Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (121)

Search Parameters:
Keywords = analog sensor conditioning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 505 KB  
Article
Experimental Setup for the Validation of Photoplethysmography Devices for the Evaluation of Arteriovenous Fistulas
by Simone Chiorboli, Adriano Brugnoli and Vincenzo Piemonte
Bioengineering 2025, 12(9), 990; https://doi.org/10.3390/bioengineering12090990 - 18 Sep 2025
Viewed by 267
Abstract
This study describes the design and validation of an experimental setup for testing photoplethysmographic (PPG) devices intended for the non-invasive monitoring of vascular accesses in hemodialysis patients. Continuous assessment of arteriovenous fistulas is essential to detect pathological conditions such as stenosis, which can [...] Read more.
This study describes the design and validation of an experimental setup for testing photoplethysmographic (PPG) devices intended for the non-invasive monitoring of vascular accesses in hemodialysis patients. Continuous assessment of arteriovenous fistulas is essential to detect pathological conditions such as stenosis, which can compromise patient safety and dialysis efficacy. While PPG-based sensors are capable of detecting such anomalies, their clinical applicability must be supported by controlled in vitro validation. The developed system replicates the anatomical, mechanical, optical, and hemodynamic features of vascular accesses. A 3D fistula model was designed and fabricated via 3D printing and silicone casting. The hydraulic circuit used red India ink and a PWM-controlled pump to simulate physiological blood flow, including stenotic conditions. Quantitative validation confirmed anatomical accuracy within 0.1 mm tolerance. The phantom exhibited an average Shore A hardness of 20.3 ± 1.1, a Young’s modulus of 10.4 ± 0.9 MPa, and a compression modulus of 105 MPa—values consistent with soft tissue behavior. Burst pressure exceeded 2000 mmHg, meeting ISO 7198:2016 standards. Flow rates (400–700 mL/min) showed <1% error. Compliance was 2.4 ± 0.2, and simulated blood viscosity was 3.9 ± 0.3 mPa·s. Systolic and diastolic pressures fell within physiological ranges. Photoplethysmographic signals acquired using a MAX30102 sensor (Analog devices Inc., Wilmington, MA, USA) reproduced key components of in vivo waveforms, confirming the system’s suitability for device testing. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

23 pages, 810 KB  
Article
Matrix Completion and Propagator Method-Based Fast 2D-DOA Estimation with Noise Suppression for Arbitrary EMVS Arrays
by Yunzhe Ruan and Weiwei Gong
Sensors 2025, 25(18), 5769; https://doi.org/10.3390/s25185769 - 16 Sep 2025
Viewed by 272
Abstract
This paper introduces an innovative rapid algorithm for estimating two-dimensional direction of arrival (2D-DOA) with randomly arranged electromagnetic vector sensor (EMVS) arrays under nonuniform noise conditions. The approach begins by forming the covariance matrix of the received signal matrix, after which elements affected [...] Read more.
This paper introduces an innovative rapid algorithm for estimating two-dimensional direction of arrival (2D-DOA) with randomly arranged electromagnetic vector sensor (EMVS) arrays under nonuniform noise conditions. The approach begins by forming the covariance matrix of the received signal matrix, after which elements affected by noise are removed based on the characteristics of nonuniform noise to reduce its disruptive effects. Subsequently, the pure covariance matrix is filled using a matrix completion algorithm and then reconstructed into a new matrix. Finally, the signal subspace is extracted by the propagator method (PM) algorithm, and the 2D-DOA is estimated via a method analogous to the Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT). Theoretical analyses confirm the high degrees of freedom of the algorithm, low computational complexity, and accuracy of the estimation. Simulation results validate that the proposed algorithm exhibits remarkable resilience against nonuniform noise. When compared with conventional algorithms such as ESPRIT, ESPRIT-like, and improved ESPRIT (IESPRIT), it also shows better performance in terms of estimation speed and accuracy. Full article
Show Figures

