Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = all-optical switch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 14391 KB  
Article
Design of All-Optical Ternary Inverter and Clocked SR Flip-Flop Based on Polarization Conversion and Rotation in Micro-Ring Resonator
by Madan Pal Singh, Jayanta Kumar Rakshit, Kyriakos E. Zoiros and Manjur Hossain
Photonics 2025, 12(8), 762; https://doi.org/10.3390/photonics12080762 - 29 Jul 2025
Viewed by 1171
Abstract
In the present study, a polarization rotation switch (PRS)-based all-optical ternary inverter circuit and ternary clocked SR flip-flop (TCSR) are proposed and discussed. The present scheme is designed by the polarization rotation of light in a waveguide coupled with a micro-ring resonator (MRR). [...] Read more.
In the present study, a polarization rotation switch (PRS)-based all-optical ternary inverter circuit and ternary clocked SR flip-flop (TCSR) are proposed and discussed. The present scheme is designed by the polarization rotation of light in a waveguide coupled with a micro-ring resonator (MRR). The proposed scheme uses linear polarization-encoded light. Here, the ternary (radix = 3) logical states are expressed by the different polarized light. PRS-MRR explores the polarization-encoded methodology, which depends on polarization conversion from one state to another. All-optical ultrafast switching technology is employed to design the ternary NAND gate. We develop the ternary clocked SR flip-flop by employing the NAND gate; it produces a greater number of possible outputs as compared to the binary logic clocked SR flip-flop circuit. The performance of the proposed design is measured by the Jones parameter and Stokes parameter. The results of the polarization rotation-based ternary inverter and clocked SR flip-flop are realized using a pump–probe structure in the MRR. The numerical simulation results are confirmed by the well-known Jones vector (azimuth angle and ellipticity angle) and Stokes parameter (S1, S2, S3) using Ansys Lumerical Interconnect simulation software. Full article
(This article belongs to the Special Issue Advancements in Optical and Acoustic Signal Processing)
Show Figures

Figure 1

14 pages, 2006 KB  
Article
Design and Optimization of Optical NAND and NOR Gates Using Photonic Crystals and the ML-FOLD Algorithm
by Alireza Mohammadi, Fariborz Parandin, Pouya Karami and Saeed Olyaee
Photonics 2025, 12(6), 576; https://doi.org/10.3390/photonics12060576 - 6 Jun 2025
Viewed by 1372
Abstract
The continuous demand for faster processing systems, driven by the rise of artificial intelligence, has exposed limitations in traditional transistor-based electronics, including quantum tunneling, heat dissipation, and switching delays due to challenges in further miniaturization. This study explores optical systems as a promising [...] Read more.
The continuous demand for faster processing systems, driven by the rise of artificial intelligence, has exposed limitations in traditional transistor-based electronics, including quantum tunneling, heat dissipation, and switching delays due to challenges in further miniaturization. This study explores optical systems as a promising alternative, leveraging the speed of photons over electrons. Specifically, we design and simulate optical NAND and NOR logic gates using a two-dimensional photonic crystal structure with a square lattice. Symmetrical waveguides are used for the input paths to make the structure relatively more straightforward to fabricate. A key innovation is the ability to realize both gates within a single structure by adjusting the phases of the input sources. To optimize the phase parameters efficiently, we employ the ML-FOLD (Meta-Learning and Formula Optimization for Logic Design) optimization formula, which outperforms traditional methods and machine learning approaches in terms of computational efficiency and data requirements. Through finite-difference time-domain (FDTD) simulations, the proposed optical structure demonstrates successful implementation of NAND and NOR gate logic, achieving high contrast ratios of 4.2 dB and 4.8 dB, respectively. The results validate the effectiveness of the ML-FOLD method in identifying optimal configurations, offering a streamlined approach for the design of all-optical logic devices. Full article
Show Figures

