A Flexible, Low-Cost and Algorithm-Independent Calibrator for Automated Blood Pressure Measuring Devices
Abstract
:1. Introduction
2. Oscillometric Blood Pressure Estimation Algorithms
3. System Description
3.1. Hardware
3.2. Software
4. Experimental Results
4.1. Prototype Loop Tests
4.2. Prototype Performance Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Timmis, A.; Townsend, N.; Gale, C.P.; Torbica, A.; Lettino, M.; Petersen, S.E.; Mossialos, E.A.; Maggioni, A.P.; Kazakiewicz, D.; May, H.T.; et al. Cardiovascular Disease Statistics 2019. European Society of Cardiology. Eur. Heart J. 2020, 41, 12–85. [Google Scholar] [CrossRef] [PubMed]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 6. [Google Scholar] [CrossRef]
- John, O.; Campbell, N.R.; Brady, T.M.; Farrell, M.; Varghese, C.; Berumen, A.V.; Gaitan, L.A.V.R.; Toffelmire, N.; Ameel, M.; Mideksa, M.; et al. The 2020 “WHO Technical Specifications for Automated Non-Invasive Blood Pressure Measuring Devices With Cuff”. Hypertension 2021, 77, 806–812. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Y.; Ma, Y.; Feng, X. The effect of arterial stiffness on cuff-based blood pressure measurement. Extrem. Mech. Lett. 2021, 48, 101298. [Google Scholar] [CrossRef]
- Muntner, P.; Shimbo, D.; Carey, R.M.; Charleston, J.B.; Gaillard, T.; Misra, S.; Myers, M.G.; Ogedegbe, G.; Schwartz, J.E.; Townsend, R.R.; et al. Measurement of Blood Pressure in Humans: A Scientific Statement From the American Heart Association. Hypertension 2019, 73, e35–e66. [Google Scholar] [CrossRef]
- Stergiou, G.S.; Dolan, E.; Kollias, A.; Poulter, N.R.; Shennan, A.; Staessen, J.A.; Zhang, Z.; Weber, M.A. Blood pressure measurement in special populations and circumstances. J. Clin. Hypertens. 2018, 20, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Picone, D.S.; Deshpande, R.A.; Schultz, M.G.; Fonseca, R.; Campbell, N.R.C.; Delles, C.; Olsen, M.H.; Schutte, A.E.; Stergiou, G.; Padwal, R.; et al. Nonvalidated Home Blood Pressure Devices Dominate the Online Marketplace in Australia: Major Implications for Cardiovascular Risk Management: Hypertension. Hypertension 2020, 75, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
- Sharman, J.E.; Tan, I.; Stergiou, G.S.; Lombardi, C.; Saladini, F.; Butlin, M.; Padwal, R.; Asayama, K.; Avolio, A.; Brady, T.M.; et al. Automated oscillometric blood pressure measuring devices: How they work and what they measure. J. Hum. Hypertens. 2023, 37, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Yadav, S.; Kumar, A. Oscillometric Waveform Evaluation for Blood Pressure Devices. Biomed. Eng. Adv. 2022, 4, 100046. [Google Scholar] [CrossRef]
- Celler, B.G.; Argha, A.; Le, P.N.; Ambikairajah, E. Novel methods of testing and calibration of oscillometric blood pressure monitors. PloS ONE 2018, 13, e0201123. [Google Scholar] [CrossRef]
- Rigel Medical GMC Instruments Group. What Are ‘O Curves’ and How Do I Create Them? Available online: https://www.rigelmedical.com/gb/support/patient-simulation (accessed on 31 December 2024).
- Fluke. ProSim 8 Vital Signs Patient Simulator. 2011. Available online: https://www.flukebiomedical.com (accessed on 31 December 2024).
- National Standards Authority of Ireland (NSAI). Developing an Infrastructure for Improved and Harmonised Metrological Checks of Blood-Pressure Measurements in Europe. National Metrology Laboratory (NML), Dublin. Available online: https://shop.standards.ie/en-ie/search/standard/?searchTerm=adOSSIG (accessed on 17 February 2025).
