat pumps

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2666 KB  
Article
Thermal Comfort and Energy Consumption in a Residential Building: An Experimental Comparison Between a Heat Pump and Gas Boiler Employing Low-Cost Microcontroller-Driven Sensors
by Vincenzo Ballerini, Eugenia Rossi di Schio, Tawfiq Chekifi and Paolo Valdiserri
Energies 2025, 18(16), 4398; https://doi.org/10.3390/en18164398 - 18 Aug 2025
Viewed by 428
Abstract
Many buildings in Southern European countries are equipped with both gas boilers and air source heat pumps. The present work concerns an experimental evaluation of indoor comfort in an apartment within a residential building, comparing a gas boiler with cast-iron radiators to an [...] Read more.
Many buildings in Southern European countries are equipped with both gas boilers and air source heat pumps. The present work concerns an experimental evaluation of indoor comfort in an apartment within a residential building, comparing a gas boiler with cast-iron radiators to an air-to-air heat pump. The comfort conditions inside the apartment are assessed at set-point temperatures of 20 °C and 21 °C and with different water supply temperatures from the gas boiler. Energy consumption data for both heating systems are recorded during the tests. The measurements inside the apartment are conducted using inexpensive, widely accessible sensors and Arduino-like microcontrollers, calibrated before use. As a result, comfort indices for the heat pump are between those for the gas boiler at 20 °C and 21 °C. Additionally, to understand the impact of occupancy, an analysis of local discomfort and air quality was conducted by measuring CO2 levels, which rose significantly without air exchange. Lastly, the experimental results are compared with previous dynamic and Computational Fluid Dynamics (CFD) analyses, showing the limit of the computational approach. Indeed, the comfort indices derived from the experimental study are superior to those obtained from dynamic simulations and CFD. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

28 pages, 1918 KB  
Article
Environmental and Economic Optimisation of Single-Family Buildings Thermomodernisation
by Anna Sowiżdżał, Michał Kaczmarczyk, Leszek Pająk, Barbara Tomaszewska, Wojciech Luboń and Grzegorz Pełka
Energies 2025, 18(16), 4372; https://doi.org/10.3390/en18164372 - 16 Aug 2025
Viewed by 540
Abstract
This study offers a detailed environmental, energy, and economic evaluation of thermal modernisation options for an existing single-family home in southern Poland. A total of 24 variants, combining different heat sources (solid fuel, biomass, natural gas, and heat pumps) with various levels of [...] Read more.
This study offers a detailed environmental, energy, and economic evaluation of thermal modernisation options for an existing single-family home in southern Poland. A total of 24 variants, combining different heat sources (solid fuel, biomass, natural gas, and heat pumps) with various levels of building insulation, were analysed using energy performance certification methods. Results show that, from an energy perspective, the most advantageous scenarios are those utilising brine-to-water or air-to-water heat pumps supported by photovoltaic systems, reaching final energy demands as low as 43.5 kWh/m2year and primary energy demands of 41.1 kWh/m2year. Biomass boilers coupled with solar collectors delivered the highest renewable energy share (up to 99.2%); however, they resulted in less notable reductions in primary energy. Environmentally, all heat pump options removed local particulate emissions, with CO2 reductions of up to 87.5% compared to the baseline; biomass systems attained 100% CO2 reduction owing to renewable fuels. Economically, biomass boilers had the lowest unit energy production costs, while PV-assisted heat pumps faced the highest overall costs despite their superior environmental benefits. The findings highlight the trade-offs between ecological advantages, energy efficiency, and investment costs, offering a decision-making framework for the modernisation of sustainable residential heating systems. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

