Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (290)

Search Parameters:
Keywords = aluminum metal–matrix composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2047 KB  
Article
Study of the Relationship Between Microstructure, Phase Composition and Strength Characteristics in Composite Ceramics Based on ZrO2-Al2O3 System
by Rafael I. Shakirzyanov, Yuriy A. Garanin, Malik E. Kaliyekperov, Sofiya A. Maznykh and Dilnaz K. Zhamikhanova
J. Compos. Sci. 2025, 9(10), 519; https://doi.org/10.3390/jcs9100519 - 29 Sep 2025
Viewed by 348
Abstract
ZrO2-MgO-Al2O3 ceramics, despite a long history of research, still attract the attention of researchers due to the high potential of their applications as refractories and matrices for metal ceramics. A unique composition combining high strength and temperature stability [...] Read more.
ZrO2-MgO-Al2O3 ceramics, despite a long history of research, still attract the attention of researchers due to the high potential of their applications as refractories and matrices for metal ceramics. A unique composition combining high strength and temperature stability is particularly in demand. In this paper, a comprehensive study of ceramics of the composition (90−x)·ZrO2-10·MgO-x·Al2O3 (x = 10–80 wt.%) obtained by solid-phase sintering with preliminary annealing is carried out. Preliminary annealing was used for the possible formation of metastable phases with outstanding mechanical properties. Using the X-ray diffraction method, it was found that most of the samples consist of monoclinic zirconium oxide, magnesium–aluminum spinel, and corundum phases. The exception is the sample with x = 10 wt.%, in which the main phase was a cubic modification of zirconium oxide. By formation this type of ZrO2 polymorph in the composition hardness and flexural strength significantly increased from 400 to 1380 and 50 to 210 MPa, respectively. The total porosity of ceramics under study lies in the range 6–28%. Using the scanning electron microscopy method, it was found that the phase composition significantly affects the morphology of the microstructure of the sintered bodies. Thus, for sintered ceramics with a high corundum content, the microstructure is characterized by high porosity and a large grain size. For the first time, by applying preliminary annealing, a new type of ternary ceramic ZrO2-MgO-Al2O3 was sintered with potentially outstanding mechanical properties. The presence of a stabilized zirconium oxide phase, stresses in the crystal lattice of the matrix phase, and the formation of cracks in the microstructure are the main factors influencing shrinkage, porosity, microhardness, and biaxial flexural strength. Full article
Show Figures

Graphical abstract

14 pages, 3677 KB  
Article
The Effect of ZrO2 Addition and Thermal Treatment on the Microstructure and Mechanical Properties of Aluminum Metal Matrix Composites (AMMCs)
by Isai Rosales-Cadena, Reyna Anahi Falcon-Castrejon, Rene Guardian-Tapia, Jose Luis Roman-Zubillaga, Sergio Ruben Gonzaga-Segura, Lazaro Abdiel Falcon-Franco, Victor Hugo Martinez-Landeros and Rumualdo Servin
Materials 2025, 18(19), 4507; https://doi.org/10.3390/ma18194507 - 28 Sep 2025
Viewed by 315
Abstract
Aluminum metal matrix composites (AMMCs) were obtained using the stir-casting method, adding 0.15, 0.25, and 0.50 in vol.% of ZrO2. Microstructural observations made using scanning electron microscopy (SEM) indicated that oxide addition modified grain size. X-ray diffraction analyses revealed that mainly [...] Read more.
Aluminum metal matrix composites (AMMCs) were obtained using the stir-casting method, adding 0.15, 0.25, and 0.50 in vol.% of ZrO2. Microstructural observations made using scanning electron microscopy (SEM) indicated that oxide addition modified grain size. X-ray diffraction analyses revealed that mainly ZrAl3 and Al2O3 phases had formed. Hardness evaluation indicated a maximum value of 63 HV for the zirconia-reinforced samples, representing an increase of approximately 70% compared with pure aluminum. This hardness increase was mainly attributed to the zirconia distribution in the aluminum matrix promoting lattice distortion, which promoted the inhibition of dislocation mobility. Wear tests indicated that the samples with 0.50 vol.% of ZrO2 added presented the lowest wear rate because of the hardness they acquired. The results are discussed considering composite strengthening due to ZrO2 addition and the thermal treatment applied (cooling rate). Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

