Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (173)

Search Parameters:
Keywords = amplitude of low frequency fluctuations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 52390 KB  
Article
Hydrogen Production Power Supply with Low Current Ripple Based on Virtual Impedance Technology Suitable for Offshore Wind–Solar–Storage System
by Peng Chen, Jiajin Zou, Chunjie Wang, Qiang Fu, Lin Cui and Lishan Ma
J. Mar. Sci. Eng. 2025, 13(10), 1997; https://doi.org/10.3390/jmse13101997 - 17 Oct 2025
Viewed by 307
Abstract
Hydrogen production from water electrolysis can not only reduce greenhouse gas emissions, but also has abundant raw materials, which is one of the ideal ways to produce hydrogen from new energy. The hydrogen production power supply is the core component of the new [...] Read more.
Hydrogen production from water electrolysis can not only reduce greenhouse gas emissions, but also has abundant raw materials, which is one of the ideal ways to produce hydrogen from new energy. The hydrogen production power supply is the core component of the new energy electrolytic water hydrogen production device, and its characteristics have a significant impact on the efficiency and purity of hydrogen production and the service life of the electrolytic cell. In essence, the DC/DC converter provides the large current required for hydrogen production. For the converter, its input still needs the support of a DC power supply. Given the maturity and technical characteristics of new energy power generation, integrating energy storage into offshore energy systems enables stable power supply. This configuration not only mitigates energy fluctuations from renewable sources but also further reduces electrolysis costs, providing a feasible pathway for large-scale commercialization of green hydrogen production. First, this paper performs a simulation analysis on the wind–solar hybrid energy storage power generation system to demonstrate that the wind–solar–storage system can provide stable power support. It places particular emphasis on the significance of hydrogen production power supply design—this focus stems primarily from the fact that electrolyzers impose specific requirements on high operating current levels and low current ripple, which exert a direct impact on the electrolyzer’s service life, hydrogen production efficiency, and operational safety. To suppress the current ripple induced by high switching frequency and high output current, traditional approaches typically involve increasing the output inductor. However, this method substantially increases the volume and weight of the device, reduces the rate of current change, and ultimately results in a degradation of the system’s dynamic response performance. To this end, this paper focuses on developing a virtual impedance control technology, aiming to reduce the ripple amplitude while avoiding an increase in the filter inductor. Owing to constraints in current experimental conditions, this research temporarily relies on simulation data. Specifically, a programmable power supply is employed to simulate the voltage output of the wind–solar–storage hybrid system, thereby bringing the simulation as close as possible to the actual operating conditions of the wind–solar–storage hydrogen production system. The experimental results demonstrate that the proposed method can effectively suppress the ripple amplitude, maintain high operating efficiency, and ultimately meet the expected research objectives. That makes it particularly suitable as a high-quality power supply for offshore hydrogen production systems that have strict requirements on volume and weight. Full article
(This article belongs to the Special Issue Offshore Renewable Energy, Second Edition)
Show Figures

Figure 1

22 pages, 8250 KB  
Article
Field Measurement and Characteristics Analysis of Transverse Load of High-Speed Train Bogie Frame
by Chengxiang Ji, Yuhe Gao, Zhiming Liu and Guangxue Yang
Machines 2025, 13(10), 905; https://doi.org/10.3390/machines13100905 - 2 Oct 2025
Viewed by 430
Abstract
This study investigates the transverse loads acting on high-speed train bogie frames under actual service conditions. To enable direct identification, the locating arms were instrumented as bending sensors and calibrated under realistic lateral-stop constraints, ensuring robustness of the measurement channels. Field tests were [...] Read more.
This study investigates the transverse loads acting on high-speed train bogie frames under actual service conditions. To enable direct identification, the locating arms were instrumented as bending sensors and calibrated under realistic lateral-stop constraints, ensuring robustness of the measurement channels. Field tests were conducted on a CR400BF high-speed EMU over a 226 km route at six speed levels (260–390 km/h), with gyroscope and GPS signals employed to recognize typical operating conditions, including straights, curves, and switches (straight movement and diverging movements). The results show that the proposed recognition method achieves high accuracy, enabling rapid and effective identification and localization of typical operating conditions. Under switch conditions, the bogie frame transverse loads are characterized by low-frequency, large-amplitude fluctuations, with overall RMS levels being higher in diverging switches and straight-through depot switches. Curve parameters and speed levels exert significant influence on the amplitude of the transverse-load trend component. On curves with identical parameters, the trend-component amplitude exhibits a quadratic nonlinear relationship with train speed, decreasing first and then increasing in the opposite direction as speed rises. In mainline curves and straight sections, the RMS values of transverse loads on Axles 1 and 2 scale proportionally with speed level, with the leading axle in the direction of travel consistently producing higher transverse loads than the trailing axle. When load samples are balanced across both running directions, the transverse load spectra of Axles 1 and 2 at the same speed level show negligible differences, while the spectrum shape index increases proportionally with speed level. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