- Geršak, G.; Schiebl, M.; Nawotka, M.; Jugo, E.; Ferreira, M.D.C.; Duffy, A.; Rosu, D.M.; Pavlásek, P.; Sedlák, V.; Pražák, D. Physiology-based patient simulator for blood pressure meter testing. Meas. Sens. 2021, 18, 100260. [Google Scholar] [CrossRef]
- Sedlák, V.; Pražák, D.; Tesař, J.; Rosu, D.; Geršak, G.; Ferreira, M.; Nawotka, M.; Bosnjakovic, A.; Jugo, E.; Hetherington, P.; et al. Evaluation of Sphygmomanometers Using an Advanced Oscillometric Signal Generator. In Proceedings of the Imeko TC11 & TC24 Joint Hybrid Conference, Dubrovnik, Croatia, 17–19 October 2022; pp. 12–16. [Google Scholar]
- Balestrieri, E.; Rapuano, S. Instruments and Methods for Calibration of Oscillometric Blood Pressure Measurement Devices. IEEE Trans. Instrum. Meas. 2010, 59, 2391–2404. [Google Scholar] [CrossRef]
- Ratnadewi; Ramdhani, M.F.; Kurniasih, N.; Putri, L.D.; Parwito; Abdullah, D.; Listyorini, T.; Bakhtiar, M.I.; Nanuru, R.F.; Rahim, R. Automatic Blood Pressure Detector Using Arduino to Measure Blood Pressure in Indonesian People Age 19–27 Years Old. Int. J. Eng. Technol. 2018, 7, 115–118. [Google Scholar]
- Chandrasekhar, A.; Yavarimanesh, M.; Hahn, J.-O.; Sung, S.-H.; Chen, C.-H.; Cheng, H.-M.; Mukkamala, R. Formulas to Explain Popular Oscillometric Blood Pressure Estimation Algorithms. Front. Physiol. 2019, 10, 1415. [Google Scholar] [CrossRef]
- Dhamotharan, V.; Chandrasekhar, A.; Cheng, H.-M.; Chen, C.-H.; Sung, S.-H.; Landry, C.; Hahn, J.-O.; Mahajan, A.; Shroff, S.G.; Mukkamala, R. Mathematical Modeling of Oscillometric Blood Pressure Measurement: A Complete, Reduced Oscillogram Model. IEEE Trans. Biomed. Eng. 2023, 70, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Mauck, G.W.; Smith, C.R.; Geddes, L.A.; Bourland, J.D. The Meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood-pressure—Part II. Trans. ASME 1980, 102, 28–33. [Google Scholar] [CrossRef]
- Drzewiecki, G.; Hood, R.; Apple, H. Theory of the oscillometric maximum and the systolic and diastolic detection ratios. Ann. Biomed. Eng. 1994, 22, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Geddes, L.A.; Voelz, M.; Combs, C.; Reiner, C.; Babbs, C.F. Characterization of the oscillometric method for measuring indirect blood pressure. Ann. Biomed. Eng. 1982, 10, 271–280. [Google Scholar] [CrossRef]
- Bronzino, J.D. Medical Devices and Systems; Taylor & Francis: Abingdon, UK, 2006. [Google Scholar]
- Forouzanfar, M.; Dajani, H.R.; Groza, V.Z.; Bolic, M.; Rajan, S.; Batkin, I. Oscillometric blood pressure estimation: Past, present, and future. IEEE Rev. Biomed. Eng. 2015, 8, 44–63. [Google Scholar] [CrossRef]
- National High Blood Pressure Education Program/National Heart. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 289, 2560–2571. [Google Scholar]
- Alpert, M.D.; Quinn, D.; Gallick, D. Oscillometric blood pressure: A review for clinicians. J. Am. Soc. Hypertens. 2014, 8, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Fei, D.; Deng, C. Novel Method for More Precise Determination of Oscillometric Pulse Amplitude Envelopes. Comput. Inf. Sci. 2015, 8, 64. [Google Scholar] [CrossRef]
- Mafi, M.; Rajan, S.; Bolic, M.; Groza, V.Z.; Dajani, H.R. Blood pressure estimation using maximum slope of oscillometric pulses. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012. [Google Scholar]
- Barrios-Fernandez, S.; Sosa-Sánchez, E.M.; Muñoz-Bermejo, L.; Morenas-Martín, J.; Apolo-Arenas, M.D.; Adsuar, J.C.; Domínguez-Muñoz, F.J. Intrasession Reliability Analysis for Oscillometric Blood Pressure Method Using a Digital Blood Pressure Monitor in Peruvian Population. Healthcare 2022, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Reyes, S.; Romero-Velarde, E.; Torres-Gudiño, E.; Illescas-Zarate, D.; Forsyth-MacQuarrie, A.M. Comparison of auscultatory and oscillometric BP measurements in children with obesity and their effect on the diagnosis of arterial hypertension. Arch. Cardiol. Mex. 2018, 88, 16–24. [Google Scholar] [CrossRef]
- NXP Semiconductors. Document Number: MP3V5050. Data Sheet: Technical Data Rev. 1.4. 2018. Available online: https://www.nxp.com/docs/en/data-sheet/MP3V5050.pdf (accessed on 31 December 2024).