54 pages, 7698 KB  
Review
Recent Advances in Ceramic-Reinforced Aluminum Metal Matrix Composites: A Review
by Surendra Kumar Patel and Lei Shi
Alloys 2025, 4(3), 18; https://doi.org/10.3390/alloys4030018 - 30 Aug 2025
Viewed by 1093
Abstract
Aluminium metal matrix composites (AMMCs) incorporate aluminium alloys reinforced with fibres (continuous/discontinuous), whiskers, or particulate. These materials were engineered as advanced solutions for demanding sectors including construction, aerospace, automotive, and marine. Micro- and nano-scale reinforcing particles typically enable attainment of exceptional combined properties, [...] Read more.
Aluminium metal matrix composites (AMMCs) incorporate aluminium alloys reinforced with fibres (continuous/discontinuous), whiskers, or particulate. These materials were engineered as advanced solutions for demanding sectors including construction, aerospace, automotive, and marine. Micro- and nano-scale reinforcing particles typically enable attainment of exceptional combined properties, including reduced density with ultra-high strength, enhanced fatigue strength, superior creep resistance, high specific strength, and specific stiffness. Microstructural, mechanical, and tribological characterizations were performed, evaluating input parameters like reinforcement weight percentage, applied normal load, sliding speed, and sliding distance. Fabricated nanocomposites underwent tribometer testing to quantify abrasive and erosive wear behaviour. Multiple investigations employed the Taguchi technique with regression modelling. Analysis of variance (ANOVA) assessed the influence of varied test constraints. Applied load constituted the most significant factor affecting the physical/statistical attributes of nanocomposites. Sliding velocity critically governed the coefficient of friction (COF), becoming highly significant for minimizing COF and wear loss. In this review, the reinforcement homogeneity, fractural behaviour, and worn surface morphology of AMMCswere examined. Full article
Show Figures

Figure 1

21 pages, 2401 KB  
Article
Comparative Evaluation of the Tribological Performance of Al-MMC and GCI Brake Rotors Through AK Master Dynamometer Testing
by Samuel A. Awe and Lucia Lattanzi
Lubricants 2025, 13(9), 380; https://doi.org/10.3390/lubricants13090380 - 26 Aug 2025
Viewed by 673
Abstract
The increasing demand for lightweight and high-performance brake rotors has led to the exploration of aluminum–metal matrix composites (Al-MMCs) as alternatives to conventional cast iron rotors. This study evaluated the tribological performance of squeeze-cast Al-MMC brake rotors using an AK Master dynamometer test [...] Read more.
The increasing demand for lightweight and high-performance brake rotors has led to the exploration of aluminum–metal matrix composites (Al-MMCs) as alternatives to conventional cast iron rotors. This study evaluated the tribological performance of squeeze-cast Al-MMC brake rotors using an AK Master dynamometer test and compared it with that of conventional gray cast iron (GCI) rotors. The Al-MMC rotors demonstrated stable coefficients of friction (CoFs) with reduced wear rates, compared to the GCI rotors. Surface analysis identified the predominant wear mechanisms, including abrasive and oxidative wear. The Al-MMC rotors exhibited sensitivity to pressure and speed, with a CoF range of 0.35–0.47 that decreased at higher pressures and speeds, whereas the GCI rotors maintained a stable CoF range of 0.38–0.44. At elevated temperatures, the GCI rotors displayed superior thermal stability and fade resistance compared to the Al-MMCs, which experienced a 40–60% loss in CoF. Wear analysis indicated material transfer from brake pads to Al-MMC rotors, resulting in protective tribofilm formation, whereas GCI rotors exhibited conventional abrasive wear. These findings highlight the potential of squeeze-cast Al-MMCs for automotive braking applications, offering advantages in weight reduction and wear resistance, but also suggest the need for further material optimization to enhance high-temperature performance and friction stability. Full article
(This article belongs to the Special Issue Recent Advancements in Friction Research for Disc Brake Systems)
Show Figures