Figure 1

23 pages, 3843 KB  
Article
Leveraging Reconfigurable Massive MIMO Antenna Arrays for Enhanced Wireless Connectivity in Biomedical IoT Applications
by Sunday Enahoro, Sunday Cookey Ekpo, Yasir Al-Yasir and Mfonobong Uko
Sensors 2025, 25(18), 5709; https://doi.org/10.3390/s25185709 - 12 Sep 2025
Viewed by 362
Abstract
The increasing demand for real-time, energy-efficient, and interference-resilient communication in smart healthcare environments has intensified interest in Biomedical Internet of Things (Bio-IoT) systems. However, ensuring reliable wireless connectivity for wearable and implantable biomedical sensors remains a challenge due to mobility, latency sensitivity, power [...] Read more.
The increasing demand for real-time, energy-efficient, and interference-resilient communication in smart healthcare environments has intensified interest in Biomedical Internet of Things (Bio-IoT) systems. However, ensuring reliable wireless connectivity for wearable and implantable biomedical sensors remains a challenge due to mobility, latency sensitivity, power constraints, and multi-user interference. This paper addresses these issues by proposing a reconfigurable massive multiple-input multiple-output (MIMO) antenna architecture, incorporating hybrid analog–digital beamforming and adaptive signal processing. The methodology combines conventional algorithms—such as Least Mean Square (LMS), Zero-Forcing (ZF), and Minimum Variance Distortionless Response (MVDR)—with a novel mobility-aware beamforming scheme. System-level simulations under realistic channel models (Rayleigh, Rician, 3GPP UMa) evaluate signal-to-interference-plus-noise ratio (SINR), bit error rate (BER), energy efficiency, outage probability, and fairness index across varying user loads and mobility scenarios. Results show that the proposed hybrid beamforming system consistently outperforms benchmarks, achieving up to 35% higher throughput, a 65% reduction in packet drop rate, and sub-10 ms latency even under high-mobility conditions. Beam pattern analysis confirms robust nulling of interference and dynamic lobe steering. This architecture is well-suited for next-generation Bio-IoT deployments in smart hospitals, enabling secure, adaptive, and power-aware connectivity for critical healthcare monitoring applications. Full article
(This article belongs to the Special Issue Challenges and Future Trends in Antenna Technology)
Show Figures

Figure 1

16 pages, 1181 KB  
Article
Modeling of the Mutual Placement of Thermoanemometer Sensors on a Flat Surface of an Air Flow
by Taras Dmytriv, Vasyl Dmytriv and Michał Bembenek
Processes 2025, 13(9), 2906; https://doi.org/10.3390/pr13092906 - 11 Sep 2025
Viewed by 241
Abstract
A functional model of a thermoanemometer measuring the air flow velocity on a flat wall surface of the flow has been developed. From the heat balance equation of the sensing elements in the thermoanemometer, a dependence has been derived for determining the heating [...] Read more.
A functional model of a thermoanemometer measuring the air flow velocity on a flat wall surface of the flow has been developed. From the heat balance equation of the sensing elements in the thermoanemometer, a dependence has been derived for determining the heating temperature of the sensing elements. The distribution of the temperature field in the boundary layer was modeled by analogy with the velocity distribution, following a cubic dependence. The distribution of the temperature field on a flat wall surface of the flow from the heating of the sensing elements was obtained analytically by solving the heat conduction equation in the direction of the coordinate of the air flow velocity vector for the boundary conditions of the II as well as II and III kinds. The developed mathematical dependencies enable both the modeling of the distribution of temperature fields in the sensing elements and justifying the distance between them. The reliability of measurements of the air flow velocity on the wall surface of the flow depends on the impossibility of influencing the temperature of one sensing element of the sensor on the temperature of the other. The task of justifying the distance between the sensing elements of the sensor, which are located in the direction of the air flow velocity vector, aims to prevent the interaction of the temperature fields of the elements with each other. The boundary condition is that at the boundary of separation between the temperature fields of the sensing elements, there is a temperature that is 5 to 10% lower than the temperature of the colder sensing element. The ratio of the resistances of the sensing elements is 4/1. The power released by the first sensing element of the sensor, aligned along the air flow velocity vector, is 4 times lower than the heating power of the second sensing element of the sensor. The modeling was carried out at an air flow velocity within 30 and 330 m·s−1. The values of the distances between the sensing elements of the thermal anemometer vary with the supply voltage. The material of the sensing elements is nickel. The contact area of the surface of the sensing elements was 214.337 mm2. Full article
(This article belongs to the Special Issue Fluid Dynamics and Thermodynamic Studies in Gas Turbine)
Show Figures