18 pages, 4214 KB  
Article
Frequency-Agility-Based Neural Network with Variable-Length Processing for Deceptive Jamming Discrimination
by Wei Gong, Renting Liu, Yusheng Fu, Deyu Li and Jian Yan
Sensors 2025, 25(17), 5471; https://doi.org/10.3390/s25175471 - 3 Sep 2025
Viewed by 666
Abstract
With the booming development of the low-altitude economy and the widespread application of Unmanned Aerial Vehicles (UAVs), integrated sensing and communication (ISAC) technology plays an increasingly pivotal role in intelligent communication networks. However, low-altitude platforms supporting ISAC, such as UAV swarms, are highly [...] Read more.
With the booming development of the low-altitude economy and the widespread application of Unmanned Aerial Vehicles (UAVs), integrated sensing and communication (ISAC) technology plays an increasingly pivotal role in intelligent communication networks. However, low-altitude platforms supporting ISAC, such as UAV swarms, are highly vulnerable to deception jamming in complex electromagnetic environments. Existing multistatic radar systems face challenges in processing slowly fluctuating targets (like low-altitude UAVs) and adapting to complex electromagnetic environments when fusing multiple pulse echoes. To address this issue, targeting the protection needs of low-altitude targets like UAVs, this paper leverages the characteristic of rapid amplitude fluctuation in frequency-agile radar echoes to analyze the differences between true and false targets in multistatic frequency-agile radar systems, particularly for slowly fluctuating UAV targets, demonstrating the feasibility of discrimination. Building on this, we introduce a neural network approach to deeply extract discriminative features from true and false target echoes and propose a neural network-based variable-length processing method for deception jamming discrimination in multistatic frequency-agile radar. The simulation results show that the proposed method effectively exploits deep-level echo features, significantly improving the discrimination probability between true and false targets, especially for slowly fluctuating UAV targets. Crucially, even when trained on a fixed number of pulses, the model can process input data with varying pulse counts, greatly enhancing its practical deployment capability in dynamic UAV mission scenarios. Full article
Show Figures

Figure 1

15 pages, 4099 KB  
Article
Flow-Induced Vibrations of a Square Cylinder in the Combined Steady and Oscillatory Flow
by Henry Francis Annapeh and Victoria Kurushina
J. Mar. Sci. Eng. 2025, 13(9), 1621; https://doi.org/10.3390/jmse13091621 - 25 Aug 2025
Viewed by 685
Abstract
The paper presents a two-dimensional RANS–SST kω investigation of vortex-induced vibration of a square cylinder with two degrees of freedom under combined steady and oscillatory flow at the Reynolds number of 5000, Keulegan–Carpenter number of 10, mass ratio of 2.5, and [...] Read more.
The paper presents a two-dimensional RANS–SST kω investigation of vortex-induced vibration of a square cylinder with two degrees of freedom under combined steady and oscillatory flow at the Reynolds number of 5000, Keulegan–Carpenter number of 10, mass ratio of 2.5, and zero structural damping. Flow ratio a (steady-to-total velocity) is varied from 0 to 1.0, and the reduced velocity Ur from 2 to 25 to map lock-in regimes, response amplitudes, frequency content, hydrodynamic loads, trajectories, and wake patterns. At low a ≤ 0.4, in-line vibrations dominate at Ur > 5, with double-frequency transverse lock-in peaking near Ur = 5. As a → 1.0, in-line motion diminishes, and single-frequency transverse oscillation prevails, with the maximum transverse displacement up to 0.54D. The mean drag coefficient increases with increasing flow ratio; the fluctuating drag coefficient decreases with increasing a; while the lift coefficient peaks at a = 1, Ur = 2. Wake topology transitions from a mixed vortex shedding towards a 2S pattern, as a → 1. Full article
Show Figures