Figure 1

18 pages, 8648 KB  
Article
The Study of Soliton Mode-Locked and Bound States in Erbium-Doped Fiber Lasers Based on Cr2S3 Saturable Absorbers
by Dong Li, Ruizhan Zhai, Yongjing Wu, Minzhe Liu, Kun Zhao, Qi Yang, Youwei Dong, Xiaoying Li, Xiaoyang Wu and Zhongqing Jia
Materials 2025, 18(4), 864; https://doi.org/10.3390/ma18040864 - 16 Feb 2025
Viewed by 1131
Abstract
Femtosecond fiber lasers are widely utilized across various fields and also serve as an ideal platform for studying soliton dynamics. Bound-state solitons, as a significant soliton dynamic phenomenon, attract widespread attention and research interest because of their potential applications in high-speed optical communication, [...] Read more.
Femtosecond fiber lasers are widely utilized across various fields and also serve as an ideal platform for studying soliton dynamics. Bound-state solitons, as a significant soliton dynamic phenomenon, attract widespread attention and research interest because of their potential applications in high-speed optical communication, all-optical information storage, quantum computing, optical switching, and high-resolution spectroscopy. We investigate the effects of pump power variations on the formation of mode-locked solitons and bound-state solitons in a femtosecond fiber laser with a Cr2S3 saturable absorber (SA) through numerical simulations while observing the transition, formation, and break-up process of bound soliton pulses. By optimizing the cavity structure and adjusting the net dispersion, the mode-locked soliton is obtained based on this SA. This is the narrowest solitons produced by this SA to date, exhibiting the smallest time-bandwidth product. Moreover, stable double-bound solitons and unique (2 + 1) triple-bound solitons are successfully obtained. The diverse bound-state solitons not only demonstrate the excellent nonlinear absorption properties of Cr2S3 as a saturable absorber but also expand the scope of applications for Cr2S3 saturable absorbers in fiber lasers. Full article
(This article belongs to the Special Issue Terahertz Materials and Technologies in Materials Science)
Show Figures

Figure 1

15 pages, 5530 KB  
Article
Regulation and Liquid Sensing of Electromagnetically Induced Transparency-like Phenomena Implemented in a SNAP Microresonator
by Chenxiang Liu, Minggang Chai, Chenglong Zheng, Chengfeng Xie, Chuanming Sun, Jiulin Shi, Xingdao He and Mengyu Wang
Sensors 2024, 24(21), 7069; https://doi.org/10.3390/s24217069 - 2 Nov 2024
Viewed by 1213
Abstract
Optical microresonators supporting whispering-gallery modes (WGMs) have become a versatile platform for achieving electromagnetically induced transparency-like (EIT-like) phenomena. We theoretically and experimentally demonstrated the tunable coupled-mode induced transparency based on the surface nanoscale axial photonics (SNAP) microresonator. Single-EIT-like and double-EIT-like (DEIT-like) effects with [...] Read more.
Optical microresonators supporting whispering-gallery modes (WGMs) have become a versatile platform for achieving electromagnetically induced transparency-like (EIT-like) phenomena. We theoretically and experimentally demonstrated the tunable coupled-mode induced transparency based on the surface nanoscale axial photonics (SNAP) microresonator. Single-EIT-like and double-EIT-like (DEIT-like) effects with one or more transparent windows are achieved due to dense mode families and tunable resonant frequencies. The experimental results can be well-fitted by the coupled mode theory. An automatically adjustable EIT-like effect is discovered by immersing the sensing region of the SNAP microresonator into an aqueous environment. The sharp lineshape and high slope of the transparent window allow us to achieve a liquid refractive index sensitivity of 2058.8 pm/RIU. Furthermore, we investigated a displacement sensing phenomenon by monitoring changes in the slope of the transparent window. We believe that the above results pave the way for multi-channel all-optical switching devices, multi-channel optical communications, and biochemical sensing processing. Full article
(This article belongs to the Special Issue Research Progress in Optical Microcavity-Based Sensing)
Show Figures