Figure 1

19 pages, 7045 KB  
Article
Design of an SAR-Assisted Offset-Calibrated Chopper CFIA for High-Precision 4–20 mA Transmitter Front Ends
by Jian Ren, Yiqun Niu, Bin Liu, Meng Li, Yansong Bai and Yuang Chen
Appl. Sci. 2025, 15(16), 9084; https://doi.org/10.3390/app15169084 - 18 Aug 2025
Viewed by 414
Abstract
In loop-powered 4–20 mA transmitter systems, sensors like temperature, pressure, flow, and gas sensors are chosen based on specific application requirements. These systems are widely adopted in high-precision measurement scenarios, including industrial automation, process control, and environmental monitoring. The transmitter requires a high-performance [...] Read more.
In loop-powered 4–20 mA transmitter systems, sensors like temperature, pressure, flow, and gas sensors are chosen based on specific application requirements. These systems are widely adopted in high-precision measurement scenarios, including industrial automation, process control, and environmental monitoring. The transmitter requires a high-performance analog front end (AFE) for precise amplification and signal conditioning. This paper presents a low-noise instrumentation amplifier (IA) for high-precision transmitter front ends, featuring a Successive Approximation Register (SAR)-assisted offset calibration architecture. The proposed structure integrates a chopper current-feedback instrumentation amplifier (CFIA) with an automatic offset calibration loop (AOCL), significantly suppressing internal offset errors and enabling high-accuracy signal acquisition under stringent power and environmental temperature constraints. The designed amplifier provides four selectable gain settings, covering a range from ×32 to ×256. Fabricated in a 0.18 μm CMOS process, the CFIA operates at a 1.8 V supply voltage, consumes a static current of 182 μA, and achieves an input-referred noise as low as 20.28 nV/√Hz at 1 kHz, with a common-mode rejection ratio (CMRR) up to 122 dB and a power-supply rejection ratio (PSRR) up to 117 dB. Experimental results demonstrate that the proposed amplifier exhibits excellent performance in terms of input-referred noise, offset voltage, PSRR, and CMRR, making it well-suited for front-end detection in field instruments that require direct interfacing with measured media. Full article
Show Figures

Figure 1

18 pages, 1239 KB  
Article
A Digitally Controlled Adaptive Current Interface for Accurate Measurement of Resistive Sensors in Embedded Sensing Systems
by Jirapong Jittakort and Apinan Aurasopon
J. Sens. Actuator Netw. 2025, 14(4), 82; https://doi.org/10.3390/jsan14040082 - 4 Aug 2025
Viewed by 864
Abstract
This paper presents a microcontroller-based technique for accurately measuring resistive sensors over a wide dynamic range using an adaptive constant current source. Unlike conventional voltage dividers or fixed-current methods—often limited by reduced resolution and saturation when sensor resistance varies across several decades—the proposed [...] Read more.
This paper presents a microcontroller-based technique for accurately measuring resistive sensors over a wide dynamic range using an adaptive constant current source. Unlike conventional voltage dividers or fixed-current methods—often limited by reduced resolution and saturation when sensor resistance varies across several decades—the proposed system dynamically adjusts the excitation current to maintain optimal Analog-to-Digital Converter (ADC) input conditions. The measurement circuit employs a fixed reference resistor and an inverting amplifier configuration, where the excitation current is generated by one or more pulse-width modulated (PWM) signals filtered through low-pass RC networks. A microcontroller selects the appropriate PWM channel to ensure that the output voltage remains within the ADC’s linear range. To support multiple sensors, an analog switch enables sequential measurements using the same dual-PWM current source. The full experimental implementation uses four op-amps to support modularity, buffering, and dual-range operation. Experimental results show accurate measurement of resistances from 1 kΩ to 100 kΩ, with maximum relative errors of 0.15% in the 1–10 kΩ range and 0.33% in the 10–100 kΩ range. The method provides a low-cost, scalable, and digitally controlled solution suitable for embedded resistive sensing applications without the need for high-resolution ADCs or programmable gain amplifiers. Full article
(This article belongs to the Section Actuators, Sensors and Devices)
Show Figures

