Study of the Relationship Between Microstructure, Phase Composition and Strength Characteristics in Composite Ceramics Based on ZrO2-Al2O3 System
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mamede, J.; Macedo, D.F.; Maceiras, A.; Silva, A.P. Reinforcement of the Ceramic Matrix of CaO-ZrO2-MgO with Al2O3 Coarse Particles. Ceramics 2022, 5, 148–160. [Google Scholar] [CrossRef]
- Shvydyuk, K.O.; Nunes-Pereira, J.; Rodrigues, F.F.; Páscoa, J.C.; Lanceros-Mendez, S.; Silva, A.P. Holistic Characterization of MgO-Al2O3, MgO-CaZrO3, and Y2O3-ZrO2 Ceramic Composites for Aerospace Propulsion Systems. Ceramics 2024, 7, 364–384. [Google Scholar] [CrossRef]
- Kostishin, V.G.; Shakirzyanov, R.I.; Nalogin, A.G.; Shcherbakov, S.V.; Isaev, I.M.; Nemirovich, M.A.; Mikhailenko, M.A.; Korobeinikov, M.V.; Mezentseva, M.P.; Salogub, D.V. Electrical and Dielectric Properties of Yttrium–Iron Ferrite Garnet Polycrystals Grown by the Radiation–Thermal Sintering Technology. Phys. Solid State 2021, 63, 435–441. [Google Scholar] [CrossRef]
- Garanin, Y.; Shakirzyanov, R.; Borgekov, D.; Kozlovskiy, A.; Volodina, N.; Shlimas, D.; Zdorovets, M. Study of Morphology, Phase Composition, Optical Properties, and Thermal Stability of Hydrothermal Zirconium Dioxide Synthesized at Low Temperatures. Sci. Rep. 2024, 14, 29398. [Google Scholar] [CrossRef] [PubMed]
- Shakir, R.A.; Géber, R. Structure and Properties of ZrO2-Al2O3-MgO Porous Ceramic for Biomedical Applications. Results Eng. 2023, 18, 101104. [Google Scholar] [CrossRef]
- Li, K.; Jiang, Q.; Chen, J.; Peng, J.; Li, X.; Koppala, S.; Omran, M.; Chen, G. The Controlled Preparation and Stability Mechanism of Partially Stabilized Zirconia by Microwave Intensification. Ceram. Int. 2020, 46, 7523–7530. [Google Scholar] [CrossRef]
- Zeng, X.M.; Lai, A.; Gan, C.L.; Schuh, C.A. Crystal Orientation Dependence of the Stress-Induced Martensitic Transformation in Zirconia-Based Shape Memory Ceramics. Acta Mater. 2016, 116, 124–135. [Google Scholar] [CrossRef]
- Song, X.; Ding, Y.; Zhang, J.; Jiang, C.; Liu, Z.; Lin, C.; Zheng, W.; Zeng, Y. Thermophysical and Mechanical Properties of Cubic, Tetragonal and Monoclinic ZrO2. J. Mater. Res. Technol. 2023, 23, 648–655. [Google Scholar] [CrossRef]
- Laquai, R.; Gouraud, F.; Müller, B.R.; Huger, M.; Chotard, T.; Antou, G.; Bruno, G. Evolution of Thermal Microcracking in Refractory ZrO2-SiO2 after Application of External Loads at High Temperatures. Materials 2019, 12, 1017. [Google Scholar] [CrossRef]
- Wen, T.; Yuan, L.; Liu, T.; Sun, Q.; Jin, E.; Tian, C.; Yu, J. Enhanced Ionic Conductivity and Thermal Shock Resistance of MgO Stabilized ZrO2 Doped with Y2O3. Ceram. Int. 2020, 46, 19835–19842. [Google Scholar] [CrossRef]
- Wijayanti, R.B.; Rosmayanti, I.; Wahyudi, K.; Maryani, E.; Hernawan, H.; Septawendar, R. Preparation of Magnesia Partially Stabilized Zirconia Nanomaterials from Zirconium Hydroxide and Magnesium Carbonate Precursors Using PEG as a Template. Crystals 2021, 11, 635. [Google Scholar] [CrossRef]
