Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (416)

Search Parameters:
Keywords = amorphous shapes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2872 KB  
Article
Moisture Sorption Isotherms of Fructooligosaccharide and Inulin Powders and Their Gelling Competence in Delaying the Retrogradation of Rice Starch
by Bing Dai, Ruijun Chen, Zheng Wei, Jianzhang Wu and Xingjun Li
Gels 2025, 11(10), 817; https://doi.org/10.3390/gels11100817 (registering DOI) - 12 Oct 2025
Abstract
The accurate determination of the equilibrium moisture content (EMC) of gel-related powdery samples requires strictly controlled conditions and a long time period. In this study, the adsorption and desorption isotherms of two fructooligosaccharide (FOS) powders and three inulin powders were determined using a [...] Read more.
The accurate determination of the equilibrium moisture content (EMC) of gel-related powdery samples requires strictly controlled conditions and a long time period. In this study, the adsorption and desorption isotherms of two fructooligosaccharide (FOS) powders and three inulin powders were determined using a dynamic moisture sorption analyzer at 0.1–0.9 water activity (aw) and 20–35 °C, respectively. The adsorption and desorption isotherms all exhibited type IIa sigmoidal curves; the desorptive isotherm was smooth, the FOS adsorption curves had three inflection points, and the inulin adsorption curves had five inflection points. Large hysteresis between the adsorption and desorption isotherms occurred at 0.1–0.7 aw for FOS and 0.1–0.6 aw for inulin. Seven equations, Boquet, Ferro–Fontan, Guggenheim–Anderson–de Boer (GAB), Generalized D’Arcy and Watt (GDW), modified GAB (MGAB), Peleg, and our developed Polynomial, were found to fit the isotherms of the FOS and inulin samples; for adsorption, the best equations were Ferro–Fontan and GDW, and for desorption, the best equations were Polynomial and MGAB. The GDW and MGAB equations could not distinguish the effect of temperature on the isotherms, while the Polynomial equation could. The mean adsorptive monolayer moisture content (M0) values in FOS and inulin samples were predicted as 7.29% and 7.94% wet basis, respectively. The heat of moisture sorption of FOS and inulin approached that of pure water at about 32.5% and 22.5% wet basis (w.b.) moisture content (MC), respectively. Fourier Transform Infrared Spectroscopy (FTIR) showed that the peaks in inulin with absorbance values above 0.52 and in FOS with absorbance values above 0.35 were at 1020, 1084, and 337 cm−1; these could represent the amorphous structure (primary alcohol C-OH), C-O group, and hydroxyl functional group, respectively. Microscopic structure analysis showed that inulin powder particles were more round-shaped and adhered together, resulting in hygroscopic and sticky characteristics, with a maximum equilibrium moisture content (EMC) of 34% w.b. In contrast, the FOS powders exhibited irregular amorphous particles and a maximum EMC of 60% w.b. As hydrogels, 3–10% FOS or inulin addition reduced the peak, trough, final, breakdown, and setback viscosities of rice starch pasting, but increased the peak time and pasting temperature. FOS addition gave stronger reduction in the setback viscosity and in amylose retrogradation of rice starch pasting than inulin addition. The differential scanning calorimeter (DSC) showed 3–10% FOS addition reduced the amylopectin aging of retrograded paste of rice starch, but 5–7% inulin addition tended to reduce. These results suggest that FOS and inulin have strong hygroscopic properties and can be used to maintain the freshness of starch-based foods. These data can be used for drying, storage, and functional food design of FOS and inulin products. Full article
(This article belongs to the Special Issue Modification of Gels in Creating New Food Products (2nd Edition))
Show Figures