Figure 1

21 pages, 2794 KB  
Article
Medical Data over Sound—CardiaWhisper Concept
by Radovan Stojanović, Jovan Đurković, Mihailo Vukmirović, Blagoje Babić, Vesna Miranović and Andrej Škraba
Sensors 2025, 25(15), 4573; https://doi.org/10.3390/s25154573 - 24 Jul 2025
Viewed by 2550
Abstract
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the [...] Read more.
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the DoS concept to the medical domain by using a medical data-over-sound (MDoS) framework. CardiaWhisper integrates wearable biomedical sensors with home care systems, edge or IoT gateways, and telemedical networks or cloud platforms. Using a transmitter device, vital signs such as ECG (electrocardiogram) signals, PPG (photoplethysmogram) signals, RR (respiratory rate), and ACC (acceleration/movement) are sensed, conditioned, encoded, and acoustically transmitted to a nearby receiver—typically a smartphone, tablet, or other gadget—and can be further relayed to edge and cloud infrastructures. As a case study, this paper presents the real-time transmission and processing of ECG signals. The transmitter integrates an ECG sensing module, an encoder (either a PLL-based FM modulator chip or a microcontroller), and a sound emitter in the form of a standard piezoelectric speaker. The receiver, in the form of a mobile phone, tablet, or desktop computer, captures the acoustic signal via its built-in microphone and executes software routines to decode the data. It then enables a range of control and visualization functions for both local and remote users. Emphasis is placed on describing the system architecture and its key components, as well as the software methodologies used for signal decoding on the receiver side, where several algorithms are implemented using open-source, platform-independent technologies, such as JavaScript, HTML, and CSS. While the main focus is on the transmission of analog data, digital data transmission is also illustrated. The CardiaWhisper system is evaluated across several performance parameters, including functionality, complexity, speed, noise immunity, power consumption, range, and cost-efficiency. Quantitative measurements of the signal-to-noise ratio (SNR) were performed in various realistic indoor scenarios, including different distances, obstacles, and noise environments. Preliminary results are presented, along with a discussion of design challenges, limitations, and feasible applications. Our experience demonstrates that CardiaWhisper provides a low-power, eco-friendly alternative to traditional RF or Bluetooth-based medical wearables in various applications. Full article
Show Figures

Graphical abstract

33 pages, 6828 KB  
Article
Acoustic Characterization of Leakage in Buried Natural Gas Pipelines
by Yongjun Cai, Xiaolong Gu, Xiahua Zhang, Ke Zhang, Huiye Zhang and Zhiyi Xiong
Processes 2025, 13(7), 2274; https://doi.org/10.3390/pr13072274 - 17 Jul 2025
Cited by 1 | Viewed by 563 | Correction
Abstract
To address the difficulty of locating small-hole leaks in buried natural gas pipelines, this study conducted a comprehensive theoretical and numerical analysis of the acoustic characteristics associated with such leakage events. A coupled flow–acoustic simulation framework was developed, integrating gas compressibility via the [...] Read more.
To address the difficulty of locating small-hole leaks in buried natural gas pipelines, this study conducted a comprehensive theoretical and numerical analysis of the acoustic characteristics associated with such leakage events. A coupled flow–acoustic simulation framework was developed, integrating gas compressibility via the realizable k-ε and Large Eddy Simulation (LES) turbulence models, the Peng–Robinson equation of state, a broadband noise source model, and the Ffowcs Williams–Hawkings (FW-H) acoustic analogy. The effects of pipeline operating pressure (2–10 MPa), leakage hole diameter (1–6 mm), soil type (sandy, loam, and clay), and leakage orientation on the flow field, acoustic source behavior, and sound field distribution were systematically investigated. The results indicate that the leakage hole size and soil medium exert significant influence on both flow dynamics and acoustic propagation, while the pipeline pressure mainly affects the strength of the acoustic source. The leakage direction was found to have only a minor impact on the overall results. The leakage noise is primarily composed of dipole sources arising from gas–solid interactions and quadrupole sources generated by turbulent flow, with the frequency spectrum concentrated in the low-frequency range of 0–500 Hz. This research elucidates the acoustic characteristics of pipeline leakage under various conditions and provides a theoretical foundation for optimal sensor deployment and accurate localization in buried pipeline leak detection systems. Full article
(This article belongs to the Special Issue Design, Inspection and Repair of Oil and Gas Pipelines)
Show Figures