- Parker. Miniature Electronic Pressure Regulators—Precision Fluidcs; Parker: Mayfield Heights, OH, USA, 2018. [Google Scholar]
- Koge Micro Tech Co., Ltd. Selenoid Valve, KSV05 Series. Available online: https://www.koge.com/ (accessed on 31 December 2024).
- ARDUINO. Arduino UNO WIFI REV2. Available online: https://store.arduino.cc/en-pt/products (accessed on 31 December 2024).
- Air Flow Developments Ltd. FL 1.5 Manometer. Available online: https://www.bsria.com/doc/Bv6AdB/ (accessed on 31 December 2024).
- Keithley. Keithley 2000 Series: 6½-Digit Multimeter with Scanning. Available online: https://www.tek.com/tektronix-and-keithley-digital-multimeter (accessed on 31 December 2024).
- National Instruments. MyDAQ Data Acquisition Board. Available online: https://www.ni.com/pt (accessed on 31 December 2024).
- General Electric Company. Measurement and Control. Druck DPI611—Portable Pressure Calibrator. Available online: https://www.neoinstruments.com (accessed on 31 December 2024).
- Li, Y.; Li, F.; Li, Y.; Cui, X.; Li, J.; Zhi, H.; Wang, W.; Sun, Y.; Cui, W. Effect of cuff positioning on the accuracy of blood pressure measurement with automated electronic blood pressure monitors. J. Clin. Hypertens. 2020, 22, 1163–1172. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Paul Hartmann, A.G. Veroval DUO CONTROL. Available online: https://www.veroval.info/en-ae/technology (accessed on 31 December 2024).
- DATREND Systems. Vpad-BP NIBP Simulator. Available online: https://www.datrend.com/product/vpad-bp/ (accessed on 31 December 2024).
- O’Brien, E.; Petrie, J.; Littler, W.; de Swiet, M.; Padfield, P.L.; O’Malley, K.; Jamieson, M.; Altman, D.; Bland, M.; Atkins, N. Protocol for the evaluation of automated and semi-automated blood pressure measuring devices with special reference to ambulatory systems. J. Hypertens. 1990, 8, 607–619. [Google Scholar] [CrossRef]
- GE Healthcare—Product Specifications—DINAMAP® PRO 300. Vital Signs Monitor, DINAMAP® PRO 300 Vital Signs Monitor. Available online: https://www.medlikim.com/wp-content/ (accessed on 31 December 2024).
Component/Device/Reference | Main Specifications |
---|---|
Pressure Sensor NXP SEMICONDUCTORS MP3V5050 | measures pressure range between 0 and 50 kPa; 2.5% maximum error relative to VFSS, whose typical value is equal to 2.7 V; sensitivity equal to 54 mV/kPa; response time equal to 1.0 ms and temperature compensation capabilities in the temperature range between −40 °C and +125 °C |
Electro-Pneumatic Pressure Regulator (EPPR) PARKER-OEM-P | pressure range between 0 and 5 p.s.i.; control voltage of 0–5 V; monitor output voltage 0–5 V; pressure accuracy of ±1.5% of full-scale maximum; response time lower than 15 ms; linearity better than 1.5% of full-scale maximum and availability of internal vent |
Pressure Calibrator DRUCK DPI611 | pressure range between −1 and 1 bar; accuracy of 0.0185% of FS and total uncertainty of 0.025% of FS |
Release Valve KOGE KSV05 | exhaust time lower than 6.0 s for a pressure reduction from 300 mmHg to 15 mmHg; resistance 100 Ω ± 10% and leakage maximum of 3 mmHg/min for a pressure equal to 300 mmHg |