Figure 1

16 pages, 20415 KB  
Article
Flow-Line-Reducing Tetrahedral Metal Effect Pigments for Injection Molding: A Yield-Rate-Improved Particle Manufacturing Method Based on Soft UVImprint Lithography
by Nils Maximilian Demski, Holger Seidlitz, Felix Kuke, Oliver Niklas Dorn, Janina Zoglauer, Tobias Hückstaedt, Paul Hans Kamm, Francisco García-Moreno, Noah Kremp, Christian Dreyer and Dirk Oberschmidt
Polymers 2025, 17(19), 2708; https://doi.org/10.3390/polym17192708 - 8 Oct 2025
Viewed by 294
Abstract
This publication presents an improved manufacturing method for tetrahedral metal effect pigment particles that demonstrates reduced flowlines in injection-molded polymer components compared with conventional platelet-shaped pigment particles. The previously published cold forming process for tetrahedral particles, made entirely from aluminum, faced manufacturing challenges, [...] Read more.
This publication presents an improved manufacturing method for tetrahedral metal effect pigment particles that demonstrates reduced flowlines in injection-molded polymer components compared with conventional platelet-shaped pigment particles. The previously published cold forming process for tetrahedral particles, made entirely from aluminum, faced manufacturing challenges, resulting in a high reject rate due to particle adhesion to the micro-structured mold roller. In contrast, this study introduces a new manufacturing method for tetrahedral particles, now consisting of metallized UV-cured thermoset polymer. These particles, dispersed in amorphous matrix thermoplastics, have shown to maintain their shape during the injection molding process. The manufacturing technique for these novel particles is based on UV imprint lithography, omitting the reject rates compared with the previously presented cold rolling process of tetrahedral full aluminum particles. Thus, the novel manufacturing technique for tetrahedral pigment particles shows increased potential for automation through roll-to-roll manufacturing in the future. Full article
(This article belongs to the Special Issue 3D Printing and Molding Study in Polymeric Materials, 2nd Edition)
Show Figures

Figure 1

18 pages, 4165 KB  
Article
Mechanical and Thermal Characteristics of Cement Composites Containing PEDOT:PSS and Amorphous Metallic Fibers
by Se-Jin Choi, Jeong-Yeon Park, Min-Jeong Kim and Jae-In Lee
Materials 2025, 18(19), 4486; https://doi.org/10.3390/ma18194486 - 26 Sep 2025
Viewed by 344
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a conductive polymer that has attracted significant attention in various industries. However, studies on the application of PEDOT:PSS in cement composites are scarce. The thermal performance and mechanical properties of conductive cement composites manufactured using amorphous metallic fibers (AFs), reinforcing [...] Read more.
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a conductive polymer that has attracted significant attention in various industries. However, studies on the application of PEDOT:PSS in cement composites are scarce. The thermal performance and mechanical properties of conductive cement composites manufactured using amorphous metallic fibers (AFs), reinforcing fibers with excellent conductivity in concrete, and the conductive polymer PEDOT:PSS in various ratios are investigated in this study. When only PEDOT:PSS and a combination of AFs and PEDOT:PSS are used, the splitting tensile strength of the composite at 28 d increases by 15.4% and 38.5%, respectively, compared with that of the plain sample (without PEDOT:PSS and AFs). Additionally, the simultaneous incorporation of PEDOT:PSS and AFs significantly reduces the brittleness of cement composites. The heat-generation performance shows minimal changes when only PEDOT:PSS is used; however, when 0.6% PEDOT:PSS and AFs are used together, a temperature increase rate of 182% is observed, which is 138% better than that of the plain sample. In scanning electron microscopy–energy-dispersive X-ray spectroscopy analysis, spherical hydrates, likely comprising PEDOT, are observed in samples incorporated with only PEDOT:PSS; samples incorporated with PEDOT:PSS and AFs show hydrates with a clearer shape than those observed in the plain sample. This study is expected to open new frontiers in the design and development of high-performance additive-incorporated cement composites with unique properties for specific applications. Full article
Show Figures