Figure 1

16 pages, 4661 KB  
Article
On-Site and Sensitive Pipeline Oxygen Detection Equipment Based on TDLAS
by Yanfei Zhang, Kaiping Yuan, Zhaoan Yu, Yunhan Zhang, Xin Liu and Tieliang Lv
Sensors 2025, 25(13), 4027; https://doi.org/10.3390/s25134027 - 27 Jun 2025
Viewed by 444
Abstract
The application of oxygen sensors based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) in the industrial field has received extensive attention. However, most of the existing studies construct detection systems using discrete devices, making it difficult to apply them in the industrial field. [...] Read more.
The application of oxygen sensors based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) in the industrial field has received extensive attention. However, most of the existing studies construct detection systems using discrete devices, making it difficult to apply them in the industrial field. In this work, through the optimization of the sensor circuit, the size of the core components of the sensor is reduced to 7.8 × 7.8 × 11.8 cm3, integrating the laser, photodetector, and system control circuit. A novel integrated optical path design is proposed for the optical mechanical structure, which enhances the structural integration and long-term optical path stability while reducing the system assembly complexity. The interlocking design of the laser-driven digital-to-analog converter (DAC) and photocurrent acquisition analog-to-digital converter (ADC) reduces the requirements of the harmonic signal extraction for the system hardware. By adopting a high-precision ADC and a high-resolution pulse-width modulation (PWM), the peak-to-peak value of the laser temperature control noise is reduced to 2 m°C, thereby reducing the detection noise of the sensor. This oxygen detection system has a minimum response time of 0.1 s. Under the condition of a 0.5 m detection optical path, the Allan variance shows that when the integration time is 5.6 s, the detection limit reaches 53.4 ppm, which is ahead of the detection accuracy of similar equipment under the very small system size. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

47 pages, 5710 KB  
Review
Direct Interface Circuits for Resistive, Capacitive, and Inductive Sensors: A Review
by Geu M. Puentes-Conde, Ernesto Sifuentes, Javier Molina, Francisco Enríquez-Aguilera, Gabriel Bravo and Guadalupe Navarro Enríquez
Electronics 2025, 14(12), 2393; https://doi.org/10.3390/electronics14122393 - 11 Jun 2025
Viewed by 1248
Abstract
Direct interface circuits (DICs) connect resistive, capacitive, and inductive sensors directly to microcontrollers or FPGAs, eliminating analog conditioning stages and offering compact, low-cost, and low-power instrumentation. This systematic review qualitatively synthesizes research up to March 2025 on DIC operation principles, performance metrics, and [...] Read more.
Direct interface circuits (DICs) connect resistive, capacitive, and inductive sensors directly to microcontrollers or FPGAs, eliminating analog conditioning stages and offering compact, low-cost, and low-power instrumentation. This systematic review qualitatively synthesizes research up to March 2025 on DIC operation principles, performance metrics, and application domains. Following PRISMA guidelines, 90 studies from IEEE Xplore, ScienceDirect, MDPI, SpringerLink, Scopus, and Google Scholar were selected based on predefined inclusion criteria. Most studies focused on RC-based circuits (53%), followed by RL-based (5%) and charge transfer capacitive interfaces (5%). RC-DICs demonstrated accuracies below 0.01% using adaptive calibration; RL-DICs achieved resolutions of 10–12 bits with higher cycle requirements, while charge transfer interfaces presented systematic errors up to ±5% due to parasitic capacitances. Environmental monitoring, biomedical sensing, liquid-level control, and vehicular detection were frequent application fields. Due to methodological heterogeneity, findings were synthesized qualitatively without quantitative meta-analysis or formal bias assessments. Future research directions include enhanced noise immunity, simplified calibration, and robust parasitic effect compensation. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