Graphical abstract

19 pages, 4348 KB  
Article
Manufacturing of Polymer–Metal Composite by Fused Filament Fabrication: Adhesion of PLA and PETG on Aluminum
by Miguel Campos-Jurado, Óscar Rodríguez-Alabanda and Guillermo Guerrero-Vacas
Polymers 2025, 17(16), 2210; https://doi.org/10.3390/polym17162210 - 13 Aug 2025
Viewed by 957
Abstract
The formation of metal–polymer composites by 3D printing PLA and PETG onto EN AW-5182 H111 aluminum substrates without the use of adhesives was investigated. Four surface treatments were evaluated on the metal substrate (fine sanding, coarse sanding, abrasive blasting, and acid etching), over [...] Read more.
The formation of metal–polymer composites by 3D printing PLA and PETG onto EN AW-5182 H111 aluminum substrates without the use of adhesives was investigated. Four surface treatments were evaluated on the metal substrate (fine sanding, coarse sanding, abrasive blasting, and acid etching), over which a polymer primer—prepared from PLA and PETG solutions—was applied. Subsequently, test specimens were fabricated using the same polymer through material extrusion (MEX) with filaments. Adhesion strength between the printed polymer and the metal substrate was assessed through perpendicular tensile, lap shear, and three-point bending tests. The 16-condition experimental matrix combined surface treatment, primer thickness, and bed temperature and was replicated for each test. Peak tensile and shear strengths confirmed the effectiveness of the proposed strategy, with PETG consistently showing a higher interfacial performance than PLA. ANOVA analysis identifies primer layer thickness (p = 0.023) and loading type (p = 0.031) as statistically significant variables. The results suggest that either abrasive or acid pretreatment, combined with a primer thickness ≥ 80 µm and moderate bed temperatures (65 °C for PLA and 90 °C for PETG), enables the fabrication of robust metal–polymer joints, which are particularly resistant to shear stress and suitable for industrial applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

21 pages, 3814 KB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 - 1 Aug 2025
Viewed by 632
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 3112 KB  
Article
Durable Superhydrophobic Composite Coating Based on Hydrangea-like SiO2 Nanoparticles with Excellent Performance in Anticorrosion, Drag Reduction, and Antifouling
by Yuhao Xue, Yamei Zhao, Xiaoqi Gu, Mengdan Huo, Kunde Yang, Mingyu Liu, Sixian Fan and Maoyong Zhi
Materials 2025, 18(15), 3443; https://doi.org/10.3390/ma18153443 - 23 Jul 2025
Viewed by 535
Abstract
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic [...] Read more.
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic coating featuring a hierarchical, hydrangea-like micro/nanostructure was successfully fabricated on an aluminum alloy substrate via a simple one-step cold-spraying technique. The coating consisted of hydrangea-shaped SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (PFDT) to produce multiscale roughness, while epoxy resin (EP) served as the binding matrix to enhance mechanical integrity. The hydrangea-like SiO2 nanostructures were characterized by solid cores and wrinkled, petal-like outgrowths. This unique morphology not only increased the surface roughness but also provided more active sites for air entrapment, thereby enhancing the coating’s overall performance. The h-SiO2@PFDT-EP composite coating exhibited excellent superhydrophobicity, with a WCA of 170.1° ± 0.8° and a SA of 2.7° ± 0.5°. Durability was evaluated through sandpaper abrasion, tape peeling, acid and alkali immersion, artificial weathering, and salt spray tests. The results demonstrated that the coating retained stable superhydrophobic performance under various environmental stresses. Compared with bare 6061 aluminum and EP coatings, its corrosion current density was reduced by four and three orders of magnitude, respectively. Furthermore, the coating achieved a maximum drag-reduction rate of 31.01% within a velocity range of 1.31–7.86 m/s. The coating also displayed excellent self-cleaning properties. Owing to its outstanding durability, corrosion resistance, and drag-reducing capability, this one-step fabricated superhydrophobic coating showed great promise for applications in marine engineering and defense. Full article
Show Figures