Graphical abstract

32 pages, 8677 KB  
Review
Advances in Dealloying of Ti and Ti-Based Alloys for Biomedical Applications
by Kirti Tiwari, Deepti Raj, Paola Rizzi and Federico Scaglione
Materials 2025, 18(18), 4424; https://doi.org/10.3390/ma18184424 - 22 Sep 2025
Viewed by 277
Abstract
Dealloying technique has been used for centuries as an attractive method for producing porous surfaces by removing one or more undesirable elements from the surface. Since early 2000s, the technique has been further developed for understanding the dealloying mechanism and tailoring it to [...] Read more.
Dealloying technique has been used for centuries as an attractive method for producing porous surfaces by removing one or more undesirable elements from the surface. Since early 2000s, the technique has been further developed for understanding the dealloying mechanism and tailoring it to produce chemically homogeneous materials with nanoporous (np) morphology. Dealloying has found numerous applications such as sensors, catalysts, as well as in the biomedical field, which is fairly recent and has attracted great attention on this topic. This review investigates the dealloying technique for preparing nanoporous materials and nanoporous surfaces by using different modification routes on various types of Ti-based alloys for biomedical implant application. There has been significant growth in studying dealloying of crystalline, amorphous, shape memory, and composites-based Ti alloys. This review aims to summarise the findings from literature and discuss the scope of this technique and challenges involved for future aspects. Full article
(This article belongs to the Special Issue Advances in Implant Materials and Biocompatibility)
Show Figures

Figure 1

13 pages, 10178 KB  
Article
Non-Free Cutting Mechanism of Asymmetrical Nanogrooves Under Chip-Removal Interference in Amorphous Nickel Phosphorus
by Yupeng He, Yingzhao Cai, Minkun Huang, Benshuai Ruan, Peng Liu and Tianfeng Zhou
Micromachines 2025, 16(9), 1059; https://doi.org/10.3390/mi16091059 - 18 Sep 2025
Viewed by 341
Abstract
Asymmetrical nanogrooves are commonly employed as blazed gratings for precision measurement, optical communication, and optical sensing applications. Diamond cutting is a promising deterministic processing technology for nanogrooves with a triangular cross-section profile. Non-free cutting of nanogrooves makes it hard to suppress the cutting-caused [...] Read more.
Asymmetrical nanogrooves are commonly employed as blazed gratings for precision measurement, optical communication, and optical sensing applications. Diamond cutting is a promising deterministic processing technology for nanogrooves with a triangular cross-section profile. Non-free cutting of nanogrooves makes it hard to suppress the cutting-caused deformation because of the low stiffness of nanogrooves. Focusing on the influence of non-free cutting on the deformation of asymmetrical nanogrooves, this paper systematically investigates the asymmetrical nanogroove cutting in amorphous nickel phosphorous material through mechanism revelation, simulation analysis, and experimental discussion. The materials removal mechanism by two side edges with different slopes in the non-free cutting is revealed according to the shear interference. According to the relative feed direction between tool and workpiece, two types of feed cases in the asymmetrical nanogrooves, named D1 and D2, respectively, are investigated by comparison in terms of deformation mechanism, nanogrooves topography, and nodal stress of tool edges. The extrusion by tool edges and the squeeze by the chip flow mainly influence the deformation of nanogrooves. In the D1 case, the horizontal component of squeeze by the chip flow towards the rear just-fabricated nanogroove, and the severely deformed nanogrooves are stacking together. On the contrary, in the D2 case, the flowing chip squeezes the front uncut materials, relieving the cutting-caused deformation, and asymmetrical nanogrooves have clear V-shaped cross-section profiles. It is proven that the D2 strategy is more suitable for asymmetrical nanogroove machining. The work in this paper will contribute to further understanding of non-free cutting and the processing technology of asymmetrical nanogrooves. Full article
(This article belongs to the Special Issue Ultra-Precision Micro Cutting and Micro Polishing)
Show Figures

