Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (472)

Search Parameters:
Keywords = anchor-free

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 1534 KB  
Article
Accurate and Scalable DV-Hop-Based WSN Localization with Parameter-Free Fire Hawk Optimizer
by Doğan Yıldız
Mathematics 2025, 13(20), 3246; https://doi.org/10.3390/math13203246 - 10 Oct 2025
Abstract
Wireless Sensor Networks (WSNs) have emerged as a foundational technology for monitoring and data collection in diverse domains such as environmental sensing, smart agriculture, and industrial automation. Precise node localization plays a vital role in WSNs, enabling effective data interpretation, reliable routing, and [...] Read more.
Wireless Sensor Networks (WSNs) have emerged as a foundational technology for monitoring and data collection in diverse domains such as environmental sensing, smart agriculture, and industrial automation. Precise node localization plays a vital role in WSNs, enabling effective data interpretation, reliable routing, and spatial context awareness. The challenge intensifies in range-free settings, where a lack of direct distance data demands efficient indirect estimation methods, particularly in large-scale, energy-constrained deployments. This work proposes a hybrid localization framework that integrates the distance vector-hop (DV-Hop) range-free localization algorithm with the Fire Hawk Optimizer (FHO), a nature-inspired metaheuristic method inspired by the predatory behavior of fire hawks. The proposed FHODV-Hop method enhances location estimation accuracy while maintaining low computational overhead by inserting the FHO into the third stage of the DV-Hop algorithm. Extensive simulations are conducted on multiple topologies, including random, circular, square-grid, and S-shaped, under various network parameters such as node densities, anchor rates, population sizes, and communication ranges. The results show that the proposed FHODV-Hop model achieves competitive performance in Average Localization Error (ALE), localization ratio, convergence behavior, computational, and runtime efficiency. Specifically, FHODV-Hop reduces the ALE by up to 35% in random deployments, 25% in circular networks, and nearly 45% in structured square-grid layouts compared to the classical DV-Hop. Even under highly irregular S-shaped conditions, the algorithm achieves around 20% improvement. Furthermore, convergence speed is accelerated by approximately 25%, and computational time is reduced by nearly 18%, demonstrating its scalability and practical applicability. Therefore, these results demonstrate that the proposed model offers a promising balance between accuracy and practicality for real-world WSN deployments. Full article
20 pages, 3732 KB  
Article
Numerical Verification of an Anchor-Free Jack-Up Installation Method for Offshore Wind Turbine Structures Using Tugboat Fleet
by Min Han, Young IL Park, A Ra Ko, Jin Young Sung and Jeong-Hwan Kim
J. Mar. Sci. Eng. 2025, 13(10), 1906; https://doi.org/10.3390/jmse13101906 - 3 Oct 2025
Viewed by 259
Abstract
With the rapid expansion of offshore wind power, efficient installation methods for 10 MW offshore wind turbines (OWTs) are increasingly being required. Conventional approaches using installation vessels, heavy-lift barges, and mooring systems incur high costs, long schedules, and weather-related constraints, particularly in harsh [...] Read more.
With the rapid expansion of offshore wind power, efficient installation methods for 10 MW offshore wind turbines (OWTs) are increasingly being required. Conventional approaches using installation vessels, heavy-lift barges, and mooring systems incur high costs, long schedules, and weather-related constraints, particularly in harsh seas such as the West Sea and Jeju. This study investigates an anchor-free installation method for jack-up-type OWTs employing tugboats instead of specialized vessels. Environmental loads were estimated with MOSES and AQWA, and frequency-domain analyses were performed to evaluate wave responses and towline tensions. Results showed that maximum tensions remained below both the Safe Working Load of towlines and the Effective Bollard Pull of tugboats during all spudcan lowering stages. Even under conservative OPLIM conditions, feasibility was confirmed. The findings indicate that the proposed tug-assisted method ensures adequate station-keeping capability while reducing cost, construction time, and weather dependency, presenting a practical alternative for large-scale OWT installation. Full article
Show Figures

Figure 1

14 pages, 9892 KB  
Article
Research on Chromium-Free Passivation and Corrosion Performance of Pure Copper
by Xinghan Yu, Ziye Xue, Haibo Chen, Wei Li, Hang Li, Jing Hu, Jianli Zhang, Qiang Chen, Guangya Hou and Yiping Tang
Materials 2025, 18(19), 4585; https://doi.org/10.3390/ma18194585 - 2 Oct 2025
Viewed by 433
Abstract
In response to the actual needs of pure copper bonding wires, it is crucial to develop a chromium-free passivator that is environmentally friendly and has excellent corrosion resistance. In this study, three different composite organic formulations of chromium-free passivation solutions are selected: 2-Amino-5-mercapto-1,3,4 [...] Read more.
In response to the actual needs of pure copper bonding wires, it is crucial to develop a chromium-free passivator that is environmentally friendly and has excellent corrosion resistance. In this study, three different composite organic formulations of chromium-free passivation solutions are selected: 2-Amino-5-mercapto-1,3,4 thiadiazole (AMT) + 1-phenyl-5-mercapto tetrazolium (PMTA), 2-mercaptobenzimidazole (MBI) + PMTA, and Hexadecanethiol (CHS) + sodium dodecyl sulfate (SDS). The performance analysis and corrosion mechanism were compared with traditional hexavalent chromium passivation through characterization techniques such as XRD, SEM, and XPS. The results show that the best corrosion resistance formula is the combination of the PMTA and MBI passivation agent, and all its performances are superior to those of hexavalent chromium. The samples treated with this passivation agent corrode within 18 s in the nitric acid drop test, which is better than the 16 s for Cr6+ passivation. The samples do not change color after being immersed in salt water for 48 h. Electrochemical tests and high-temperature oxidation test also indicate better corrosion resistance than Cr6+ passivation. Through the analysis of functional groups and bonding, the excellent passivation effect is demonstrated to be achieved by the synergistic action of the chemical adsorption film formation of PMTA and the anchoring effect of MBI. Eventually, a dense Cu-PMTA-BMI film is formed on the surface, which effectively blocks the erosion of the corrosive medium and significantly improves the corrosion resistance. Full article
(This article belongs to the Special Issue Antibacterial and Corrosion-Resistant Coatings for Marine Application)
Show Figures