Figure 1

17 pages, 2004 KB  
Article
Stage-Dependent Brain Plasticity Induced by Long-Term Endurance Training: A Longitudinal Neuroimaging Study
by Keying Zhang, Qing Yan, Ling Jiang, Dongxue Liang, Chunmei Cao and Dong Zhang
Life 2025, 15(9), 1342; https://doi.org/10.3390/life15091342 - 25 Aug 2025
Viewed by 1758
Abstract
Long-term physical training is known to induce brain plasticity, yet how these neural adaptations evolve across different stages of training remains underexplored. This two-year longitudinal study investigated the stage-dependent effects of endurance running on brain structure and resting-state function in healthy college students. [...] Read more.
Long-term physical training is known to induce brain plasticity, yet how these neural adaptations evolve across different stages of training remains underexplored. This two-year longitudinal study investigated the stage-dependent effects of endurance running on brain structure and resting-state function in healthy college students. Thirty participants were recruited into three groups based on their endurance training level: high-level runners, moderate-level runners, and sedentary controls. All participants underwent baseline and two-year follow-up MRI scans, including T1-weighted structural imaging and resting-state fMRI. The results revealed that the high-level runners exhibited a significant increase in degree centrality (DC) in the left dorsolateral prefrontal cortex (DLPFC). In the moderate-level group, more widespread changes were observed, including increased gray matter volume (GMV) in bilateral prefrontal cortices, medial frontal regions, the right insula, the right putamen, and the right temporo-parieto-occipital junction, along with decreased GMV in the posterior cerebellum. Additionally, DC decreased in the left thalamus and increased in the right temporal lobe and bilateral DLPFC; the fractional amplitude of low-frequency fluctuations (fALFF) in the right precentral gyrus was also elevated. These brain regions are involved in executive control, sensorimotor integration, and motor coordination, which may suggest potential functional implications for cognitive and motor performance; however, such interpretations should be viewed cautiously given the modest sample size and study duration. No significant changes were found in the control group. These findings demonstrate that long-term endurance training induces distinct patterns of brain plasticity at different training stages, with more prominent and widespread changes occurring during earlier phases of training. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

10 pages, 403 KB  
Proceeding Paper
Assessing the Oil Price–Exchange Rate Nexus: A Switching Regime Evidence Using Fractal Regression
by Sami Diaf and Rachid Toumache
Comput. Sci. Math. Forum 2025, 11(1), 7; https://doi.org/10.3390/cmsf2025011007 - 31 Jul 2025
Viewed by 319
Abstract
Oil, as a key commodity in international markets, bears an importance for both producers and consumers. For oil-exporting countries, periodic fluctuations have a considerable impact on the economic status and the way monetary and fiscal policies should be conducted in the future. While [...] Read more.
Oil, as a key commodity in international markets, bears an importance for both producers and consumers. For oil-exporting countries, periodic fluctuations have a considerable impact on the economic status and the way monetary and fiscal policies should be conducted in the future. While most of academic efforts tried to link low-frequency real exchange rate with macroeconomic fundamentals for medium-/long-term inference, they omitted to gauge the volatile and complex high-frequency linkage between oil prices and exchange rate fluctuations. The inherent non-linear characteristics of such time series preclude the use of traditional tools or aggregated schemes based on lower frequencies for inference purposes. This work investigates the scale-based volatile linkage between daily international oil fluctuations and nominal exchange rate variations of an oil-exporting country, namely Algeria, by adopting a fractal regression approach to uncover the power-law, time-varying transmission and track its incidence in the short and long runs. Results show the absence of any short-term transmission mechanism from oil prices to the exchange rate, as the two variables remain decoupled but exhibit an increasing negative correlation when long scales are considered. Furthermore, the multiscale regression analysis confirms the existence of a scale-free, two-state Markov switching regime process generating short- and long-term impacts with sizeable amplitudes. The findings confirm the usefulness of monetary policy interventions to stabilize the local currency, as the source of Dollar–Dinar multifractality was found to be the probability distribution of observations rather than long-range correlations specific to oil prices. Full article
(This article belongs to the Proceedings of The 11th International Conference on Time Series and Forecasting)
Show Figures