26 pages, 3685 KB  
Article
Research on Parameter Optimization and Control Strategy of Air Source Heat Pump Coupled with Thermal Energy Storage System
by Xuan Liu, Wei Chen, Feng Li, Saisai Du, Ge Yao, Pengfei Zhang, Kaiwen Xu and Zhihua Wang
Buildings 2025, 15(16), 2870; https://doi.org/10.3390/buildings15162870 - 14 Aug 2025
Viewed by 454
Abstract
The air source heat pump coupled with energy storage system is a key technology for flexibly utilizing clean energy. The capacity configuration parameters and control strategies of this coupled system are two important aspects that significantly affect its performance. In order to explore [...] Read more.
The air source heat pump coupled with energy storage system is a key technology for flexibly utilizing clean energy. The capacity configuration parameters and control strategies of this coupled system are two important aspects that significantly affect its performance. In order to explore the methods of setting configuration parameters and provide reasonable operation strategies, a simulation model of the coupled system under a time-of-use electricity pricing strategy is established and verified with measured data. Through multi-objective optimization of the system, configuration schemes considering economy, energy saving, and flexibility are given. Subsequently, based on the load prediction model, an optimal control strategy is proposed with the objective function of minimizing the operating cost. The optimization amplitude of the schemes considering the three indicators reached 11.09%, 13.37%, and 29.03%, respectively. Under the proposed control strategies, the typical daily electricity consumption decreased by 14.65% to 24.06%, and the operating electricity cost is saved by approximately 17.32%. By reasonably designing the parameters of the coupled system, its economic, energy-saving performance, and flexibility can be improved by more than 11% compared to a system designed using traditional methods. By adopting the control strategy based on hourly load prediction, the operating cost can be reduced significantly. Full article
Show Figures

Figure 1

18 pages, 2999 KB  
Article
Design of Pumping Installations with the Energy-Efficient Pumps (EEP) Tool
by A. Virgílio M. Oliveira and Javier Ruiz Ramirez
Energies 2025, 18(16), 4248; https://doi.org/10.3390/en18164248 - 9 Aug 2025
Viewed by 432
Abstract
Heating, ventilation, and air-conditioning (HVAC); domestic and commercial buildings; district energy; industrial processes and water treatment; municipal wastewater and water supply; and agriculture and irrigation, among others, represent a wide breadth of domains where pumps are used. From this perspective, the number of [...] Read more.
Heating, ventilation, and air-conditioning (HVAC); domestic and commercial buildings; district energy; industrial processes and water treatment; municipal wastewater and water supply; and agriculture and irrigation, among others, represent a wide breadth of domains where pumps are used. From this perspective, the number of pumps that will be required to ensure future human demands is expected to increase significantly; accordingly, power consumption is also expected to increase sharply. Therefore, the energy efficiency of pumps will become an even more important topic of concern when designing a pumping installation. The objective of the present study is to introduce a user-friendly Excel workbook that enables the design of pumping systems with centrifugal pumps. It was initially conceived for use in Hydraulic Machines Master’s lectures, but its use might be examined from a wider perspective. The workbook includes 22 worksheets, all linked to each other, addressing different aspects of the design. Special attention is given to the calculation of the major and minor head losses, to the cavitation phenomenon, to the use of dimensionless coefficients to determine the rotation speed to obtain a specific operating point, and to the calculation of the system curve. Today, energy efficiency represents an important goal in every pumping facility; therefore, one of the objectives of this tool is to enable the user to quantify both the shaft power and the efficiency of different operating points, thus allowing a sustained definition of the best solution. Full article
Show Figures

Figure 1

32 pages, 2527 KB  
Review
Carnot Batteries for Grid-Scale Energy Storage: Technologies and the Potential Valorization of Biomass Ash as Thermal Storage Media
by Leonel J. R. Nunes
Energies 2025, 18(16), 4235; https://doi.org/10.3390/en18164235 - 8 Aug 2025
Viewed by 500
Abstract
The transition towards renewable energy necessitates large-scale, cost-effective energy storage solutions. Carnot Batteries (CBs), which store electricity as thermal energy, offer potential advantages for medium-to-long-duration storage, including geographical flexibility and lower energy capacity costs compared to electrochemical batteries. This article examines the evolution [...] Read more.
The transition towards renewable energy necessitates large-scale, cost-effective energy storage solutions. Carnot Batteries (CBs), which store electricity as thermal energy, offer potential advantages for medium-to-long-duration storage, including geographical flexibility and lower energy capacity costs compared to electrochemical batteries. This article examines the evolution and current state-of-the-art of CB technologies, including Pumped Thermal Energy Storage (PTES) and Liquid Air Energy Storage (LAES), discussing their performance metrics, techno-economics, and development challenges. Concurrently, the increasing generation of biomass ash (BA) from bioenergy production presents a waste valorization challenge. This article critically evaluates the potential of using BA, particularly from woody biomass, as an ultra-low-cost thermal energy storage (TES) medium within CBs systems. We analyze BA’s typical composition (SiO2, CaO, K2O, etc.) and relevant thermal properties, highlighting significant variability. Key challenges identified include BA’s likely low thermal conductivity, which impedes heat transfer, and poor thermal stability (low ash fusion temperatures, sintering, corrosion) due to alkali and chlorine content, especially problematic for high-temperature CBs. While the low cost is attractive, these technical hurdles suggest direct use of raw BA is challenging. Potential niches in lower-temperature systems or as part of composite materials warrant further investigation, requiring detailed experimental characterization of specific ash types. Full article
Show Figures