- Chen, G.; Li, Q.; Ling, Y.; Zheng, H.; Chen, J.; Jiang, Q.; Li, K.; Peng, J.; Omran, M.; Gao, L. Phase Stability and Microstructure Morphology of Microwave-Sintered Magnesia-Partially Stabilised Zirconia. Ceram. Int. 2021, 47, 4076–4082. [Google Scholar] [CrossRef]
- Lee, J.; Jang, K.B.; Lee, S.; Mo, C.B.; Kim, H.K.; Park, K.R.; Kim, J.; Bang, J.; Jung, I.C.; Kim, J.C.; et al. Mechanical Properties of TiC Reinforced MgO–ZrO2 Composites via Spark Plasma Sintering. Ceram. Int. 2023, 49, 17255–17260. [Google Scholar] [CrossRef]
- Lu, N.; He, G.; Yang, Z.; Yang, X.; Li, Y.; Li, J. Fabrication and Reaction Mechanism of MgO-Stabilized ZrO2 Powders by Combustion Synthesis. Ceram. Int. 2022, 48, 7261–7264. [Google Scholar] [CrossRef]
- Xuan, S.; Tian, Y.; Kong, X.; Hao, J.; Wang, X. Enhancement of Thermal Shock Resistance of Al2O3–MgAl2O4 Composites by Controlling the Content and Distribution of Spinel Phase. Ceram. Int. 2023, 49, 39908–39916. [Google Scholar] [CrossRef]
- Liu, X.; Ling, Y.; Tian, X.; Cui, S.; Liu, H.; Su, K.; Zhao, Z.; Weng, K. Improved Sinterability and Thermal Shock Resistance of MgO–ZrO2 Composites Due to in-Situ Formed MgAl2O4. Ceram. Int. 2024, 50, 38485–38494. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, X.; Luo, X.; Zhao, J.; Wu, F. Effect of In-Situ Generated MgAl2O4 Spinel on Thermal Shock Resistance of Magnesia-Zirconia Refractories. Ceram. Int. 2024, 50, 35936–35945. [Google Scholar] [CrossRef]
- Gu, Q.; Zhao, F.; Liu, X.; Jia, Q. Preparation and Thermal Shock Behavior of Nanoscale MgAl2O4 Spinel-Toughened MgO-Based Refractory Aggregates. Ceram. Int. 2019, 45, 12093–12100. [Google Scholar] [CrossRef]
- Ceylantekin, R.; Aksel, C. The Comparison of Mechanical Behavior of MgO–MgAl2O4 with MgO–ZrO2 and MgO–MgAl2O4–ZrSiO4 Composite Refractories. Ceram. Int. 2012, 38, 1409–1416. [Google Scholar] [CrossRef]
- Yan, M.; Li, Y.; Yin, G.; Tong, S.; Chen, J. Synthesis and Characterization of a MgO-MgAl2O4-ZrO2 Composite with a Continuous Network Microstructure. Ceram. Int. 2017, 43, 5914–5919. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Özcan, M.; Hallmann, L.; Ender, A.; Mehl, A.; Hämmerlet, C.H.F. The Effect of Zirconia Sintering Temperature on Flexural Strength, Grain Size, and Contrast Ratio. Clin. Oral Investig. 2013, 17, 269–274. [Google Scholar] [CrossRef]
- Toraya, H. Whole-Powder-Pattern Fitting without Reference to a Structural Model: Application to X-Ray Powder Diffraction Data. J. Appl. Cryst. 1986, 19, 440–447. [Google Scholar] [CrossRef]
- Sarkar, R.; Banerjee, G. Effect of Compositional Variation and Fineness on the Densification of MgO–Al2O3 Compacts. J. Eur. Ceram. Soc. 1999, 19, 2893–2899. [Google Scholar] [CrossRef]
- Milani, S.S.; Kakroudi, M.G.; Vafa, N.P.; Rahro, S.; Behboudi, F. Synthesis and Characterization of MgAl2O4 Spinel Precursor Sol Prepared by Inorganic Salts. Ceram. Int. 2021, 47, 4813–4819. [Google Scholar] [CrossRef]