Figure 1

17 pages, 9414 KB  
Article
Influence of High-Speed Flow on Aerodynamic Lift of Pantograph at 400 km/h
by Zhao Xu, Hongwei Zhang, Wen Wang and Guobin Lin
Infrastructures 2025, 10(7), 188; https://doi.org/10.3390/infrastructures10070188 - 17 Jul 2025
Viewed by 836
Abstract
This study examines pantograph aerodynamic lift at 400 km/h, and uncovers the dynamic behaviors and mechanisms that influence pantograph–catenary performance. Using computational fluid dynamics (CFD) with a compressible fluid model and an SST k-ω turbulence model, aerodynamic characteristics were analyzed. Simulation data at [...] Read more.
This study examines pantograph aerodynamic lift at 400 km/h, and uncovers the dynamic behaviors and mechanisms that influence pantograph–catenary performance. Using computational fluid dynamics (CFD) with a compressible fluid model and an SST k-ω turbulence model, aerodynamic characteristics were analyzed. Simulation data at 300, 350, and 400 km/h showed lift fluctuation amplitude increases with speed, peaking near 50 N at 400 km/h. Power spectral density (PSD) energy, dominated by low frequencies, peaked around 10 dB/Hz in the low-frequency band, highlighting exacerbated lift instability. Component analysis revealed the smallest lift-to-drag ratio and most significant fluctuations at the head, primarily due to boundary-layer separation and vortex shedding from its non-streamlined design. Turbulence energy analysis identified the head and base as main turbulence sources; however, base vibrations are absorbed by the vehicle body, while the head causes pantograph–catenary vibrations due to direct contact. These findings confirm that aerodynamic instability at the head is the main cause of contact force fluctuations. Optimizing head design is necessary to suppress fluctuations, ensuring safe operation at 400 km/h and above. Results provide a theoretical foundation for aerodynamic optimization and improved dynamic performance of high-speed pantographs. Full article
(This article belongs to the Special Issue The Resilience of Railway Networks: Enhancing Safety and Robustness)
Show Figures

Figure 1

22 pages, 5271 KB  
Article
Impact of Biomimetic Fin on Pitching Characteristics of a Hydrofoil
by Faraz Ikram, Muhammad Yamin Younis, Bilal Akbar Chuddher, Usman Latif, Haroon Mushtaq, Kamran Afzal, Muhammad Asif Awan, Asad Ijaz and Noman Bashir
Biomimetics 2025, 10(7), 462; https://doi.org/10.3390/biomimetics10070462 - 15 Jul 2025
Viewed by 825
Abstract
Biomimetic design for engineering applications may suggest the optimal performance of engineering devices. In this work the passive/pure pitching characteristics of a hydrofoil are investigated experimentally with and without a pair of biomimetic fin strips placed symmetrically on the two sides of the [...] Read more.
Biomimetic design for engineering applications may suggest the optimal performance of engineering devices. In this work the passive/pure pitching characteristics of a hydrofoil are investigated experimentally with and without a pair of biomimetic fin strips placed symmetrically on the two sides of the foil leading edge. The work is performed in a recirculating water channel at low Reynolds numbers (Re) with a range of 1300 ≤ Re ≤ 3200. Using high-speed videography and Particle Image Velocimetry (PIV), the pitching characteristics and wakes are visualized. Passive pitching characteristics, i.e., the pitching amplitude and pitching frequency of the hydrofoils, are investigated based on their trailing edge movement. Significant improvement in both pitching frequency and amplitudes are observed for the foil with fin strips compared to the baseline simple foil. Comparing the pitching characteristics of the two foils, it is observed that the hydrofoil with biomimetic fin strips exhibits 25% and 21% higher pitching amplitude and pitching frequency, respectively, compared to that of the baseline at comparable Reynolds numbers. The initiation of pitching for the finned foil is also observed at comparatively low Reynolds numbers. The wake is also studied using time mean and fluctuating velocity profiles obtained using PIV. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Graphical abstract