Figure 1

37 pages, 5459 KB  
Article
Influence of Drug Properties, Formulation Composition, and Processing Parameters on the Stability and Dissolution Performance of Amorphous Solid Dispersions-Based Tablets
by Ioannis Pantazos, Maria Poimenidou, Dimitrios Kouskouridas, Evangelos Tzaferas, Vasiliki Karava, Christos Cholevas, Afroditi Kapourani and Panagiotis Barmpalexis
Polymers 2025, 17(18), 2484; https://doi.org/10.3390/polym17182484 - 14 Sep 2025
Viewed by 856
Abstract
Polymeric-based amorphous solid dispersions (ASDs) represent a widely employed strategy for enhancing the oral bioavailability of poorly water-soluble drugs, but their successful implementation in solid dosage forms requires careful optimization of both formulation composition and compaction parameters. In this study, the performance of [...] Read more.
Polymeric-based amorphous solid dispersions (ASDs) represent a widely employed strategy for enhancing the oral bioavailability of poorly water-soluble drugs, but their successful implementation in solid dosage forms requires careful optimization of both formulation composition and compaction parameters. In this study, the performance of polymeric-based ASD tablets were investigated using two model active pharmaceutical ingredients (APIs) with distinct glass-forming abilities (GFAs) and physicochemical characteristics: (1) indomethacin (IND, a good glass former) and (2) carbamazepine (CBZ, a poor glass former). ASDs were prepared at various API-to-polyvinylpyrrolidone (PVP) ratios (10:90, 20:80 and 40:60 w/w) and incorporated into round-shaped tablets at different ASD loadings (20% and 50% w/w). The impact of compaction pressure and dwell time on the mechanical properties, disintegration, and supersaturation performance was assessed, both immediately after preparation and following three months of storage at 25 °C and 60% relative humidity. Solid-state analysis confirmed the amorphous state of the APIs and revealed the development of API–polymer molecular interactions. Supersaturation studies under non-sink conditions demonstrated that dissolution behavior was strongly influenced by drug loading, polymer content, and compaction conditions, with CBZ formulations exhibiting faster release but greater susceptibility to performance loss during storage. The comparative evaluation of IND and CBZ highlights the critical role of API properties in determining the physical stability and dissolution performance of ASD tablets, underscoring the need for API-specific design strategies in ASD-based formulation development. Full article
(This article belongs to the Special Issue Polymers and Their Role in Drug Delivery, 2nd Edition)
Show Figures

Figure 1

15 pages, 6388 KB  
Article
Properties of ZnO Prepared by Polymeric Citrate Amorphous Precursor Method: Influence of Cobalt Concentration
by Jailes J. Beltrán, Luis A. Flórez and Luis C. Sánchez
Materials 2025, 18(17), 3991; https://doi.org/10.3390/ma18173991 - 26 Aug 2025
Viewed by 616
Abstract
This study aims to investigate the vibrational, structural, morphological, optical, and magnetic properties of Zn1−xCoxO with 0.00 ≤ x ≤ 0.05 prepared by the sol–gel method via an amorphous citrate precursor. FTIR spectroscopy was used to follow the thermal [...] Read more.
This study aims to investigate the vibrational, structural, morphological, optical, and magnetic properties of Zn1−xCoxO with 0.00 ≤ x ≤ 0.05 prepared by the sol–gel method via an amorphous citrate precursor. FTIR spectroscopy was used to follow the thermal decomposition process of the ZnO precursor, identifying acetate zinc as the intermediate main component. XRD and FTIR-ATR techniques showed only the single wurtzite crystalline phase with the presence of oxygen deficiency and/or vacancies, and secondary phases were not detected. SEM micrographs showed agglomerated particles of irregular shape and size with a high distribution and evidenced particles of nanometric size with a morphology change for x = 0.05. We detected high–spin Co2+ ions located in the tetrahedral core and pseudo–octahedral surface sites, substituting Zn2+ ions. The energy band gap of the ZnO semiconductor decreased gradually when the Co doping concentration was increased. M vs. H for undoped ZnO nanoparticles exhibited a diamagnetic signal overlapped with a weak ferromagnetic signal at room temperature. Interestingly, temperature-dependent magnetization showed superparamagnetic behavior with a blocked state in the low temperature range. The Co–doped ZnO samples evidenced a weak ferromagnetic signal and a paramagnetic component, which increased with x. The saturation magnetization increased until x = 0.03 and then decreased for x = 0.05, while the coercive field gradually decreased. Full article
Show Figures