Figure 1

11 pages, 3493 KB  
Article
Enhanced Optical Bistability of a Metasurface Based on Asymmetrically Optimized Mirror-Induced Magnetic Anapole States
by Rui Xu, Sen Tian, Yujia Wen and Guoxiong Cai
Appl. Sci. 2024, 14(21), 9914; https://doi.org/10.3390/app14219914 - 29 Oct 2024
Viewed by 1551
Abstract
In the field of modern optical computing and communication, optical bistability plays a crucial role. With a weak third-order nonlinear coefficient, low switch thresholds of optical bistability from Si-based nanophotonic structures remain a challenge. In this work, a metasurface consisting of silicon nanostrip [...] Read more.
In the field of modern optical computing and communication, optical bistability plays a crucial role. With a weak third-order nonlinear coefficient, low switch thresholds of optical bistability from Si-based nanophotonic structures remain a challenge. In this work, a metasurface consisting of silicon nanostrip arrays placed on the optically thick silver film is proposed. The light–matter interaction is enhanced by mirror-inducing the magnetic anapole states (MASs) and asymmetrically optimizing its silicon nanostrip. Numerical results show that the average enhancement factor (EF) of an electric field can be greatly enhanced to be 1524.8. Moreover, the optical bistability of the proposed metasurface achieves the thresholds of ION-OFF and IOFF-ON of 8.5 MW/cm2 and 7.1 MW/cm2, respectively, which is the lowest threshold when compared to the previous works based on silicon nanostructures. The angular dependance of the bistability performance is also investigated. This work facilitates the proposed hybrid metasurface in the fields of miniaturized all-optical switches and modulators, which are key components in optical computing and communication. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

13 pages, 5165 KB  
Article
All-Optical Switching Using Cavity Modes in Photonic Crystals Embedded with Hyperbolic Metamaterials
by Chang Liu, Dong Wei, Xiaochun Lin and Yaoxian Zheng
Crystals 2024, 14(9), 787; https://doi.org/10.3390/cryst14090787 - 4 Sep 2024
Viewed by 1519
Abstract
Hyperbolic metamaterials (HMMs) are highly anisotropic materials with the unique property of generating electromagnetic modes. Understanding how these materials can be applied to control the propagation of light waves remains a major focus in photonics. In this study, we inserted a finite-size HMM [...] Read more.
Hyperbolic metamaterials (HMMs) are highly anisotropic materials with the unique property of generating electromagnetic modes. Understanding how these materials can be applied to control the propagation of light waves remains a major focus in photonics. In this study, we inserted a finite-size HMM rod into the point defect of two-dimensional photonic crystals (PhCs) and investigated the unique cavity modes of this hybrid system. The HMM enhances the efficiency of the cavity system in controlling light transmission. Numerical results demonstrate that the cavity modes based on HMMs can be categorized into various types, showing high Q-factors and promising potential for resonant modulation. Furthermore, the switching performance of the cavity with an HMM rod was examined, revealing that the finite-size HMM modes are highly frequency-sensitive and suitable for nonlinear controlled all-optical switching. These switches, characterized by low power consumption and high extinction ratios, are highly suitable for integration into photonic systems. Our investigation on the new type of HMM cavity illustrates that anisotropic materials can be effectively applied in cavity systems to generate highly efficient modes for filtering and switching. Full article
(This article belongs to the Special Issue Optical Properties and Applications of 2D Materials)
Show Figures