20 pages, 18025 KB  
Article
Numerical Research on Pressure Fluctuation Characteristics of Small-Scale and High-Speed Automotive Pump
by Lulu Zheng, Xiaoping Chen, Jinglei Qu and Xiaojie Ma
Machines 2025, 13(7), 584; https://doi.org/10.3390/machines13070584 - 5 Jul 2025
Viewed by 469
Abstract
Rotor–stator interaction and the coupling between the clearance flow and main flow amplify the flow complexity in small-scale, high-speed automotive pumps. This degrades the pressure fluctuations, compromising the operational stability of these pumps. To better understand the pressure fluctuation distribution characteristics within such [...] Read more.
Rotor–stator interaction and the coupling between the clearance flow and main flow amplify the flow complexity in small-scale, high-speed automotive pumps. This degrades the pressure fluctuations, compromising the operational stability of these pumps. To better understand the pressure fluctuation distribution characteristics within such a pump, the Reynolds-averaged Navier–Stokes equations and the shear stress transport k-ω turbulence model were applied to numerically compute the pump. The simulation results were compared with experimental data, and good agreement was achieved. The results show that pressure fluctuations in the main flow region are mainly dominated by the blade passing frequency, and the intensity of pressure fluctuations in the near-field area of the tongue reaches its peak value, showing significant fluctuation characteristics. Significant peak signals are captured in the low-frequency band of pressure fluctuations in the clearance region. The pressure fluctuation characteristics are also affected by the rotor–stator interaction between the impeller front shroud and the volute casing, while the dominant frequency is still the blade passing frequency. In addition, the dominant frequencies of pressure fluctuations in the main and clearance flows show a similar distribution to the flow rate, but the minimum amplitude corresponds to different flow rates. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

26 pages, 9399 KB  
Article
An Investigation of Pre-Seismic Ionospheric TEC and Acoustic–Gravity Wave Coupling Phenomena Using BDS GEO Measurements: A Case Study of the 2023 Jishishan Ms6.2 Earthquake
by Xiao Gao, Lina Shu, Zongfang Ma, Penggang Tian, Lin Pan, Hailong Zhang and Shuai Yang
Remote Sens. 2025, 17(13), 2296; https://doi.org/10.3390/rs17132296 - 4 Jul 2025
Viewed by 956
Abstract
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency [...] Read more.
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency perturbations (0.56–3.33 mHz) showed localized disturbances (amplitude ≤ 4 TECU, range < 300 km), potentially associated with near-field acoustic waves from crustal stress adjustments; (2) mid-frequency signals (0.28–0.56 mHz) exhibited anisotropic propagation (>1200 km) with azimuth-dependent N-shaped waveforms, consistent with the characteristics of acoustic–gravity waves (AGWs); and (3) low-frequency components (0.18–0.28 mHz) demonstrated phase reversal and power-law amplitude attenuation, suggesting possible lithosphere–atmosphere–ionosphere (LAI) coupling oscillations. The stark contrast between near-field residuals and far-field weak fluctuations highlighted the dominance of large-scale atmospheric gravity waves over localized acoustic disturbances. Geometry-based velocity inversion revealed incoherent high-frequency dynamics (5–30 min) versus anisotropic mid/low-frequency traveling ionospheric disturbance (TID) propagation (30–90 min) at 175–270 m/s, aligning with theoretical AGW behavior. During concurrent G1-class geomagnetic storm activity, spatial attenuation gradients and velocity anisotropy appear primarily consistent with seismogenic sources, providing insights for precursor discrimination and contributing to understanding multi-scale coupling in seismo-ionospheric systems. Full article
Show Figures