Figure 1

17 pages, 3986 KB  
Article
Titanate-Coupled Aluminum as an Interfacial Modifier for Enhanced Thermal and Mechanical Performance in Hybrid Epoxy Composites
by Hai-Long Cheng, Seul-Yi Lee, Na Chu, Se-Yeol Lee, Fan-Long Jin and Soo-Jin Park
Polymers 2025, 17(14), 1922; https://doi.org/10.3390/polym17141922 - 11 Jul 2025
Cited by 1 | Viewed by 693
Abstract
Thermally conductive polymer composites are essential for effective heat dissipation in electronic packaging, where both thermal management and mechanical reliability are critical. Although diglycidyl ether of bisphenol-A (DGEBA)-based epoxies exhibit favorable properties, their intrinsically low thermal conductivity limits broader applications. Incorporating conductive fillers, [...] Read more.
Thermally conductive polymer composites are essential for effective heat dissipation in electronic packaging, where both thermal management and mechanical reliability are critical. Although diglycidyl ether of bisphenol-A (DGEBA)-based epoxies exhibit favorable properties, their intrinsically low thermal conductivity limits broader applications. Incorporating conductive fillers, such as expanded graphite (EG) and metal powders, enhances heat transport but often compromises mechanical strength due to poor filler–matrix compatibility. In this study, we address this trade-off by employing a titanate coupling agent to surface-modify aluminum (Al) fillers, thereby improving interfacial adhesion and dispersion within the DGEBA matrix. Our results show that incorporating 10 wt% untreated Al increases thermal conductivity from 7.35 to 9.60 W/m·K; however, this gain comes at the cost of flexural strength, which drops to 18.29 MPa. In contrast, titanate-modified Al (Ti@Al) not only preserves high thermal conductivity but also restores mechanical performance, achieving a flexural strength of 35.31 MPa (at 5 wt% Ti@Al) and increasing impact strength from 0.60 to 1.01 kJ/m2. These findings demonstrate that interfacial engineering via titanate coupling offers a compelling strategy to overcome the thermal–mechanical trade-off in hybrid composites, enabling the development of high-performance materials for advanced thermal interface and structural applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

24 pages, 1711 KB  
Review
Hybridization of Lignocellulosic Biomass into Aluminum-Based Materials: Comparing the Cases of Aluminum Matrix Composites and Fiber Metal Laminates
by Cristiano Fragassa and Carlo Santulli
J. Compos. Sci. 2025, 9(7), 356; https://doi.org/10.3390/jcs9070356 - 8 Jul 2025
Cited by 2 | Viewed by 743
Abstract
Introducing and compacting lignocellulosic biomass in aluminum structures, though recommendable in terms of higher sustainability, the potential use of agro-waste and significant weight reduction, still represents a challenge. This is due to the variability of biomass performance and to its limited compatibility with [...] Read more.
Introducing and compacting lignocellulosic biomass in aluminum structures, though recommendable in terms of higher sustainability, the potential use of agro-waste and significant weight reduction, still represents a challenge. This is due to the variability of biomass performance and to its limited compatibility with the metal. Another question may concern possible moisture penetration in the structure, which may reduce environmental resistance and result in local degradation, such as wear or even corrosion. Despite these limitations, this hybridization enjoys increasing success. Two forms are possibly available for this: introduction into metal matrix composites (MMCs), normally in the form of char from biomass combustion, or laminate reinforcement as the core for fiber metal laminates (FMLs). These two cases are treated alongside each other in this review, first because they may represent two combined options for recycling the same biomass into high-profile structures, aimed primarily at the aerospace industry. Moreover, as discussed above, the effect on the aluminum alloy can be compared and the forces to which they are subjected might be of a similar type, most particularly in terms of their hardness and impact. Both cases considered, MMCs and FMLs involved over time many lignocellulosic residues, starting from the most classical bast species, i.e., flax, hemp, sisal, kenaf, etc., and extending also to less diffuse ones, especially in view of the introduction of biomass as secondary, or residual, raw materials. Full article
Show Figures

