Numerical Modeling of Fluid-Structure Interactions in Ocean Engineering

A special issue of Journal of Marine Science and Engineering (ISSN 2077-1312). This special issue belongs to the section "Ocean Engineering".

Deadline for manuscript submissions: 30 January 2025 | Viewed by 1597

Special Issue Editor


E-Mail Website
Guest Editor
SINTEF Ocean, Trondheim, Norway
Interests: marine hydrodynamics; seakeeping; slamming; hydroelasticity; wave loads; potential theory; numerical modeling

Special Issue Information

Dear Colleagues,

This Special Issue focuses on the numerical modeling of fluid–structure interactions related to ships and stationary structures subjected to hydrodynamic loads. Examples are seakeeping, maneuvering and added resistance of ships, marine operations, VIV of slender structures and wave- and current-induced loads, and motions of floating and bottom-fixed structures. Numerical modeling and analysis using boundary methods or field methods are relevant.

We invite researchers from both academia and industry to submit original articles that advance the state of the art within the numerical modeling of fluid–structure interactions, or review the progress and future directions of research in this field.

Dr. Ole Andreas Hermundstad
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Marine Science and Engineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • wave and current loads
  • seakeeping
  • maneuvering and added resistance
  • slamming
  • hydroelasticity
  • marine operations
  • air gap
  • moorings
  • vortex-induced vibrations (VIV)
  • vortex-induced motions (VIM)

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 6521 KiB  
Article
AI-Driven Model Prediction of Motions and Mooring Loads of a Spar Floating Wind Turbine in Waves and Wind
by Antonio Medina-Manuel, Rafael Molina Sánchez and Antonio Souto-Iglesias
J. Mar. Sci. Eng. 2024, 12(9), 1464; https://doi.org/10.3390/jmse12091464 - 23 Aug 2024
Viewed by 702
Abstract
This paper describes a Long Short-Term Memory (LSTM) neural network model used to simulate the dynamics of the OC3 reference design of a Floating Offshore Wind Turbine (FOWT) spar unit. It crafts an advanced neural network with an encoder–decoder architecture capable of predicting [...] Read more.
This paper describes a Long Short-Term Memory (LSTM) neural network model used to simulate the dynamics of the OC3 reference design of a Floating Offshore Wind Turbine (FOWT) spar unit. It crafts an advanced neural network with an encoder–decoder architecture capable of predicting the spar’s motion and fairlead tensions time series. These predictions are based on wind and wave excitations across various operational and extreme conditions. The LSTM network, trained on an extensive dataset from over 300 fully coupled simulation scenarios using OpenFAST, ensures a robust framework that captures the complex dynamics of a floating platform under diverse environmental scenarios. This framework’s effectiveness is further verified by thoroughly evaluating the model’s performance, leveraging comparative statistics and accuracy assessments to highlight its reliability. This methodology contributes to substantial reductions in computational time. While this research provides insights that facilitate the design process of offshore wind turbines, its primary aim is to introduce a new predictive approach, marking a step forward in the quest for more efficient and dependable renewable energy solutions. Full article
Show Figures

Figure 1

27 pages, 3367 KiB  
Article
Fluid–Structure Interaction Analysis of Manta-Bots with Self-Induced Vertical Undulations during Fin-Based Locomotion
by Ming Luo, Zhigang Wu, Minghao Zhou and Chao Yang
J. Mar. Sci. Eng. 2024, 12(7), 1165; https://doi.org/10.3390/jmse12071165 - 10 Jul 2024
Viewed by 574
Abstract
Driven by the demands of ocean exploration, an increasing number of manta ray-inspired robots have been designed and manufactured, primarily utilizing flexible skeletons combined with motor-driven mechanisms. However, the mechanical analysis of these designs remains underdeveloped, often relying on simplistic imitation of biological [...] Read more.
Driven by the demands of ocean exploration, an increasing number of manta ray-inspired robots have been designed and manufactured, primarily utilizing flexible skeletons combined with motor-driven mechanisms. However, the mechanical analysis of these designs remains underdeveloped, often relying on simplistic imitation of biological prototypes and typically neglecting the vertical motion induced by pectoral fin flapping. This paper presents a fluid–structure interaction analysis framework that couples rigid body motion with elastic deformation using flexible multibody dynamics and the vortex particle method. An implicit iterative algorithm with Aitken relaxation is employed to address added-mass instability, and the framework has been validated against experimental data. An analysis of a representative manta-bot model shows that self-induced vertical undulations reduce the thrust coefficient by approximately 40% compared to fixed vertical degrees of freedom, while slightly improving overall propulsive efficiency. The study also highlights the critical role of mass distribution in manta-bots, noting that excessive focus on complex pectoral fin movements and large fin mass can significantly reduce thrust by increasing vertical displacement, ultimately proving counterproductive. Full article
Show Figures

Figure 1

Back to TopTop