Data Acquisition Board National Instruments MYDAQ | two differential analog input channels with 16-bit resolution; maximum sampling rate of 200 kS/s; timing resolution of 10 ns; analog input range ±2 V and ±10 V and typical accuracy of 4.9 mV for analog input range ±2 V |
Digital Multimeter Keithley 2000 SERIES | a total of 6 ½ digits; minimum voltage resolution of 0.1 μ for 100 mV scale; linearity for 10 V DC range equal to ±(1 ppm of reading + 2 ppm of range) and accuracy for a DC voltage range from 100 nV to 1 kV equal to 0.002% |
SBP_DBP_MAPAMP | SBP | DBP | MAP | Absolute Error (mmHg) | Relative Error (%) | HBR_M (av) | HBR_M (std) | N_Peaks | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SBP | DBP | MAP | SBP | DBP | MAP | |||||||
120_80_100_3 | 121.2 | 81.1 | 100.2 | 1.2 | 1.1 | 0.2 | 1.0 | 1.3 | 0.2 | 88.1 | 1.2 | 28 |
120_80_100_6 | 120.1 | 81.5 | 100.4 | 0.1 | 1.5 | 0.4 | 0.1 | 1.9 | 0.4 | 90.7 | 0.2 | 29 |
125_85_100_3 | 123.4 | 84.6 | 100.4 | −1.6 | −0.4 | 0.4 | −1.3 | −0.5 | 0.4 | 91.8 | 0.4 | 28 |
125_85_100_6 | 124.2 | 86.8 | 100.5 | −0.8 | 1.8 | 0.5 | −0.6 | 2.1 | 0.5 | 91.1 | 0.4 | 28 |
135_90_100_3 | 133.4 | 90.8 | 99.7 | −1.6 | 0.8 | −0.3 | −1.2 | 0.9 | −0.3 | 91.5 | 0.3 | 32 |
135_90_100_6 | 135.5 | 88.8 | 100.4 | 0.5 | −1.2 | 0.4 | 0.4 | −1.3 | 0.4 | 89.1 | 0.3 | 32 |
150_100_120_3 | 149.7 | 101.4 | 120.3 | −0.3 | 1.4 | 0.3 | −0.2 | 1.4 | 0.3 | 90.0 | 1.5 | 35 |
150_100_120_6 | 148.8 | 98.9 | 120.4 | −1.2 | −1.1 | 0.4 | −0.8 | −1.1 | 0.3 | 91.7 | 8.9 | 35 |
AMP | SBP | DBP | MAP | Absolute Error (mmHg) | Relative Error (%) | HBR_M (av) | HBR_M (std) | N_Peaks | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SBP | DBP | MAP | SBP | DBP | MAP | |||||||
1 | 108.4 | 91.6 | 100.0 | −11.6 | 11.6 | 0.0 | −9.7 | 14.5 | 0.0 | NaN | 0.0 | 10 |
2 | 123.1 | 83.6 | 99.8 | 3.1 | 3.6 | −0.2 | 2.6 | 4.4 | −0.2 | 87.9 | 1.0 | 28 |
3 | 120.3 | 78.8 | 99.3 | 0.3 | −1.2 | −0.7 | 0.3 | −1.5 | −0.7 | 91.4 | 0.5 | 29 |
4 | 121.4 | 81.0 | 99.3 | 1.4 | 1.0 | −0.7 | 1.2 | 1.2 | −0.7 | 88.1 | 0.2 | 29 |
5 | 118.2 | 81.7 | 100.2 | −1.8 | 1.7 | 0.2 | −1.5 | 2.1 | 0.2 | 90.3 | 0.3 | 29 |
6 | 120.7 | 81.7 | 99.9 | 0.7 | 1.7 | −0.1 | 0.6 | 2.1 | −0.1 | 89.2 | 0.2 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, J.M.C.D.; Ribeiro, G.; Postolache, O. A Flexible, Low-Cost and Algorithm-Independent Calibrator for Automated Blood Pressure Measuring Devices. Appl. Sci. 2025, 15, 3198. https://doi.org/10.3390/app15063198
Pereira JMCD, Ribeiro G, Postolache O. A Flexible, Low-Cost and Algorithm-Independent Calibrator for Automated Blood Pressure Measuring Devices. Applied Sciences. 2025; 15(6):3198. https://doi.org/10.3390/app15063198
Chicago/Turabian StylePereira, José Miguel Costa Dias, Gonçalo Ribeiro, and Octavian Postolache. 2025. "A Flexible, Low-Cost and Algorithm-Independent Calibrator for Automated Blood Pressure Measuring Devices" Applied Sciences 15, no. 6: 3198. https://doi.org/10.3390/app15063198
APA StylePereira, J. M. C. D., Ribeiro, G., & Postolache, O. (2025). A Flexible, Low-Cost and Algorithm-Independent Calibrator for Automated Blood Pressure Measuring Devices. Applied Sciences, 15(6), 3198. https://doi.org/10.3390/app15063198