Figure 1

12 pages, 2291 KB  
Article
Processing and Evaluation of an Aluminum Matrix Composite Material
by Calin-Octavian Miclosina, Remus Belu-Nica, Costel Relu Ciubotariu and Gabriela Marginean
J. Compos. Sci. 2025, 9(7), 335; https://doi.org/10.3390/jcs9070335 - 27 Jun 2025
Viewed by 789
Abstract
This study signifies the development and characterization of a composite material with a metallic matrix of aluminum reinforced with a steel mesh, utilizing centrifugal casting technology. An evaluation was conducted to ascertain the influence of the formulation process and the presence of the [...] Read more.
This study signifies the development and characterization of a composite material with a metallic matrix of aluminum reinforced with a steel mesh, utilizing centrifugal casting technology. An evaluation was conducted to ascertain the influence of the formulation process and the presence of the insert on the mechanical behavior with regard to tensile strength. The aluminum matrix was obtained from commercial and scrap alloys, elaborated by advanced methods of degassing and chemical modification. Meanwhile, the steel mesh reinforcement was cleaned, copper plated, and preheated to optimize wetting and, consequently, adhesion. The structural characterization was performed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy analyses (EDX), which highlighted a well-defined interface and uniform copper distribution. The composite was produced by means of horizontal-axis centrifugal casting in a fiberglass mold, followed by cold rolling to obtain flat specimens. A total of eight tensile specimens were examined, with measured ultimate tensile strengths ranging from 78.5 to 119.8 (MPa). A thorough examination of the fractured specimens revealed a brittle fracture mechanism, devoid of substantial plastic deformation. The onset of failures was frequently observed at the interface between the aluminum matrix and the steel mesh. The use of SEM and EDX investigations led to the confirmation of the uniformity of the copper coating and the absence of significant porosity or interfacial defects. A bimodal distribution of tensile strength values was observed, a phenomenon that is likely attributable to variations in mesh positioning and local differences in solidification. A correlation was established between the experimental results and an analytical polynomial model, thereby confirming a reasonable fit. In sum, the present study provides a substantial foundation for the development of metal matrix composites with enhanced performance, specifically designed for challenging structural applications. This method also demonstrates potential for recycling aluminum scrap into high-performance composites with controlled microstructure and mechanical integrity. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

19 pages, 4579 KB  
Article
Effect of Heating Rate on the Properties and Mechanism of Nanocomposite Ceramic Coatings Prepared by Slurry Method
by Yuntian Zhang, Yinhui Li, Jiaqi Cao, Songyuchen Ma, Guangsong Chen, Kunquan Duan and Jie Liu
Appl. Sci. 2025, 15(12), 6561; https://doi.org/10.3390/app15126561 - 11 Jun 2025
Viewed by 693
Abstract
Nano-titanium dioxide ceramic coatings exhibit excellent wear resistance, corrosion resistance, and self-cleaning properties, showing great potential as multifunctional protective materials. This study proposes a synergistic reinforcement strategy by encapsulating micron-sized Al2O3 particles with nano-TiO2. A core-shell structured nanocomposite [...] Read more.
Nano-titanium dioxide ceramic coatings exhibit excellent wear resistance, corrosion resistance, and self-cleaning properties, showing great potential as multifunctional protective materials. This study proposes a synergistic reinforcement strategy by encapsulating micron-sized Al2O3 particles with nano-TiO2. A core-shell structured nanocomposite coating composed of 65 wt% nano-TiO2 encapsulating 30 wt% micron-Al2O3 was precisely designed and fabricated via a slurry dip-coating method on Q235 steel substrates. The microstructure and surface morphology of the coatings were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Comprehensive performance evaluations including densification, adhesion strength, wear resistance, and thermal shock resistance were conducted. Optimal coating properties were achieved under the conditions of a binder-to-solvent ratio of 1:15 (g/mL), a heating rate of 2 °C/min, and a sintering temperature of 400 °C. XRD analysis confirmed the formation of multiple crystalline phases during the 400 °C curing process, including titanium pyrophosphate (TiP2O7), aluminum phosphate (AlPO4), copper aluminate (Cu(AlO2)2), and a unique titanium phosphate phase (Ti3(PO4)4) exclusive to the 2 °C/min heating rate. Adhesion strength tests revealed that the coating sintered at 2 °C/min exhibited superior interfacial bonding strength and outstanding performance in wear resistance, hardness, and thermal shock resistance. The incorporation of nano-TiO2 into the 30 wt% Al2O3 matrix significantly enhanced the mechanical properties of the composite coating. Mechanistic studies indicated that the bonding between the nanocomposite coating and the metal substrate is primarily achieved through mechanical interlocking, forming a robust physical interface. These findings provide theoretical guidance for optimizing the fabrication process of metal-based ceramic coatings and expanding their engineering applications in various industries. Full article
Show Figures