Figure 1

28 pages, 6139 KB  
Article
A Study on the Transient Flow Characteristics of Pump Turbines Across the Full Operating Range in Turbine Mode
by Hongqiang Tang, Qifei Li, Xiangyu Chen, Zhanyong Li and Shiwei Li
Energies 2025, 18(13), 3517; https://doi.org/10.3390/en18133517 - 3 Jul 2025
Viewed by 487
Abstract
The transient operation of pump turbines generates significant flow-induced instabilities, prompting a comprehensive numerical investigation using the SST kω turbulence model to examine these instability effects throughout the complete operating range in turbine mode. This study specifically analyzes the evolutionary mechanisms [...] Read more.
The transient operation of pump turbines generates significant flow-induced instabilities, prompting a comprehensive numerical investigation using the SST kω turbulence model to examine these instability effects throughout the complete operating range in turbine mode. This study specifically analyzes the evolutionary mechanisms of unsteady flow dynamics under ten characteristic off-design conditions while simultaneously characterizing the pressure fluctuation behavior within the vaneless space (VS). The results demonstrate that under both low-speed conditions and near-zero-discharge conditions, the VS and its adjacent flow domains exhibit pronounced flow instabilities with highly turbulent flow structures, while the pressure fluctuation amplitudes remain relatively small due to insufficient rotational speed or flow rate. Across the entire turbine operating range, the blade passing frequency (BPF) dominates the VS pressure fluctuation spectrum. Significant variations are observed in both low-frequency components (LFCs) and high-frequency, low-amplitude components (HF-LACs) with changing operating conditions. The HF-LACs exhibit relatively stable amplitudes but demonstrate significant variation in the frequency spectrum distribution across different operating conditions, with notably broader frequency dispersion under runaway conditions and adjacent operating points. The LFCs demonstrate significantly higher spectral density and amplitude magnitudes under high-speed, low-discharge operating conditions while exhibiting markedly reduced occurrence and diminished amplitudes in the low-speed, high-flow regime. This systematic investigation provides fundamental insights into the flow physics governing pump-turbine performance under off-design conditions while offering practical implications for optimizing transient operational control methodologies in hydroelectric energy storage systems. Full article
Show Figures

Figure 1

20 pages, 4429 KB  
Article
Multi-Response Optimization of Aluminum Laser Spot Welding with Sinusoidal and Cosinusoidal Power Profiles Based on Taguchi–Grey Relational Analysis
by Saeid SaediArdahaei and Xuan-Tan Pham
Materials 2025, 18(13), 3044; https://doi.org/10.3390/ma18133044 - 26 Jun 2025
Viewed by 631
Abstract
Laser weld quality remains a critical priority across nearly all industries. However, identifying optimal laser parameter sets continues to be highly challenging, often relying on costly, time-consuming trial-and-error experiments. This difficulty is largely attributed to the severe fluctuations and instabilities inherent in laser [...] Read more.
Laser weld quality remains a critical priority across nearly all industries. However, identifying optimal laser parameter sets continues to be highly challenging, often relying on costly, time-consuming trial-and-error experiments. This difficulty is largely attributed to the severe fluctuations and instabilities inherent in laser welding, particularly keyhole instabilities. This study examines the impact of laser power modulation parameters, which, when properly applied, have been found effective in controlling and minimizing process instabilities. The investigated parameters include different pulse shapes (sinusoidal and cosinusoidal) and their associated characteristics, namely frequency (100–800 Hz) and amplitude (1000–4000 W). The impact of these modulation parameters on keyhole mode laser spot welding performance in aluminum is investigated. Using a Taguchi experimental design, a series of tests were developed, focusing on eight key welding responses, including keyhole dimensions, mean temperature, and the variability of instability-inducing forces and related factors affecting process stability. Grey relational analysis (GRA) combined with analysis of variance (ANOVA) is applied to identify the optimal combinations of laser parameters. The results indicate that low amplitude (1000 W), low to intermediate frequencies (100–400 Hz), and cosinusoidal waveforms significantly enhance weld quality by improving process stability and balancing penetration depth. Among the factors, amplitude has the greatest impact, accounting for over 50% of the performance variation, followed by frequency and pulse shape. The findings provide clear guidance for optimizing laser welding parameters to achieve stable, high-quality aluminum welds. Full article
Show Figures