Figure 1

18 pages, 2664 KB  
Article
Analysis of Heat Exchange Efficiency and Influencing Factors of Energy Tunnels: A Case Study of the Torino Metro in Italy
by Mei Yin, Pengcheng Liu and Zhenhuang Wu
Buildings 2025, 15(15), 2704; https://doi.org/10.3390/buildings15152704 - 31 Jul 2025
Viewed by 305
Abstract
Both ground source heat pumps (GSHPs) and energy underground structures are engineered systems that utilize shallow geothermal energy. However, due to the construction complexity and associated costs of energy tunnels, their heat exchange efficiency relative to GSHPs remains a topic worthy of in-depth [...] Read more.
Both ground source heat pumps (GSHPs) and energy underground structures are engineered systems that utilize shallow geothermal energy. However, due to the construction complexity and associated costs of energy tunnels, their heat exchange efficiency relative to GSHPs remains a topic worthy of in-depth investigation. In this study, a thermal–hydraulic (TH) coupled finite element model was developed based on a section of the Torino Metro Line in Italy to analyze the differences in and influencing factors of heat transfer performance between energy tunnels and GSHPs. The model was validated by comparing the outlet temperature curves under both winter and summer loading conditions. Based on this validated model, a parametric analysis was conducted to examine the effects of the tunnel air velocity, heat carrier fluid velocity, and fluid type. The results indicate that, under identical environmental conditions, energy tunnels exhibit higher heat exchange efficiency than conventional GSHP systems and are less sensitive to external factors such as fluid velocity. Furthermore, a comparison of different heat carrier fluids, including alcohol-based fluids, refrigerants, and water, revealed that the fluid type significantly affects thermal performance, with the refrigerant R-134a outperforming ethylene glycol and water in both heating and cooling efficiency. Full article
Show Figures

Figure 1

17 pages, 3138 KB  
Article
Addressing Energy Performance Challenges in a 24-h Fire Station Through Green Remodeling
by June Hae Lee, Jae-Sik Kang and Byonghu Sohn
Buildings 2025, 15(15), 2658; https://doi.org/10.3390/buildings15152658 - 28 Jul 2025
Viewed by 285
Abstract
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric [...] Read more.
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric heat pumps, energy recovery ventilation, and rooftop photovoltaic systems), while maintaining uninterrupted emergency operations. A detailed analysis of annual energy use before and after the remodeling shows a 44% reduction in total energy consumption, significantly exceeding the initial reduction target of 20%. While electricity use increased modestly during winter due to the electrification of heating systems, gas consumption dropped sharply by 63%, indicating a shift in energy source and improved efficiency. The building’s airtightness also improved significantly, with a reduction in the air change rate. The project further addressed unique challenges associated with continuously operated public facilities, such as insulating the fire apparatus garage and executing phased construction to avoid operational disruption. This study contributes valuable insights into green remodeling strategies for mission-critical public buildings, emphasizing the importance of integrating technical upgrades with operational constraints to achieve verified energy performance improvements. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 1558 KB  
Article
Total Performance in Practice: Energy Efficiency in Modern Developer-Built Housing
by Wiktor Sitek, Michał Kosakiewicz, Karolina Krysińska, Magdalena Daria Vaverková and Anna Podlasek
Energies 2025, 18(15), 4003; https://doi.org/10.3390/en18154003 - 28 Jul 2025
Viewed by 404
Abstract
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building [...] Read more.
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building is designed with integrated systems that minimize energy consumption while maintaining resident comfort. The building is equipped with an air-to-water heat pump, underfloor heating, mechanical ventilation with heat recovery, and automatic temperature control systems. Energy efficiency was assessed using ArCADia–TERMOCAD 8.0 software in accordance with Polish Technical Specifications (TS) and verified by monitoring real-time electricity consumption during the heating season. The results show a PED from non-renewable sources of 54.05 kWh/(m2·year), representing a 23% reduction compared to the Polish regulatory limit of 70 kWh/(m2·year). Real-time monitoring conducted from December 2024 to April 2025 confirmed these results, indicating an actual energy demand of approximately 1771 kWh/year. Domestic hot water (DHW) preparation accounted for the largest share of energy consumption. Despite its dependence on grid electricity, the building has the infrastructure to enable future photovoltaic (PV) installation, offering further potential for emissions reduction. The results confirm that Total Performance strategies are not only compliant with applicable standards, but also economically and environmentally viable. They represent a scalable model for sustainable residential construction, in line with the European Union’s (EU’s) decarbonization policy and the goals of the European Green Deal. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