Figure 1

18 pages, 9085 KB  
Article
Optimizing the Tribological Performance of Copper-Reinforced A356 Aluminum Alloy: Influence of Heat Treatment and Composition Variation
by G. Divya Deepak, Nithesh Kashimat, Karthik Birur Manjunathaiah, Vignesha Nayak, Gajanan Anne and Sathyashankara Sharma
J. Compos. Sci. 2025, 9(6), 287; https://doi.org/10.3390/jcs9060287 - 4 Jun 2025
Viewed by 894
Abstract
Recent progress in metal matrix composites (MMCs) has led to significant research efforts aimed at refining reinforcement methods and processing techniques and enhancing material properties. Incorporating reinforcements has notably improved both mechanical strength and tribological performance while addressing issues such as porosity and [...] Read more.
Recent progress in metal matrix composites (MMCs) has led to significant research efforts aimed at refining reinforcement methods and processing techniques and enhancing material properties. Incorporating reinforcements has notably improved both mechanical strength and tribological performance while addressing issues such as porosity and particle agglomeration. This study investigates the impact of copper reinforcement (1–4 wt.%) on the tribological characteristics of A356 alloy under both as-cast and heat-treated conditions. The process of heat treatment involved age hardening, where the composites were solution heat treated (SHT) at 535 °C for 2 h, followed by rapid quenching and aging at 100 °C and 200 °C. The results demonstrate that increasing the copper content enhances the composite’s mechanical properties. Specifically, heat treatment promoted the redistribution of the Al2Cu intermetallic phase during peak aging, leading to improved hardness and wear resistance. Wear testing demonstrated that heat-treated composites exhibited significantly better wear resistance than their as-cast counterparts, with improvements of 50–60% under lower loads and 80–90% under higher loads. Among the tested samples, A356 alloy reinforced with 4 wt.% copper showed the lowest wear rate across all the applied loads, along with a reduced coefficient of friction and enhanced load-bearing capacity, minimizing material deformation. Additionally, aging at 100 °C resulted in the greatest hardness and the lowest wear rate in comparison to untreated A356 alloy. These findings underscore the viability of copper-reinforced A356 composites for applications demanding enhanced mechanical characteristics and wear resistance. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

12 pages, 756 KB  
Article
Exploring Artificial Neural Network Techniques for Modeling Surface Roughness in Wire Electrical Discharge Machining of Aluminum/Silicon Carbide Composites
by Yogesh S. Sable, Hanumant M. Dharmadhikari, Sunil A. More and Ioannis E. Sarris
J. Compos. Sci. 2025, 9(6), 259; https://doi.org/10.3390/jcs9060259 - 25 May 2025
Cited by 1 | Viewed by 853
Abstract
Understanding wire-cut electrical discharge machining (WEDM) parameters’ impact on surface roughness (Ra) is crucial for optimizing processes. This study uses artificial neural network (ANN) techniques to estimate the surface roughness of Al/SiC composites during WEDM, examining how process parameters affect the roughness. The [...] Read more.
Understanding wire-cut electrical discharge machining (WEDM) parameters’ impact on surface roughness (Ra) is crucial for optimizing processes. This study uses artificial neural network (ANN) techniques to estimate the surface roughness of Al/SiC composites during WEDM, examining how process parameters affect the roughness. The experiment used a stir casting aluminum alloy with a 7.5% silicon carbide metal matrix composite (MMC), adjusting parameters like the wire tension (WT), servo voltage (SV), peak current (IP), pulse on time (TON), and pulse off time (TOFF). An ANN model was created to forecast the surface roughness. The study developed an ANN model to forecast surface roughness in Al/SiC composites during WEDM, demonstrating its accuracy in identifying the link between surface finish and input parameters, thereby improving the surface quality. The ANN model accurately predicted the surface roughness based on WEDM parameters, with strong correlations between predictions and actual data, demonstrating its ability to estimate surface quality accurately. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