34 pages, 10688 KB  
Article
Bionic Intelligent Interaction Helmet: A Multifunctional-Design Anxiety-Alleviation Device Controlled by STM32
by Chuanwen Luo, Yang You, Yan Zhang, Bo Zhang, Ning Li, Hao Pan, Xinyang Zhang, Chenlong Wang and Xiaobo Wang
Sensors 2025, 25(10), 3100; https://doi.org/10.3390/s25103100 - 14 May 2025
Viewed by 1467
Abstract
Due to accelerated urbanization, modern urban residents are facing increasing life pressures. Many citizens are experiencing situational aversion in daily commuting, and the deterioration in the traffic environment has led to psychological distress of varying degrees among urban dwellers. Cyclists, who account for [...] Read more.
Due to accelerated urbanization, modern urban residents are facing increasing life pressures. Many citizens are experiencing situational aversion in daily commuting, and the deterioration in the traffic environment has led to psychological distress of varying degrees among urban dwellers. Cyclists, who account for about 7% of urban commuters, lack a sense of belonging in the urban space and experience significant deficiencies in the corresponding urban infrastructure, which causes more people to face significant barriers to choosing cycling as a mode of transportation. To address the aforementioned issues, this study proposes a bionic intelligent interaction helmet (BIIH) designed and validated based on the principles of bionics, which has undergone morphological design and structural validation. Constructed around the STM32-embedded development board, the BIIH is an integrated smart cycling helmet engineered to perceive environmental conditions and enable both human–machine interactions and environment–machine interactions. The system incorporates an array of sophisticated electronic components, including temperature and humidity sensors; ultrasonic sensors; ambient light sensors; voice recognition modules; cooling fans; LED indicators; and OLED displays. Additionally, the device is equipped with a mobile power supply, enhancing its portability and ensuring operational efficacy under dynamic conditions. Compared with conventional helmets designed for analogous purposes, the BIIH offers four distinct advantages. Firstly, it enhances the wearer’s environmental perception, thereby improving safety during operation. Secondly, it incorporates a real-time interaction function that optimizes the cycling experience while mitigating psychological stress. Thirdly, validated through bionic design principles, the BIIH exhibits increased specific stiffness, enhancing its structural integrity. Finally, the device’s integrated power and storage capabilities render it portable, autonomous, and adaptable, facilitating iterative improvements and fostering self-sustained development. Collectively, these features establish the BIIH as a methodological and technical foundation for exploring novel research scenarios and prospective applications. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