Graphical abstract

14 pages, 4450 KB  
Article
Photothermally Responsive Biomimetic Composite Scaffolds Based on Polydopamine-Functionalized Nanoparticles/Polyurethane for Bone Repair
by Ruqing Bai, Jiaqi Chen, Ting Zhang, Tao Chen, Xiaoying Liu, Weihu Yang, Tuck-Whye Wong, Jianwei Zhang and Li Wang
J. Funct. Biomater. 2025, 16(8), 294; https://doi.org/10.3390/jfb16080294 - 15 Aug 2025
Viewed by 932
Abstract
In this study, a shape-changeable 3D scaffold with photothermal effects was developed to address the clinical challenges of complex bone defects. The multifunctional construct was fabricated via in situ polymerization combined with a gas foaming technique, creating hierarchical porous architectures that mimic the [...] Read more.
In this study, a shape-changeable 3D scaffold with photothermal effects was developed to address the clinical challenges of complex bone defects. The multifunctional construct was fabricated via in situ polymerization combined with a gas foaming technique, creating hierarchical porous architectures that mimic the native bone extracellular matrix. By incorporating polydopamine (PDA)-modified amorphous calcium phosphate (CA) into poly(propylene glycol) (PPG)- and poly(ԑ-caprolactone) (PCL)-based polyurethane (PU). The obtained scaffolds achieved osteoinductive potential for bone tissue engineering. The surface PDA modification of CA enabled efficient photothermal shape conversion under near-infrared (NIR) irradiation, facilitating non-invasive remote control of localized hyperthermia. The optimized scaffolds exhibited interconnected porosity (approximately 70%) with osteoconductive pore channels (200–500 μm), resulting in good osteoinduction in cell culture, and precise shape-memory recovery at physiological temperatures (~40 °C) under NIR for minimally invasive delivery. The synergistic effect of osteogenesis promotion and photothermal transition demonstrated this programmable scaffold as a promising solution for integrated minimally invasive bone repair and defect reconstruction. Full article
Show Figures

Figure 1

14 pages, 3356 KB  
Article
Effects of Incorporating Small Amounts of Fe3O4 Nanoparticles into Epoxidized Natural Rubber: Chemical Interactions, Morphology and Thermal Characteristics
by Omar S. Dahham and Khalid Al-Zamili
J. Compos. Sci. 2025, 9(8), 434; https://doi.org/10.3390/jcs9080434 - 12 Aug 2025
Viewed by 667
Abstract
Nanocomposites were synthesized from epoxidized natural rubber (ENR-50) and magnetite (Fe3O4) at 1, 5, and 9 wt.%, respectively. Various analyses were conducted to gain comprehensive insight into the properties of the nanocomposites. It was found that the ring epoxide [...] Read more.
Nanocomposites were synthesized from epoxidized natural rubber (ENR-50) and magnetite (Fe3O4) at 1, 5, and 9 wt.%, respectively. Various analyses were conducted to gain comprehensive insight into the properties of the nanocomposites. It was found that the ring epoxide units can be opened and bonded with the Fe moieties of the magnetite to form an Fe-O-C structure, as shown in FTIR spectra at 690 and 700 cm−1. Peaks in UV-vis spectra at the wavelength of 297 nm shifted to 299, 303, and 309 nm for the nanocomposite samples with 1, 5, and 9 wt.% Fe3O4, respectively. XRD showed a decrease in the amorphous peak intensity, while new diffraction peaks emerged at 33° and 43°, indicative of the crystalline structure of the Fe3O4 in the nanocomposites. Based on TEM micrographs, it was found that the average size of Fe3O4 particles in the rubber matrix with 1 wt.% Fe3O4 was around 20 and 33 nm. SEM micrographs proved that nanoparticles with 1 wt.% Fe3O4 were regularly dispersed in the rubber matrix, and that magnetite nanoparticles were spherical in shape, as well as having strong interactions and bonding with the rubber matrix. A TGA thermogram showed three thermal steps of degradation across a wide temperature range, from 81 °C to 592 °C, and resistance to thermal degradation of the nanocomposite samples as compared to the rubber sample could be clearly observed. Furthermore, DCS showed higher Tg for nanocomposites at 24.4, 25.1, and 26.3 °C, respectively, compared to purified ENR-50 at −18.6 °C. Full article
Show Figures