16 pages, 5694 KB  
Article
Preparation of New Vanadium Base Composite Conversion Coating on 6061 Aluminum Alloy Surface for Sports Equipment
by Yiqun Wang, Xuzheng Qian, Feng Huang and Yingsong Fang
Coatings 2025, 15(5), 516; https://doi.org/10.3390/coatings15050516 - 25 Apr 2025
Viewed by 637
Abstract
The 6061 aluminum alloy is a commonly used metal material for sports equipment but is vulnerable to the external environment and corrosion. A novel V-Zr-Ti composite conversion coating was successfully prepared on the surface of 6061 aluminum alloy, and a thorough investigation was [...] Read more.
The 6061 aluminum alloy is a commonly used metal material for sports equipment but is vulnerable to the external environment and corrosion. A novel V-Zr-Ti composite conversion coating was successfully prepared on the surface of 6061 aluminum alloy, and a thorough investigation was conducted into the effect of the conversion parameters. Furthermore, the microstructure of the conversion coating, element contents of the coating surface, and dynamic evolution characteristics of the conversion solution were systematically investigated, and furthermore, the relationship among them was established. The results show that the optimal conversion time (CTI) and conversion temperature (CTE) for the VZrCC are 12 min and 45 °C. The VZrTiCC can gradually fill surface scratches during the coating-forming process, resulting in a relatively flat and even surface morphology. The conversion element contents on the VZrTiCC surface demonstrated a gradual increase, and the deposition rate was characterized by high Ti, medium Zr, and low V. The phase of the coating is predominantly constituted by metal oxides derived from conversion compositions, with a minor proportion of fluoride. Furthermore, the VZrTiCC can significantly enhance the corrosion resistance of an Al alloy matrix due to its low icorr and average corrosion rate (ACR), and its corrosion resistance is about 5 times higher than that of the Al alloy matrix. Eventually, the formation process of the VZrTiCC with three key stages was proposed. In subsequent studies, to further establish a composition design framework for the conversion coating, a silane aqueous solution will be added to the existing V-Zr-Ti conversion solution, and a systematic study will be conducted on the V–organic composite conversion coating using computational molecular dynamics simulation combined with experimental characterization. Full article
Show Figures

Figure 1

21 pages, 8847 KB  
Article
The Importance of Laser Beam Power on the Microstructure and Wear Behavior of Al-WC Composite Layers Produced by Laser Surface Alloying
by Natalia Makuch and Piotr Dziarski
Materials 2025, 18(9), 1899; https://doi.org/10.3390/ma18091899 - 22 Apr 2025
Viewed by 494
Abstract
Laser alloying was used to form metal matrix composite layers strengthened by WC particles. The process parameters were selected in such a way that there was no complete melting of the WC particles. Four different laser beam powers (from 0.65 kW to 1.3 [...] Read more.
Laser alloying was used to form metal matrix composite layers strengthened by WC particles. The process parameters were selected in such a way that there was no complete melting of the WC particles. Four different laser beam powers (from 0.65 kW to 1.3 kW) were used, generating different temperature distributions during processing. The temperature across the laser track axis was determined according to the mathematical model proposed by Ashby and Esterling. All layers produced contained unmelted WC particles in an aluminum-based matrix. The depth of the WC-Al composite layers strongly depended on the applied laser beam power. The lowest thickness of 198 ± 36 µm was measured for the layer produced at a laser beam power of 0.65 kW. A twofold increase in power P was the reason for obtaining a thickness thAZ = 387 ± 21 µm. The power of the laser beam also affected the percentage of the substrate material (7075 alloy) in the molten pool during the laser processing. As a result, the highest amount of substrate material was obtained for the WC-Al composite layer produced using the highest laser beam power P = 1.3 kW. Simultaneously, this layer was characterized by the lowest percentage of tungsten carbide particles in this layer. The temperature profile along the axis of the laser track and also the maximum temperature reached confirmed the difference in the bonding between the reinforcing WC particles and the metal matrix. For P = 0.65 kW, too low a temperature was reached for the tungsten carbide particles to overmelt, resulting in poor bonding to the metallic matrix in the layer. Moreover, the layer showed serious defects such as discontinuity, porosity, and cracks. As a result, the WC-Al composite layer produced at the lowest laser beam power was characterized by a wear resistance lower (Imw = 6.094 mg/cm2/h) than the 7075 alloy without surface layer (Imw = 5.288 mg/cm2). The highest wear resistance was characteristic of the 7075 alloy laser alloyed with a laser beam power equal to 1.17 kW (Imw = 2.475 mg/cm2/h). This layer showed satisfactory quality and adhesion to the substrate material. Full article
(This article belongs to the Special Issue Advanced High-Performance Metal Matrix Composites (MMCs))
Show Figures

Figure 1

Back to TopTop