- Pavlyuchkov, D.; Savinykh, G.; Fabrichnaya, O. Experimental Investigation and Thermodynamic Modeling of the ZrO2–MgO–Al2O3 System. J. Eur. Ceram. Soc. 2014, 34, 1397–1408. [Google Scholar] [CrossRef]
- German, R.M. Sintering Trajectories: Description on How Density, Surface Area, and Grain Size Change. JOM 2016, 68, 878–884. [Google Scholar] [CrossRef]
- Yasui, K.; Hamamoto, K. Simple Physical Model with Empirical Formulas for Solid-State Sintering of CaCO3 for Estimation of Porosity. AIP Adv. 2023, 13, 045222. [Google Scholar] [CrossRef]
- Bruch, C.A. Sintering Kinetics for High Density Alumina Process. Am. Ceram. Soc. Bull. 1961, 41, 799. [Google Scholar]
- Ngashangua, S.; Vasanthavel, S.; Ponnilavan, V.; Kannan, S. Effect of MgO Additions on the Phase Stability and Degradation Ability in ZrO2–Al2O3 Composite Systems. Ceram. Int. 2015, 41, 3814–3821. [Google Scholar] [CrossRef]
- Borgekov, D.B.; Shakirzyanov, R.I.; Kaliekperov, M.E.; Garanin, Y.A.; Maznykh, S.A.; Shlimas, D.I. Study of the Effect of Sintering Temperature on the Microstructure and Mechanical Properties of Stabilized and Partially Stabilized Zirconium Dioxide. Open Ceram. 2025, 23, 100826. [Google Scholar] [CrossRef]
- Echigoya, J.; Sasai, K.S.H. Microstructural Change of 11 Mol% MgO–ZrO2 by Aging. Trans. Jpn. Inst. Met. 1988, 29, 561–569. [Google Scholar] [CrossRef]
- Grain, C.F. Phase Relations in the ZrO2-MgO System. J. Am. Ceram. Soc. 1967, 50, 288–290. [Google Scholar] [CrossRef]
- Bouville, F.; Studart, A.R. Geologically-Inspired Strong Bulk Ceramics Made with Water at Room Temperature. Nat. Commun. 2017, 8, 14655. [Google Scholar] [CrossRef]
- Li, H.; Zhong, J.; Shen, J.; Liu, J.; Li, B.; Tang, X.; Pan, J.; Xu, Z.; Lu, J.; Li, Y.Y. Water-assisted Sintering of Silica: Densification Mechanisms and Their Possible Implications in Biomineralization. J. Am. Ceram. Soc. 2021, 105, 2945–2954. [Google Scholar] [CrossRef]
- Yasui, K.; Hamamoto, K. Comparison between Cold Sintering and Dry Pressing of CaCO3 at Room Temperature by Numerical Simulations. AIP Adv. 2022, 12, 045304. [Google Scholar] [CrossRef]
- Basu, B. Toughening of Yttria-Stabilised Tetragonal Zirconia Ceramics. Int. Mater. Rev. 2005, 50, 239–256. [Google Scholar] [CrossRef]
- Gafur, M.A.; Al-Amin, M.; Sarker, M.S.R.; Alam, M.Z. Structural and Mechanical Properties of Alumina-Zirconia (ZTA) Composites with Unstabilized Zirconia Modulation. Mater. Sci. Appl. 2021, 12, 542–560. [Google Scholar] [CrossRef]
- Khoshkalam, M.; Faghihi-Sani, M.A.; Nojoomi, A. Effect of Zirconia Content and Powder Processing on Mechanical Properties of Gelcasted ZTA Composite. Trans. Indian. Ceram. Soc. 2013, 72, 175–181. [Google Scholar] [CrossRef]