24 pages, 7739 KB  
Article
Continuous Intracranial Pressure Monitoring in Children with ‘Benign’ External Hydrocephalus
by Maria A. Poca, Diego Lopez-Bermeo, Paola Cano, Federica Maruccia, Carolina Fajardo, Ignacio Delgado, Francisca Munar, Anna Garcia-Merino and Juan Sahuquillo
J. Clin. Med. 2025, 14(9), 3042; https://doi.org/10.3390/jcm14093042 - 28 Apr 2025
Viewed by 1173
Abstract
Background/Objectives: This study aimed to evaluate the results of continuous intracranial pressure (ICP) monitoring in children with macrocephaly or rapidly increasing head circumference (HC) diagnosed as benign external hydrocephalus (BEH). Here, we report the absolute ICP measurements, ICP pulsatility, and slow ICP waves [...] Read more.
Background/Objectives: This study aimed to evaluate the results of continuous intracranial pressure (ICP) monitoring in children with macrocephaly or rapidly increasing head circumference (HC) diagnosed as benign external hydrocephalus (BEH). Here, we report the absolute ICP measurements, ICP pulsatility, and slow ICP waves after at least 48 h of continuous monitoring in a cohort of 36 children diagnosed with BEH. Methods: A prospective study of continuous ICP monitoring was performed in 36 consecutive children with macrocephaly (HC above the 97.5th percentile) or rapidly increasing HC (at least crossing two percentile curves), diagnosed with BEH (22 boys and 14 girls with a mean age of 23.6 ± 13.3 months, minimum: 6, maximum 65), using an epidural sensor. For the first four children in the study, hard copies of the ICP values were obtained using an analog recorder. Starting from the fifth patient, the ICP signal was sampled at 200 Hz and stored on a computer using a computer-based data acquisition and analysis system (LabChart v8.1 software). Results: Clinical signs or symptoms were identified in 20 patients (55.6%). Delayed motor or language development was noted in 18 (50%) and 20 (55.6%) patients, respectively. In 13 patients, the enlargement of the subarachnoid spaces was found to be associated with an additional condition. The median of mean ICP values for the entire cohort was 17 mmHg, with a minimum of 6.7 mmHg and a maximum of 29 mmHg. All patients exhibited a percentage of B waves exceeding 20% during the night, with a median value of 47.4% (min: 23.2, max: 75). Three children had nocturnal plateau waves. At night, regular ICP recordings alternated with periods of significant increases in ICP, often exceeding 10 mmHg above baseline values. High-amplitude B waves were noted during these episodes, and the amplitude of the cardiac waveform at the peak of the B waves was consistently greater than 5 mmHg, displaying an abnormal morphology (P2 > P1). A ventriculoperitoneal shunt was implanted in 30 of the 36 patients. Conclusions: Patients with BEH may present significant abnormalities in ICP. Monitoring this variable in certain cases can assist in determining the necessity for surgical treatment. Full article
(This article belongs to the Special Issue State of the Art in Pediatric Neurosurgery)
Show Figures

Graphical abstract

21 pages, 4267 KB  
Article
Development and Validation of a Low-Cost External Signal Acquisition Device for Smart Rail Pads: A Comparative Performance Study
by Amparo Guillén, Fernando Moreno-Navarro, Miguel Sol-Sánchez and Guillermo R. Iglesias
Sensors 2025, 25(6), 1933; https://doi.org/10.3390/s25061933 - 20 Mar 2025
Cited by 1 | Viewed by 540
Abstract
The development of cost-effective and reliable railway monitoring technologies is crucial for the maintenance of modern infrastructure. Embedding sensors into rail pads has emerged as a promising approach for monitoring wheel–track interactions, but the successful implementation of these systems requires a robust framework [...] Read more.
The development of cost-effective and reliable railway monitoring technologies is crucial for the maintenance of modern infrastructure. Embedding sensors into rail pads has emerged as a promising approach for monitoring wheel–track interactions, but the successful implementation of these systems requires a robust framework for signal data acquisition and analysis. This study validates a custom-designed External Signal Acquisition Device (ESAD) for use with smart rail pads, comparing its performance against a high-precision commercial analog module. While the commercial module delivers exceptional accuracy, its high cost, bulky size, and complex installation requirements limit its practicality for large-scale railway applications. Laboratory-scale and full-scale experiments simulating real-world railway conditions demonstrated that the custom ESAD performs comparably to the commercial module. During simulated train passages, the ESAD showed reduced signal dispersion as load and train speed increased, confirming its ability to provide reliable calibration data. Moreover, the device maintained over 95% reliability in analyzing load-to-signal linearity, ensuring consistent and dependable performance in both laboratory and field settings. However, the ESAD does have limitations, including slightly lower resolution for low frequencies and potential sensitivity to extreme environmental conditions, which may affect its performance in specific scenarios. These findings highlight the ESAD’s potential to strike a balance between cost and functionality, making it a viable solution for widespread railway monitoring applications. This research contributes to the advancement of affordable and efficient railway monitoring technologies, fostering the adoption of preventive maintenance practices and enhancing overall infrastructure performance. Full article
Show Figures