Figure 1

9 pages, 2509 KB  
Article
Tunable Nonlinear Optical Bistability Based on the Fabry–Perot Cavity Composed of Dirac Semimetal and Two Symmetric Photonic Crystals
by Yunyang Ye, Jing Pan, Wei Chen, Huayue Zhang and Riwei Wang
Coatings 2024, 14(6), 705; https://doi.org/10.3390/coatings14060705 - 4 Jun 2024
Cited by 1 | Viewed by 1366
Abstract
In this paper, we study the nonlinear optical bistability (OB) in a symmetrical multilayer structure. This multilayer structure is constructed by embedding a nonlinear three-dimensional Dirac semimetal (3D DSM) into a Fabry–Perot cavity composed of one-dimensional photonic crystals. The OB phenomenon stems from [...] Read more.
In this paper, we study the nonlinear optical bistability (OB) in a symmetrical multilayer structure. This multilayer structure is constructed by embedding a nonlinear three-dimensional Dirac semimetal (3D DSM) into a Fabry–Perot cavity composed of one-dimensional photonic crystals. The OB phenomenon stems from the third order nonlinear conductivity of 3D DSM. The local field of resonance mode could enhance the nonlinearity and reduce the thresholds of OB. This structure achieves the tunability of OB due to the fact that the transmittance could be modulated by the Fermi energy. It is found that the OB threshold and threshold width could be remarkably reduced by increasing the Fermi energy of the 3D DSM. Besides, we also found that the OB curve depends heavily on the angle of incidence of the incident light, the structural parameters of the Fabry–Perot cavity, and the position of the 3D DSM inside the cavity. After parameter optimization, we obtained OB with a threshold of 106 V/m. We believe this simple multilayer structure could provide a reference idea for realizing low-threshold and tunable all-optical switching devices. Full article
(This article belongs to the Special Issue Optical Properties of Crystals and Thin Films, Volume II)
Show Figures

Figure 1

12 pages, 2379 KB  
Article
Fractional Photoconduction and Nonlinear Optical Behavior in ZnO Micro and Nanostructures
by Victor Manuel Garcia-de-los-Rios, Jose Alberto Arano-Martínez, Martin Trejo-Valdez, Martha Leticia Hernández-Pichardo, Mónica Araceli Vidales-Hurtado and Carlos Torres-Torres
Fractal Fract. 2023, 7(12), 885; https://doi.org/10.3390/fractalfract7120885 - 15 Dec 2023
Cited by 4 | Viewed by 2157
Abstract
A fractional description for the optically induced mechanisms responsible for conductivity and multiphotonic effects in ZnO nanomaterials is studied here. Photoconductive, electrical, and nonlinear optical phenomena exhibited by pure micro and nanostructured ZnO samples were analyzed. A hydrothermal approach was used to synthetize [...] Read more.
A fractional description for the optically induced mechanisms responsible for conductivity and multiphotonic effects in ZnO nanomaterials is studied here. Photoconductive, electrical, and nonlinear optical phenomena exhibited by pure micro and nanostructured ZnO samples were analyzed. A hydrothermal approach was used to synthetize ZnO micro-sized crystals, while a spray pyrolysis technique was employed to prepare ZnO nanostructures. A contrast in the fractional electrical behavior and photoconductivity was identified for the samples studied. A positive nonlinear refractive index was measured on the nanoscale sample using the z-scan technique, which endows it with a dominant real part for the third-order optical nonlinearity. The absence of nonlinear optical absorption, along with a strong optical Kerr effect in the ZnO nanostructures, shows favorable perspectives for their potential use in the development of all-optical switching devices. Fractional models for predicting electronic and nonlinear interactions in nanosystems could pave the way for the development of optoelectronic circuits and ultrafast functions controlled by ZnO photo technology. Full article
(This article belongs to the Special Issue Fractional Mathematical Modelling: Theory, Methods and Applications)
Show Figures