Graphical abstract

13 pages, 6965 KB  
Article
Direct Isolation of Carboxylated Cellulose Nanocrystals from Lignocellulose Source
by Thai Anh Do, Luong Lam Nguyen, Thuy Khue Nguyen Thi and Van Quyen Nguyen
Polymers 2025, 17(15), 2124; https://doi.org/10.3390/polym17152124 - 31 Jul 2025
Viewed by 597
Abstract
In this study, we report an effective, one-step chemical treatment to directly isolate carboxylated cellulose nanocrystals (CCNCs) from a lignocellulosic source using a mixture of peracetic acid and 10% H2SO4 solution. We used infrared spectroscopy, X-ray diffraction, dynamic light scattering, [...] Read more.
In this study, we report an effective, one-step chemical treatment to directly isolate carboxylated cellulose nanocrystals (CCNCs) from a lignocellulosic source using a mixture of peracetic acid and 10% H2SO4 solution. We used infrared spectroscopy, X-ray diffraction, dynamic light scattering, atomic force microscopy, and scanning electron microscopy to characterize all the materials. The obtained CCNCs exhibited needle-like shapes with a width of 10–50 nm and a length of 200–500 nm, a high crystalline index (71.3%), and a high content of -COOH groups (~1.405 mmol/g), with a zeta potential value of −48.5 mV. We attributed this to the cooperative effect of strong oxidative agent and strong acid, which makes the removal of all components occur simultaneously in parallel with the partial hydrolysis of amorphous cellulose regions. Our study opens a new, simple approach to directly isolate cellulose nanocrystals from a lignocellulosic source. Full article
(This article belongs to the Special Issue Sustainable Polymers for a Circular Economy)
Show Figures

Graphical abstract

13 pages, 4956 KB  
Article
The Influence of Crystal Anisotropy in Femtosecond Laser Processing of Single-Crystal Diamond
by Guolong Wang, Ji Wang, Kaijie Cheng, Kun Yang, Bojie Xu, Wenbo Wang and Wenwu Zhang
Nanomaterials 2025, 15(15), 1160; https://doi.org/10.3390/nano15151160 - 28 Jul 2025
Viewed by 698
Abstract
The single-crystal diamond (SCD), owing to its extreme physical and chemical properties, serves as an ideal substrate for quantum sensing and high-frequency devices. However, crystal anisotropy imposes significant challenges on fabricating high-quality micro-nano structures, directly impacting device performance. This work investigates the effects [...] Read more.
The single-crystal diamond (SCD), owing to its extreme physical and chemical properties, serves as an ideal substrate for quantum sensing and high-frequency devices. However, crystal anisotropy imposes significant challenges on fabricating high-quality micro-nano structures, directly impacting device performance. This work investigates the effects of femtosecond laser processing on the SCD under two distinct crystallographic orientations via single-pulse ablation. The results reveal that ablation craters along the <100> orientation exhibit an elliptical shape with the major axis parallel to the laser polarization, whereas those along the <110> orientation form near-circular craters with the major axis at a 45° angle to the polarization. The single-pulse ablation threshold of the SCD along <110> is 9.56 J/cm2, representing a 7.8% decrease compared to 10.32 J/cm2 for <100>. The graphitization threshold shows a more pronounced reduction, dropping from 4.79 J/cm2 to 3.31 J/cm2 (31% decrease), accompanied by enhanced sp2 carbon order evidenced by the significantly intensified G-band in the Raman spectra. In addition, a phase transition layer of amorphous carbon at the nanoscale in the surface layer (thickness of ~40 nm) and a narrow lattice spacing of 0.36 nm are observed under TEM, corresponding to the interlayer (002) plane of graphite. These observations are attributed to the orientation-dependent energy deposition efficiency. Based on these findings, an optimized crystallographic orientation selection strategy for femtosecond laser processing is proposed to improve the quality of functional micro-nano structures in the SCD. Full article
(This article belongs to the Special Issue Trends and Prospects in Laser Nanofabrication)
Show Figures