Figure 1

17 pages, 4772 KB  
Article
A Flexible, Low-Cost and Algorithm-Independent Calibrator for Automated Blood Pressure Measuring Devices
by José Miguel Costa Dias Pereira, Gonçalo Ribeiro and Octavian Postolache
Appl. Sci. 2025, 15(6), 3198; https://doi.org/10.3390/app15063198 - 14 Mar 2025
Viewed by 906
Abstract
Arterial hypertension is one of the most important public health problems, especially in developed countries. The quality and calibration of blood pressure (BP) equipment used for non-invasive blood pressure (NIBP) measurement are essential to obtain accurate data that support correct medical diagnostics. This [...] Read more.
Arterial hypertension is one of the most important public health problems, especially in developed countries. The quality and calibration of blood pressure (BP) equipment used for non-invasive blood pressure (NIBP) measurement are essential to obtain accurate data that support correct medical diagnostics. This paper includes the hardware and software description of a flexible, low-cost and algorithm-independent calibrator prototype that can be used for the static and dynamic calibration of automated blood pressure measuring devices (ABPMDs). In the context of this paper, the meaning of calibrator flexibility is mainly related to its ability to adapt or change easily in response to different situations in terms of the calibration of ABPMDs that can use a variety of calibration settings without the need to use specific oscillometric curves from different ABPMD manufacturers. The hardware part of the calibrator includes mainly an electro-pneumatic regulator, used to generate dynamic pressure signals with arbitrary waveforms, amplitudes and frequencies, a pressure sensor, remotely connected through a pneumatic tube to the blood pressure (BP) cuff, a blood pressure release valve and analog conditioning circuits, plus the A/D converter. The software part of the calibrator, mainly developed in LabVIEW 20, enables the simulation of oscillometric pressure pulses with different envelope profiles and the implementation of the main algorithms that are typically used to evaluate systolic, diastolic and mean arterial pressure values. Simulation and experimental results that were obtained validate the theoretical expectations and show a very acceptable level of accuracy and performance of the presented NIBP calibrator prototype. The prototype calibration results were also validated using a certified NIBP calibrator that is frequently used in clinical environments. Full article
Show Figures

Figure 1

16 pages, 25849 KB  
Article
A Hybrid Approach to Semantic Digital Speech: Enabling Gradual Transition in Practical Communication Systems
by Münif Zeybek, Bilge Kartal Çetin and Erkan Zeki Engin
Electronics 2025, 14(6), 1130; https://doi.org/10.3390/electronics14061130 - 13 Mar 2025
Cited by 1 | Viewed by 1307
Abstract
Recent advances in deep learning have fostered a transition from the traditional, bit-centric paradigm of Shannon’s information theory to a semantic-oriented approach, emphasizing the transmission of meaningful information rather than mere data fidelity. However, black-box AI-based semantic communication lacks structured discretization and remains [...] Read more.
Recent advances in deep learning have fostered a transition from the traditional, bit-centric paradigm of Shannon’s information theory to a semantic-oriented approach, emphasizing the transmission of meaningful information rather than mere data fidelity. However, black-box AI-based semantic communication lacks structured discretization and remains dependent on analog modulation, which presents deployment challenges. This paper presents a new semantic-aware digital speech communication system, named Hybrid-DeepSCS, a stepping stone between traditional and fully end-to-end semantic communication. Our system comprises the following parts: a semantic encoder for extracting and compressing structured features, a standard transmitter for digital modulation including source and channel encoding, a standard receiver for recovering the bitstream, and a semantic decoder for expanding the features and reconstructing speech. By adding semantic encoding to a standard digital transmission, our system works with existing communication networks while exploring the potential of deep learning for feature representation and reconstruction. This hybrid method allows for gradual implementation, making it more practical for real-world uses like low-bandwidth speech, robust voice transmission over wireless networks, and AI-assisted speech on edge devices. The system’s compatibility with conventional digital infrastructure positions it as a viable solution for IoT deployments, where seamless integration with legacy systems and energy-efficient processing are critical. Furthermore, our approach addresses IoT-specific challenges such as bandwidth constraints in industrial sensor networks and latency-sensitive voice interactions in smart environments. We test the system under various channel conditions using Signal-to-Distortion Ratio (SDR), PESQ, and STOI metrics. The results show that our system delivers robust and clear speech, connecting traditional wireless systems with the future of AI-driven communication. The framework’s adaptability to edge computing architectures further underscores its relevance for IoT platforms, enabling efficient semantic processing in resource-constrained environments. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Wireless Communications)
Show Figures

Figure 1

Back to TopTop