Figure 1

12 pages, 8872 KB  
Article
Novel Optical Kerr Switching Photonic Device Based on Nonlinear Carbon Material
by Ke Wang, Zhoufa Xie, Jianhua Ji, Yufeng Song, Bin Zhang and Zhenhong Wang
Micromachines 2023, 14(12), 2216; https://doi.org/10.3390/mi14122216 - 8 Dec 2023
Cited by 6 | Viewed by 1892
Abstract
In the context of current communication systems, there is an urgent demand for more efficient and higher-speed optical signal processing technologies. Researchers are actively exploring new materials and devices to harness nonlinear optical phenomena, seeking advancements in this field. Nonlinear carbon materials, especially [...] Read more.
In the context of current communication systems, there is an urgent demand for more efficient and higher-speed optical signal processing technologies. Researchers are actively exploring new materials and devices to harness nonlinear optical phenomena, seeking advancements in this field. Nonlinear carbon materials, especially promising 2D materials, have garnered attention for their potential interaction with light and have become integral to the development of all-optical signal processing devices. This study focuses on utilizing a photonic device based on a nonlinear Au/CB composite material for optical Kerr switching. The application of Au/CB as a nonlinear material in the Kerr switch represents a noteworthy advancement, demonstrating its capability to modulate optical signals. By appropriately applying a pump light, the study achieves optical Kerr switching with an extinction ratio of approximately 15 dB in the fully off state of the signal light carrying a 10 GHz analog signal, marking a pioneering achievement in the field to the best of our knowledge. The experimental results, encompassing extinction ratios, signal control, and stability, not only validate the feasibility of this technology but also underscore its potential applicability within optical communication systems. The successful modulation and control of a 10 GHz analog signal showcase the practicality and effectiveness of the Au/CB-based optical Kerr switch. This progress contributes to the continuous evolution of optical Kerr switching, a crucial component in modern optical communication systems. Therefore, we believe that the Au/CB-based optical Kerr switch is an exceptionally promising and stable all-optical signal processing device. As the contemporary communication landscape evolves, the integration of this technology holds the potential to enhance the efficiency and speed of optical signal processing. Full article
(This article belongs to the Special Issue Applications of Microfiber Devices)
Show Figures

Figure 1

58 pages, 15358 KB  
Article
A Vision of 6th Generation of Fixed Networks (F6G): Challenges and Proposed Directions
by Dimitris Uzunidis, Konstantinos Moschopoulos, Charalampos Papapavlou, Konstantinos Paximadis, Dan M. Marom, Moshe Nazarathy, Raul Muñoz and Ioannis Tomkos
Telecom 2023, 4(4), 758-815; https://doi.org/10.3390/telecom4040035 - 7 Nov 2023
Cited by 20 | Viewed by 4420
Abstract
Humankind has entered a new era wherein a main characteristic is the convergence of various technologies providing services and exerting a major impact upon all aspects of human activity, be it social interactions with the natural environment. Fixed networks are about to play [...] Read more.
Humankind has entered a new era wherein a main characteristic is the convergence of various technologies providing services and exerting a major impact upon all aspects of human activity, be it social interactions with the natural environment. Fixed networks are about to play a major role in this convergence, since they form, along with mobile networks, the backbone that provides access to a broad gamut of services, accessible from any point of the globe. It is for this reason that we introduce a forward-looking approach for fixed networks, particularly focused on Fixed 6th Generation (F6G) networks. First, we adopt a novel classification scheme for the main F6G services, comprising six categories. This classification is based on the key service requirements, namely latency, capacity, and connectivity. F6G networks differ from those of previous generations (F1G–F5G) in that they concurrently support multiple key requirements. We then propose concrete steps towards transforming the main elements of fixed networks, such as optical transceivers, optical switches, etc., such that they satisfy the new F6G service requirements. Our study categorizes the main networking paradigm of optical switching into two categories, namely ultra-fast and ultra-high capacity switching, tailored to different service categories. With regard to the transceiver physical layer, we propose (a) the use of all-optical processing to mitigate performance barriers of analog-to-digital and digital-to-analog converters (ADC/DAC) and (b) the exploitation of optical multi-band transmission, space division-multiplexing, and the adoption of more efficient modulation formats. Full article
Show Figures