Figure 1

17 pages, 2912 KB  
Article
Effects of Encapsulation and In Vitro Digestion on Anthocyanin Composition and Antioxidant Activity of Raspberry Juice Powder
by Mokgaetji Johanna Mokale, Sreejarani Kesavan Pillai and Dharini Sivakumar
Foods 2025, 14(14), 2492; https://doi.org/10.3390/foods14142492 - 16 Jul 2025
Viewed by 1068
Abstract
Microbeads of raspberry extract were produced using encapsulation matrices alginate + pea protein isolate + psyllium mucilage, alginate + pea protein isolate + psyllium mucilage + okra, and alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic [...] Read more.
Microbeads of raspberry extract were produced using encapsulation matrices alginate + pea protein isolate + psyllium mucilage, alginate + pea protein isolate + psyllium mucilage + okra, and alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid using freeze-drying method. The microbeads were characterised and assessed for their effectiveness on the release, bioaccessibility, of anthocyanin components and antioxidant activities during in vitro digestion. Alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid matrix showed the highest encapsulation efficiency of 91.60% while the lowest encapsulation efficiency was observed in alginate + pea protein isolate + psyllium mucilage + okra (69.94%). Scanning electron microscope images revealed spherical shapes and varying surface morphologies for different encapsulation matrices. Despite the differences observed in Fourier transform infrared spectra, microbeads showed similar thermal degradation patterns. X-ray diffractograms showed amorphous structures for different encapsulation matrices. Comparatively, alginate+ pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid microbeads exhibited the highest bioaccessibility for total phenols (93.14%), cyanidin-3-O-sophoroside (54.61%), and cyanidin-3-O-glucoside (55.30%). The encapsulation matrices of different biopolymer combinations (alginate+ pea protein isolate+ psyllium mucilage, alginate + pea protein isolate + psyllium mucilage + okra, and alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid) enhanced anthocyanin stability and protected it against in vitro degradation of bioactive compounds. Full article
Show Figures

Graphical abstract

10 pages, 4764 KB  
Article
A Direct Preparation of Cellulose Nanocrystals by ZnCl2-Based Deep Eutectic Solvent
by Hoai An Vu, Quang Tung Le and Van Quyen Nguyen
Polysaccharides 2025, 6(3), 61; https://doi.org/10.3390/polysaccharides6030061 - 8 Jul 2025
Viewed by 1045
Abstract
Here, we demonstrated a direct method to produce cellulose nanocrystals (CNCs) with a rod-like shape from microcrystalline cellulose by a ZnCl2-based deep eutectic solvent (DES) with a high yield (~80.1%). We obtained CNCs, crystalline index (68.9%), with a width of ~30–50 [...] Read more.
Here, we demonstrated a direct method to produce cellulose nanocrystals (CNCs) with a rod-like shape from microcrystalline cellulose by a ZnCl2-based deep eutectic solvent (DES) with a high yield (~80.1%). We obtained CNCs, crystalline index (68.9%), with a width of ~30–50 nm and a length of 200–400 nm. Importantly, we were able to functionalize the CNCs with an acetyl, -(CO)CH3, group, which could potentially modulate the hydrophobic property of the CNCs. We attributed the formation of the CNCs to the Lewis acid effect of ZnCl2, which can hydrolyze the amorphous cellulose regime. Our study opens a new path to directly isolate cellulose nanocrystals with several functional groups on the surface of CNCs. Full article
(This article belongs to the Special Issue Recent Progress on Lignocellulosic-Based Materials)
Show Figures