35 pages, 3995 KB  
Review
Recent Advancements in Latent Thermal Energy Storage and Their Applications for HVAC Systems in Commercial and Residential Buildings in Europe—Analysis of Different EU Countries’ Scenarios
by Belayneh Semahegn Ayalew and Rafał Andrzejczyk
Energies 2025, 18(15), 4000; https://doi.org/10.3390/en18154000 - 27 Jul 2025
Viewed by 942
Abstract
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) [...] Read more.
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) has emerged as a promising strategy to enhance HVAC efficiency. This review systematically examines the role of latent thermal energy storage using phase change materials (PCMs) in optimizing HVAC performance to align with EU climate targets, including the Energy Performance of Buildings Directive (EPBD) and the Energy Efficiency Directive (EED). By analyzing advancements in PCM-enhanced HVAC systems across residential and commercial sectors, this study identifies critical pathways for reducing energy demand, enhancing grid flexibility, and accelerating the transition to nearly zero-energy buildings (NZEBs). The review categorizes PCM technologies into organic, inorganic, and eutectic systems, evaluating their integration into thermal storage tanks, airside free cooling units, heat pumps, and building envelopes. Empirical data from case studies demonstrate consistent energy savings of 10–30% and peak load reductions of 20–50%, with Mediterranean climates achieving superior cooling load management through paraffin-based PCMs (melting range: 18–28 °C) compared to continental regions. Policy-driven initiatives, such as Germany’s renewable integration mandates for public buildings, are shown to amplify PCM adoption rates by 40% compared to regions lacking regulatory incentives. Despite these benefits, barriers persist, including fragmented EU standards, life cycle cost uncertainties, and insufficient training. This work bridges critical gaps between PCM research and EU policy implementation, offering a roadmap for scalable deployment. By contextualizing technical improvement within regulatory and economic landscapes, the review provides strategic recommendations to achieve the EU’s 2030 emissions reduction targets and 2050 climate neutrality goals. Full article
Show Figures

Figure 1

16 pages, 3470 KB  
Article
Performance Analysis of Multi-Source Heat Pumps: A Regression-Based Approach to Energy Performance Estimation
by Reza Alijani and Fabrizio Leonforte
Sustainability 2025, 17(15), 6804; https://doi.org/10.3390/su17156804 - 26 Jul 2025
Viewed by 460
Abstract
The growing demand for energy-efficient heating, ventilation, and air conditioning (HVAC) systems has increased interest in multi-source heat pumps as a sustainable solution. While extensive research has been conducted on heat pump performance prediction, there is still a lack of practical tools for [...] Read more.
The growing demand for energy-efficient heating, ventilation, and air conditioning (HVAC) systems has increased interest in multi-source heat pumps as a sustainable solution. While extensive research has been conducted on heat pump performance prediction, there is still a lack of practical tools for early-stage system evaluation. This study addresses that gap by developing regression-based models to estimate the performance of various heat pump configurations, including air-source, ground-source, and dual-source systems. A simplified performance estimation model was created, capable of delivering results with accuracy levels comparable to TRNSYS simulation outputs, making it a valuable and accessible tool for system evaluation. The analysis was conducted across nine climatic zones in Italy, considering key environmental factors such as air temperature, ground temperature, and solar irradiance. Among the tested configurations, hybrid systems like Solar-Assisted Ground-Source Heat Pumps (SAGSHP) achieved the highest performance, with SCOP values up to 4.68 in Palermo and SEER values up to 5.33 in Milan. Regression analysis confirmed strong predictive accuracy (R2 = 0.80–0.95) and statistical significance (p < 0.05), emphasizing the models’ reliability across different configurations and climatic conditions. By offering easy-to-use regression formulas, this study enables engineers and policymakers to estimate heat pump performance without relying on complex simulations. Full article
(This article belongs to the Special Issue Sustainability and Energy Performance of Buildings)
Show Figures