- Boch, P. Ceramic Materials: Processes, Properties and Applications; Nièpce, J.-C., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 978-1-905209-23-1. [Google Scholar]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next Generation of Scientific Image Data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef]
- Wang, J.; Stevens, R. Zirconia-Toughened Alumina (ZTA) Ceramics. J. Mater. Sci. 1989, 24, 3421–3440. [Google Scholar] [CrossRef]
- Arnold, B. Zircon, Zirconium, Zirconia—Similar Names, Different Materials. In Zircon, Zirconium, Zirconia—Similar Names, Different Materials; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–105. [Google Scholar] [CrossRef]
- Sarker, S.; Mumu, H.T.; Al-Amin, M.; Zahangir Alam, M.; Gafur, M.A. Impacts of Inclusion of Additives on Physical, Microstructural, and Mechanical Properties of Alumina and Zirconia Toughened Alumina (ZTA) Ceramic Composite: A Review. Mater. Today Proc. 2022, 62, 2892–2918. [Google Scholar] [CrossRef]
- Cho, D.-H.; Kim, Y.-W.; Kim, W. Strength and Fracture Toughness of In Situ-Toughened Silicon Carbide. J. Mater. Sci. 1997, 32, 4777–4782. [Google Scholar] [CrossRef]
- Rice, R.W. Mechanical Properties of Ceramics and Composites; Marcel Decker: New York, NY, USA, 2000. [Google Scholar]
- Yasui, K.; Hamamoto, K. Possibility of High Ionic Conductivity and High Fracture Toughness in All-Dislocation-Ceramics. Materials 2024, 17, 428. [Google Scholar] [CrossRef] [PubMed]
- Rejab, N.A.; Azhar, A.Z.A.; Kian, K.S.; Ratnam, M.M.; Ahmad, Z.A. Effects of MgO Addition on the Phase, Mechanical Properties, and Microstructure of Zirconia-Toughened Alumina Added with CeO2 (ZTA–CeO2) Ceramic Composite. Mater. Sci. Eng. A 2014, 595, 18–24. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakirzyanov, R.I.; Garanin, Y.A.; Kaliyekperov, M.E.; Maznykh, S.A.; Zhamikhanova, D.K. Study of the Relationship Between Microstructure, Phase Composition and Strength Characteristics in Composite Ceramics Based on ZrO2-Al2O3 System. J. Compos. Sci. 2025, 9, 519. https://doi.org/10.3390/jcs9100519
Shakirzyanov RI, Garanin YA, Kaliyekperov ME, Maznykh SA, Zhamikhanova DK. Study of the Relationship Between Microstructure, Phase Composition and Strength Characteristics in Composite Ceramics Based on ZrO2-Al2O3 System. Journal of Composites Science. 2025; 9(10):519. https://doi.org/10.3390/jcs9100519
Chicago/Turabian StyleShakirzyanov, Rafael I., Yuriy A. Garanin, Malik E. Kaliyekperov, Sofiya A. Maznykh, and Dilnaz K. Zhamikhanova. 2025. "Study of the Relationship Between Microstructure, Phase Composition and Strength Characteristics in Composite Ceramics Based on ZrO2-Al2O3 System" Journal of Composites Science 9, no. 10: 519. https://doi.org/10.3390/jcs9100519
APA StyleShakirzyanov, R. I., Garanin, Y. A., Kaliyekperov, M. E., Maznykh, S. A., & Zhamikhanova, D. K. (2025). Study of the Relationship Between Microstructure, Phase Composition and Strength Characteristics in Composite Ceramics Based on ZrO2-Al2O3 System. Journal of Composites Science, 9(10), 519. https://doi.org/10.3390/jcs9100519