Figure 1

12 pages, 745 KB  
Article
Valley-Selective High Harmonic Generation and Polarization Induced by an Orthogonal Two-Color Laser Field
by Xi Liu, Dongdong Liu, Yan Sun, Yujie Li and Cui Zhang
Photonics 2023, 10(10), 1126; https://doi.org/10.3390/photonics10101126 - 8 Oct 2023
Cited by 12 | Viewed by 2007
Abstract
The valley pseudospin properties of electrons in two-dimensional hexagonal materials result in many fascinating physical phenomena, which opens up the new field of valleytronics. The valley-contrasting physics aims at distinguishing the valley degree of freedom based on valley-dependent effects. Here, we theoretically demonstrate [...] Read more.
The valley pseudospin properties of electrons in two-dimensional hexagonal materials result in many fascinating physical phenomena, which opens up the new field of valleytronics. The valley-contrasting physics aims at distinguishing the valley degree of freedom based on valley-dependent effects. Here, we theoretically demonstrate that both of the valley-selective high harmonic generation and valley-selective electronic excitation can be achieved by using an orthogonal two-color (OTC) laser field in gapped graphene. It is shown that the asymmetry degrees of harmonic yields in the plateaus, cutoff energies of generated harmonics and electron populations from two different valleys can be precisely controlled by the relative phase of the OTC laser field. Thus, the selectivity of the dominant valley for the harmonic radiation and electronic polarization can be switched by adjusting the relative phase of the OTC laser field. Our work offers an all-optical route to produce the valley-resolved high harmonic emissions and manipulate the ultrafast valley polarization on a femtosecond timescale in condensed matter. Full article
Show Figures

Figure 1

25 pages, 13077 KB  
Review
Photonic Crystal Flip-Flops: Recent Developments in All Optical Memory Components
by Yonatan Pugachov, Moria Gulitski and Dror Malka
Materials 2023, 16(19), 6467; https://doi.org/10.3390/ma16196467 - 28 Sep 2023
Cited by 15 | Viewed by 3551
Abstract
This paper reviews recent advancements in all-optical memory components, particularly focusing on various types of all-optical flip-flops (FFs) based on photonic crystal (PC) structures proposed in recent years. PCs, with their unique optical properties and engineered structures, including photonic bandgap control, enhanced light–matter [...] Read more.
This paper reviews recent advancements in all-optical memory components, particularly focusing on various types of all-optical flip-flops (FFs) based on photonic crystal (PC) structures proposed in recent years. PCs, with their unique optical properties and engineered structures, including photonic bandgap control, enhanced light–matter interaction, and compact size, make them especially suitable for optical FFs. The study explores three key materials, silicon, chalcogenide glass, and gallium arsenide, known for their high refractive index contrast, compact size, hybrid integration capability, and easy fabrication processes. Furthermore, these materials exhibit excellent compatibility with different technologies like CMOS and fiber optics, enhancing their versatility in various applications. The structures proposed in the research leverage mechanisms such as waveguides, ring resonators, scattering rods, coupling rods, edge rods, switches, resonant cavities, and multi-mode interference. The paper delves into crucial properties and parameters of all-optical FFs, including response time, contrast ratio, and operating wavelength. Optical FFs possess significant advantages, such as high speed, low power consumption, and potential for integration, making them a promising technology for advancing optical computing and optical memory systems. Full article
Show Figures