Figure 1

17 pages, 1816 KB  
Article
Physical Aspects, Phytochemical Profiles, and Nutritional Properties of Lemon (Citrus limon) Slices Under Different Drying Technologies
by Zhirong Wang, Qingqing Fu, Guijie Hao, Yuanwei Gu, Tianqi Sun, Lu Gao, Bo Wang, Shuai Wang, Xiangfeng Zheng, Zhenquan Yang and Shengqi Rao
Foods 2025, 14(15), 2586; https://doi.org/10.3390/foods14152586 - 23 Jul 2025
Viewed by 316
Abstract
Dried lemon slices (LSs) have become increasingly popular as a healthful beverage when infused in hot water. This study examined the effects of freeze drying (FD), hot air drying (HAD), heat pump drying (HPD), and far-infrared drying (FID) on the quality of dried [...] Read more.
Dried lemon slices (LSs) have become increasingly popular as a healthful beverage when infused in hot water. This study examined the effects of freeze drying (FD), hot air drying (HAD), heat pump drying (HPD), and far-infrared drying (FID) on the quality of dried LSs and their brewed beverages. The results show that FD-LSs and their corresponding beverages have the most appealing appearance and maximum levels of ascorbic acid (2.47 and 0.80 mg/g, respectively), synephrine (8.15 and 0.94 mg/g, respectively), and the overwhelming majority of natural and available phenolic compounds, as well as the strongest antioxidant activity, although numerous volatile compounds in FD-LSs were in the lowest abundances. HPD-LSs exhibited similar trends to FD-LSs but contained the peak concentrations of limonene (2258.87 μg/g), γ-terpinene (704.19 μg/g), β-pinene (502.92 μg/g), and α-pinene (188.91 μg/g), which were the four most abundant volatile compounds in dried LSs. Additionally, active ingredients in HPD-LSs generally featured relative high levels of available amounts. In contrast, HAD- and FID-LSs typically displayed unfavorable coloration and low retention levels of natural and available active ingredients. Consequently, FD and HPD demonstrate superior suitability for the commercial-scale production of dried LSs. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

20 pages, 6510 KB  
Article
Research on the Operating Performance of a Combined Heat and Power System Integrated with Solar PV/T and Air-Source Heat Pump in Residential Buildings
by Haoran Ning, Fu Liang, Huaxin Wu, Zeguo Qiu, Zhipeng Fan and Bingxin Xu
Buildings 2025, 15(14), 2564; https://doi.org/10.3390/buildings15142564 - 20 Jul 2025
Viewed by 486
Abstract
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power [...] Read more.
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power generation in a real residential building. The back panel of the PV/T component featured a novel polygonal Freon circulation channel design. A prototype of the combined heating and power supply system was constructed and tested in Fuzhou City, China. The results indicate that the average coefficient of performance (COP) of the system is 4.66 when the ASHP operates independently. When the PV/T component is integrated with the ASHP, the average COP increases to 5.37. On sunny days, the daily average thermal output of 32 PV/T components reaches 24 kW, while the daily average electricity generation is 64 kW·h. On cloudy days, the average daily power generation is 15.6 kW·h; however, the residual power stored in the battery from the previous day could be utilized to ensure the energy demand in the system. Compared to conventional photovoltaic (PV) systems, the overall energy utilization efficiency improves from 5.68% to 17.76%. The hot water temperature stored in the tank can reach 46.8 °C, satisfying typical household hot water requirements. In comparison to standard PV modules, the system achieves an average cooling efficiency of 45.02%. The variation rate of the system’s thermal loss coefficient is relatively low at 5.07%. The optimal water tank capacity for the system is determined to be 450 L. This system demonstrates significant potential for providing efficient combined heat and power supply for buildings, offering considerable economic and environmental benefits, thereby serving as a reference for the future development of low-carbon and energy-saving building technologies. Full article
Show Figures

Figure 1

19 pages, 7472 KB  
Article
Research on the Performance and Energy Saving of Solar-Coupled Air Source Heat Pump Heating System: A Case Study of College Dormitory in Hot Summer and Cold Winter Zone
by Xu Wang, Shidong Wang and Tao Li
Energies 2025, 18(14), 3794; https://doi.org/10.3390/en18143794 - 17 Jul 2025
Viewed by 252
Abstract
As a densely populated area, college student dormitories consume a large amount of electricity every year to heat the domestic hot water used by students. Applying solar energy to hot water systems can effectively alleviate this situation. This paper first conducts a simulation [...] Read more.
As a densely populated area, college student dormitories consume a large amount of electricity every year to heat the domestic hot water used by students. Applying solar energy to hot water systems can effectively alleviate this situation. This paper first conducts a simulation of the hot water load and the calculation of the available area of the solar roof in a dormitory building of a certain university. Then, different solar-coupled air source heat pump systems were designed, and simulation models of the two systems were established. The thermal performance parameters and solar energy utilization of the two systems were discussed, and the energy efficiency, economy, and environmental protection of the two systems were analyzed. The results show that after coupling with the solar collector, the system operation time is shortened by 26.2%, the annual performance coefficient is 3.4, which is 0.8 higher than that of the original system, and the annual heating energy consumption is reduced by 24.4%. In contrast, the annual energy self-sufficiency rate of the photovoltaic coupled with air source heat pump system is 94.6%, achieving nearly zero energy consumption for heating. Full article
Show Figures