Figure 1

21 pages, 1609 KB  
Article
Resting-State Activity Changes Induced by tDCS in MS Patients and Healthy Controls: A Simultaneous tDCS rs-fMRI Study
by Marco Muccio, Giuseppina Pilloni, Lillian Walton Masters, Peidong He, Lauren Krupp, Abhishek Datta, Marom Bikson, Leigh Charvet and Yulin Ge
Bioengineering 2025, 12(6), 672; https://doi.org/10.3390/bioengineering12060672 - 19 Jun 2025
Viewed by 1149
Abstract
Transcranial direct current stimulation (tDCS) is a safe, well-tolerated method of non-invasively eliciting cortical neuromodulation. It has gained recent interest, especially for its positive clinical outcomes in neurodegenerative diseases such as multiple sclerosis (MS). However, its simultaneous (during tDCS) and cumulative effects (following [...] Read more.
Transcranial direct current stimulation (tDCS) is a safe, well-tolerated method of non-invasively eliciting cortical neuromodulation. It has gained recent interest, especially for its positive clinical outcomes in neurodegenerative diseases such as multiple sclerosis (MS). However, its simultaneous (during tDCS) and cumulative effects (following repeated tDCS sessions) on the regional brain activity during rest need further investigation, especially in MS. This study aims to elucidate tDCS’ underpinnings, alongside its therapeutic impact in MS patients, using concurrent tDCS-MRI methods. In total, 20 MS patients (age = 48 ± 12 years; 8 males) and 28 healthy controls (HCs; age = 36 ± 15 years; 12 males) were recruited. They participated in a tDCS-MRI session, during which resting-state functional MRI (rs-fMRI) was used to measure the levels of the fractional amplitude of low-frequency fluctuations (fALFFs), which is an index of regional neuronal activity, before and during left anodal dorsolateral prefrontal cortex (DLPFC) tDCS (2.0 mA for 15 min). MS patients were then asked to return for an identical tDCS-MRI visit (follow-up) after 20 identical at-home tDCS sessions. Simultaneous tDCS-induced changes in fALFF are seen across cortical and subcortical areas in both HC and MS patients, with some regions showing increased and others decreased brain activity. In HCs, fALFF increased in the right pre- and post-central gyrus whilst it decreased in subcortical regions. Conversely, MS patients initially displayed increases in more posterior cortical regions but decreases in the superior and temporal cortical regions. At follow-up, MS patients showed reversed patterns, emphasizing significant cumulative effects of tDCS treatment upon brain excitation. Such long-lasting changes are further supported by greater pre-tDCS fALFFs measured at follow-up compared to baseline, especially around the cuneus. The results were significant after correcting for multiple comparisons (p-FDR < 0.05). Our study shows that tDCS has both simultaneous and cumulative effects on neuronal activity measured with rs-fMRI, especially involving major brain areas distant from the site of stimulation, and it is responsible for fatigue and cognitive and motor skills. Full article
Show Figures

Figure 1

21 pages, 14961 KB  
Article
Unsteady Flow Analysis Inside an Electric Submersible Pump with Impeller Blade Perforation
by Siyuan Li, Yang Zhang, Jianhua Bai, Jinming Dai, Hua Zhang, Jian Wang and Ling Zhou
Water 2025, 17(12), 1790; https://doi.org/10.3390/w17121790 - 14 Jun 2025
Viewed by 594
Abstract
The electric submersible pump (ESP) is a critical component in subsurface resource extraction systems, yet the presence of gas in the working medium significantly affects its performance. To investigate the impact of impeller perforation on gas–liquid mixing and internal flow characteristics, unsteady numerical [...] Read more.
The electric submersible pump (ESP) is a critical component in subsurface resource extraction systems, yet the presence of gas in the working medium significantly affects its performance. To investigate the impact of impeller perforation on gas–liquid mixing and internal flow characteristics, unsteady numerical simulations were conducted based on the Euler–Euler multiphase flow model. The transient evolution of the gas phase distribution, flow behavior, and liquid phase turbulent entropy generation rate was analyzed under an inlet gas volume fraction of 5%. Results show that under part-load flow conditions, impeller perforation reduces the amplitude of dominant frequency fluctuations and enhances periodicity, thereby mitigating low-frequency disturbances. Under design flow conditions, it leads to stronger dominant frequencies and intensified low-frequency fluctuations. Gas phase distribution varies little under low and design flow rates, while at high flow rates, gas accumulations shift from the midsection to the outlet with rotor rotation. As the flow rate increases, liquid velocity rises, and flow streamlines become more uniform within the channels. Regions of high entropy generation coincide with high gas concentration zones: they are primarily located near the impeller inlet and suction side under low flow, concentrated at the inlet and mid-passage under design flow, and significantly reduced and shifted toward the impeller outlet under high flow conditions. The above results indicate that the perforation design of ESP impellers should be optimized according to operating conditions to improve gas dispersion paths and flow channel geometry. Under off-design conditions, perforations can enhance operational stability and transport performance, while under design conditions, the location and size of the perforations must be precisely controlled to balance efficiency and vibration suppression. Full article
(This article belongs to the Special Issue Hydraulics and Hydrodynamics in Fluid Machinery, 2nd Edition)
Show Figures

Figure 1

Back to TopTop