While power system resilience studies continue to grow due to the criticality of electrical infrastructures, the challenge of inconsistencies in evaluation frameworks remains. Furthermore, the desire for researchers to contribute towards the development of practical assessment frameworks continues to grow. In addition, the
[...] Read more.
While power system resilience studies continue to grow due to the criticality of electrical infrastructures, the challenge of inconsistencies in evaluation frameworks remains. Furthermore, the desire for researchers to contribute towards the development of practical assessment frameworks continues to grow. In addition, the locality of resilience issues has challenged researchers to find context-based resilience solutions. This paper addresses these by proposing an assessment framework, which evaluates the five phases of the resilience trapezoid: preventive, absorptive, adaptive, restorative, and transformative. This framework presents metrics for measuring preventive indicators for the
anticipating system status,
frequency of functionality degradation, how
low functionality drops,
extension in a degraded state, the
promptness of recovery, and system
transformation—the AFLEPT model. The AFLEPT framework is applied, with its resilience indicators and capacities, to evaluate the resilience of Malawi’s transmission network to the 2022 Tropical Cyclone Ana (TCA). DigSILENT PowerFactory 2023 SP5 was utilised to support this research. The results indicate significant resilience challenges, manifested by an inadequate generation reserve, significant decline in grid functionality, extended total grid outage hours, longer restoration times, and a lack of transformation. Eight percent of key transmission lines and eighteen percent of power generation infrastructure were completely damaged by the TCA, which lasted up to 25 days and 16 months to, respectively, before restoration. Thus, the analysis reveals gaps in preventive, absorptive, adaptive, restorative, and transformative resilience capacities. The results underscore the need for context-based infrastructural and operational resilience enhancement measures, which have been discussed in this paper. Directions for further research have been proposed, which include exploring multiple grid improvement measures and an economic modelling of these measures.
Full article