Figure 1

18 pages, 4285 KB  
Article
Application of a Phase-Change Material Heat Exchanger to Improve the Efficiency of Heat Pumps at Partial Loads
by Koharu Tani, Sayaka Kindaichi, Keita Kawasaki and Daisaku Nishina
Energies 2025, 18(14), 3694; https://doi.org/10.3390/en18143694 - 12 Jul 2025
Viewed by 503
Abstract
Inverter-equipped heat pumps allow for increased energy efficiency. However, air conditioning (AC) systems often operate at low load ratios below where inverter control is effective, which reduces their energy efficiency. We developed an AC system that increases the apparent load ratio of the [...] Read more.
Inverter-equipped heat pumps allow for increased energy efficiency. However, air conditioning (AC) systems often operate at low load ratios below where inverter control is effective, which reduces their energy efficiency. We developed an AC system that increases the apparent load ratio of the heat pump by using a phase-change material (PCM). Cooling and heating experiments were conducted with a PCM heat exchanger, which comprised aluminum plates and fins filled with paraffinic PCM. The result indicated a high heat transfer coefficient of >70 W/(m2·K). A simplified numerical model of the PCM heat exchanger as a lumped constant system was created based on the experiment. The calculations generally reproduced the experimental results, with root mean squared errors of 0.39 K for cooling and 0.84 K for heating, confirming their accuracy. Simulations were then conducted to evaluate the energy performance of the proposed system for the cooling season. While low load operation accounted for 39% of the total AC time for a non-PCM system, it was reduced to 2.7% for the proposed system. The proposed system demonstrated load ratios of 50–60% for most of the season, achieving an energy reduction of 11.4% owing to the improved efficiency at partial load ratios. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

19 pages, 1252 KB  
Article
Analogy Analysis of Height Exergy and Temperature Exergy in Energy Storage System
by Yan Cui, Tong Jiang and Mulin Liu
Energies 2025, 18(14), 3675; https://doi.org/10.3390/en18143675 - 11 Jul 2025
Viewed by 314
Abstract
As a pivotal technology and infrastructure component for modern power systems, energy storage has experienced significant advancement in recent years. A fundamental prerequisite for designing future energy storage facilities lies in the systematic evaluation of energy conversion capabilities across diverse storage technologies. This [...] Read more.
As a pivotal technology and infrastructure component for modern power systems, energy storage has experienced significant advancement in recent years. A fundamental prerequisite for designing future energy storage facilities lies in the systematic evaluation of energy conversion capabilities across diverse storage technologies. This study conducted a comparative analysis between pumped hydroelectric storage (PHS) and compressed air energy storage (CAES), defining the concepts of height exergy and temperature exergy. Height exergy is the maximum work capacity of a liquid due to height differences, while temperature exergy is the maximum work capacity of a gas due to temperature differences. The temperature exergy represents innovation in thermodynamic analysis; it is derived from internal exergy and proven through the Maxwell relation and the decoupling method of internal exergy, offering a more efficient method for calculating energy storage capacity in CAES systems. Mathematical models of height exergy and temperature exergy were established based on their respective forms. A unified calculation formula was derived, and their respective characteristics were analyzed. In order to show the meaning of temperature exergy more clearly and intuitively, a height exergy model of temperature exergy was established through analogy analysis, and it was concluded that the shape of the reservoir was a cone when comparing water volume to heat quantity, intuitively showing that the cold source had a higher energy storage density than the heat source. Finally, a typical hybrid PHS–CAES system was proposed, and a mathematical model was established and verified in specific cases based on height exergy and temperature exergy. It was demonstrated that when the polytropic exponent n = 1.2, the theoretical loss accounted for the largest proportion, which was 2.06%. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

Back to TopTop