Figure 1

19 pages, 2778 KB  
Article
Carbonized Rice Husk Canal Filters for Air Purification
by Marat Tulepov, Zhanar Kudyarova, Zhanat Myshyrova, Larissa R. Sassykova, Yessengeldi Mussatay, Kuanysh Umbetkaliev, Alibek Mutushev, Dauren Baiseitov, Ruimao Hua and Dauren Mukhanov
Processes 2025, 13(7), 2164; https://doi.org/10.3390/pr13072164 - 7 Jul 2025
Viewed by 1206
Abstract
Air purification is a key process aimed at removing harmful impurities and providing a safe and comfortable environment for human life and work. This study presents the results of an investigation into the composition, textural, and sorption properties of a multichannel carbon filtering [...] Read more.
Air purification is a key process aimed at removing harmful impurities and providing a safe and comfortable environment for human life and work. This study presents the results of an investigation into the composition, textural, and sorption properties of a multichannel carbon filtering material developed for air purification from biological (infectious) contaminants. The filtering block has a cylindrical shape and is manufactured by extrusion of a plastic composition based on carbonized rice husk with the addition of binding agents, followed by staged thermal treatment (calcination, activation, and demineralization). The filter’s effectiveness is based on the inactivation of pathogenic microorganisms as the air passes through the porous surface of the sorbent, which is modified with broad-spectrum antiseptic agents (active against bacteria, bacilli, fungi, and protozoa). X-ray diffraction analysis revealed the presence of amorphous carbon in a tubostratic structure, with a predominance of sp- and sp2-hybridized carbon atoms not incorporated into regular graphene lattices. IR spectroscopy demonstrated the presence of reactive functional groups characteristic of the developed porous structure of the material, which is capable of selective sorption of antiseptic molecules. SEM surface analysis revealed an amorphous texture with a loose structure and elements in the form of spherical semi-ring formations formed by overlapping carbon plates. An experimental setup was also developed using cylindrical multichannel carbon blocks with a diameter of 48 mm, a length of 120 mm, and 100–120 longitudinal channels with a cross-section of 1 mm2. The obtained results confirm the potential of the proposed material for use in air purification and disinfection systems under conditions of elevated biological risk. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

16 pages, 8495 KB  
Article
Utilization of Waste Clay–Diatomite in the Production of Durable Mullite-Based Insulating Materials
by Svetlana Ilić, Jelena Maletaškić, Željko Skoko, Marija M. Vuksanović, Željko Radovanović, Ivica Ristović and Aleksandra Šaponjić
Appl. Sci. 2025, 15(13), 7512; https://doi.org/10.3390/app15137512 - 4 Jul 2025
Viewed by 590
Abstract
Microstructural, mechanical and qualitative phase identification of durable mullite-based ceramics obtained by utilization of waste clay–diatomite has been studied. Mullite-based ceramics were fabricated using waste clay–diatomite from the Baroševac open-cast coal mine, Kolubara (Serbia). The raw material consists mainly of SiO2 (70.5 [...] Read more.
Microstructural, mechanical and qualitative phase identification of durable mullite-based ceramics obtained by utilization of waste clay–diatomite has been studied. Mullite-based ceramics were fabricated using waste clay–diatomite from the Baroševac open-cast coal mine, Kolubara (Serbia). The raw material consists mainly of SiO2 (70.5 wt%) and a moderately high content of Al2O3 (13.8 wt%). In order to achieve the stoichiometric mullite composition (3Al2O3-2SiO2), the raw material was mixed with an appropriate amount of Al(NO3)3·9H2O. After preparing the precursor powder, the green compacts were sintered at 1300, 1400 and 1500 °C for 2 h. During the process, rod-shaped mullite grains were formed, measuring approximately 5 µm in length and a diameter of 500 nm (aspect ratio 10:1). The microstructure of the sample sintered at 1500 °C resulted in a well-developed, porous, nest-like morphology. According to the X-ray diffraction analysis, the sample at 1400 °C consisted of mullite, cristobalite and corundum phases, while the sample sintered at 1500 °C contained mullite (63.24 wt%) and an amorphous phase that reached 36.7 wt%. Both samples exhibited exceptional compressive strength—up to 188 MPa at 1400 °C. However, the decrease in compressive strength to 136 MPa at 1500 °C is attributed to changes in the phase composition, the disappearance of the corundum phase and alterations in the microstructure. This occurred despite an increase in bulk density to 2.36 g/cm3 (approximately 82% of theoretical density) and a complete reduction in open porosity. The residual glassy phase (36.7 wt% at 1500 °C) is probably the key factor influencing the mechanical properties at room temperature in these ceramics produced from waste clay–diatomite. However, the excellent mechanical stability of the samples sintered at 1400 and 1500 °C, achieved without binders or additives and using mined diatomaceous earth, supports further research into mullite-based insulating materials. Mullite-based materials obtained from mining waste might be successfully used in the field of energy-efficient refractory materials and thermal insulators. for high-temperature applications Full article
Show Figures

Figure 1

Back to TopTop