Figure 1

10 pages, 4822 KB  
Article
Future Green Technology: A Freezing Water Micro-Droplet as an Optical Switch Based on a Time-Domain Photonic Hook
by Oleg V. Minin, Yinghui Cao and Igor V. Minin
Nanomaterials 2023, 13(15), 2168; https://doi.org/10.3390/nano13152168 - 26 Jul 2023
Cited by 6 | Viewed by 1594
Abstract
This paper pays attention to the broader interest of freezing water droplets in mesotronics, particularly to their use as a new all-optical device platform. Here, we show that a freezing mesoscale water droplet with a low Bond number can behave as fully biocompatible [...] Read more.
This paper pays attention to the broader interest of freezing water droplets in mesotronics, particularly to their use as a new all-optical device platform. Here, we show that a freezing mesoscale water droplet with a low Bond number can behave as fully biocompatible natural microlense to form a photonic hook for application in a tunable temperature-controlled optical switch. We first introduced and demonstrated the basic concepts of an optical switch without changes in the wavelength of illumination of a particle or any moving parts being involved. The principle of the operation of the switch is based on the temperature-induced phase change inside the water droplet’s refractive index. The simulation results show that the optical isolation of switched channels for an optical switch with linear dimensions of about 15 λ3 based on a freezing water droplet can reach 10 dB in the process of temperature variation at a fixed wavelength. The use of freezing mesoscale droplets acting as a time-domain photonic hook generator open an intriguing route for optical switching in multifunctional green electronics tools for sensing, integrated optics and optical computers. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

18 pages, 27947 KB  
Article
Design of All-Optical Subtractors Utilized with Plasmonic Ring Resonators for Optical Computing
by Yichen Ye, Tingting Song, Yiyuan Xie and Chuandong Li
Photonics 2023, 10(7), 724; https://doi.org/10.3390/photonics10070724 - 25 Jun 2023
Cited by 6 | Viewed by 2323
Abstract
In this paper, a novel plasmonic all-optical half-subtractor and full-subtractor are designed for optical computing. The structure of plasmonic subtractors consists of a metal–insulator–metal (MIM) waveguide and rectangular ring resonators covered by a graphene layer. Due to the nonlinear optical properties of graphene, [...] Read more.
In this paper, a novel plasmonic all-optical half-subtractor and full-subtractor are designed for optical computing. The structure of plasmonic subtractors consists of a metal–insulator–metal (MIM) waveguide and rectangular ring resonators covered by a graphene layer. Due to the nonlinear optical properties of graphene, the states of the plasmonic resonators can be controlled by the pump intensity of a pump beam focused on the graphene layer. The resonators can work as all-optical switches with an ultra-fast response time to constitute optical logic devices according to the directed logic mechanism. A finite-difference time-domain method is utilized to numerically investigate the transmission of the output signals which represent the results of subtraction operations. Simulation results obtained indicate that the proposed plasmonic devices have the ability to implement half-subtraction and full-subtraction with a small feature size and fast response time, and provide a new concept and method for the design and realization of optical computing devices. Full article
(This article belongs to the Special Issue Surface Plasmon)
Show Figures

Figure 1

9 pages, 1926 KB  
Article
Tunable Low-Threshold Optical Bistability in Optical Tamm Plasmon Superlattices
by Fengyu Li, Jiao Xu, Wei Li, Jianbo Li, Yuxiang Peng and Mengdong He
Coatings 2023, 13(5), 938; https://doi.org/10.3390/coatings13050938 - 17 May 2023
Cited by 4 | Viewed by 1798
Abstract
We propose a scheme to obtain tunable low-threshold optical bistability of reflected beams in optical Tamm plasmon superlattices (TPS). The low-threshold optical bistability is triggered due to the strong third-order non-linearity of graphene and the local field enhancement in the TPS. Our results [...] Read more.
We propose a scheme to obtain tunable low-threshold optical bistability of reflected beams in optical Tamm plasmon superlattices (TPS). The low-threshold optical bistability is triggered due to the strong third-order non-linearity of graphene and the local field enhancement in the TPS. Our results show that the optical Tamm plasmon superlattices have the ability to lower the bistable threshold even further than the single optical Tamm state. The results show that the hysteresis behavior and optical bistability threshold can be continuously adjusted by changing the applied voltage and the number of graphene layers (N ≤ 4). In particular, the optical bistability in the TPS is affected by the incident angle. Our results introduce a new possible route for low threshold optical bistability in the THz range and provide a new method in the field of all-optical switching applications. Full article
(This article belongs to the Special Issue Optical Properties of Crystals and Thin Films)
Show Figures

Figure 1

Back to TopTop