Figure 1

14 pages, 2921 KB  
Article
Design and Validation of an Augmented Reality Training Platform for Patient Setup in Radiation Therapy Using Multimodal 3D Modeling
by Jinyue Wu, Donghee Han and Toshioh Fujibuchi
Appl. Sci. 2025, 15(19), 10488; https://doi.org/10.3390/app151910488 - 28 Sep 2025
Viewed by 217
Abstract
This study presents the development and evaluation of an Augmented Reality (AR)-based training system aimed at improving patient setup accuracy in radiation therapy. Leveraging Microsoft HoloLens 2, the system provides an immersive environment for medical staff to enhance their understanding of patient setup [...] Read more.
This study presents the development and evaluation of an Augmented Reality (AR)-based training system aimed at improving patient setup accuracy in radiation therapy. Leveraging Microsoft HoloLens 2, the system provides an immersive environment for medical staff to enhance their understanding of patient setup procedures. High-resolution 3D anatomical models were reconstructed from CT scans using 3D Slicer, while Luma AI was employed to rapidly capture complete body surface models. Due to limitations in each method—such as missing extremities or back surfaces—Blender was used to merge the models, improving completeness and anatomical fidelity. The AR application was developed in Unity, employing spatial anchors and 125 × 125 mm2 QR code markers to stabilize and align virtual models in real space. System accuracy testing demonstrated that QR code tracking achieved millimeter-level variation, with an expanded uncertainty of ±2.74 mm. Training trials for setup showed larger deviations in the X (left–right), Y (up-down), and Z (front-back) axes at the centimeter scale. This meant that we were able to quantify the user’s patient setup skills. While QR code positioning was relatively stable, manual placement of markers and the absence of real-time verification contributed to these errors. The system offers a radiation-free and interactive platform for training, enhancing spatial awareness and procedural skills. Future work will focus on improving tracking stability, optimizing the workflow, and integrating real-time feedback to move toward clinical applicability. Full article
(This article belongs to the Special Issue Novel Technologies in Radiology: Diagnosis, Prediction and Treatment)
Show Figures

Figure 1

12 pages, 2144 KB  
Article
Microvascular ALT-Flap Reconstruction for Distal Forearm and Hand Defects: Outcomes and Single-Case Application of a Bone-Anchored Venous Anastomosis
by Adrian Matthias Vater, Matthias Michael Aitzetmüller-Klietz, Philipp Edmund Lamby, Julia Stanger, Rainer Meffert, Karsten Schmidt, Michael Georg Jakubietz and Rafael Gregor Jakubietz
J. Clin. Med. 2025, 14(19), 6807; https://doi.org/10.3390/jcm14196807 - 26 Sep 2025
Viewed by 289
Abstract
Background: Reconstruction of distal forearm and hand soft tissue defects remains a complex surgical challenge due to the functional and aesthetic significance of the region. Several flap options have been established such as the posterior interosseous artery flap (PIA) or temporalis fascia flap [...] Read more.
Background: Reconstruction of distal forearm and hand soft tissue defects remains a complex surgical challenge due to the functional and aesthetic significance of the region. Several flap options have been established such as the posterior interosseous artery flap (PIA) or temporalis fascia flap (TFF), yet the anterolateral thigh flap (ALT) has gained increasing attention for its versatility and favorable risk profile. Methods: We retrospectively analyzed 12 patients (7 males, 5 females; mean age 51.8 years) who underwent free microvascular ALT reconstruction for distal forearm and hand defects between May 2020 and May 2025. Etiologies included infection, chemical burns, explosion injuries, and traffic accidents. The mean defect size was 75.4 cm2, and the average operative time was 217 min. Secondary flap thinning was performed in eight cases. In one patient without available recipient veins, a pedicle vein was anastomosed using a coupler device anchored into a cortical window of the distal radius to establish venous outflow via the bone marrow. Results: All flaps demonstrated complete survival with successful integration. Minor complications included transient venous congestion in one case and superficial wound dehiscence in four cases. Functional outcomes were favorable, with postoperative hand function rated as very good in 10 of 12 patients at follow-up. The bone-anchored venous anastomosis provided effective venous drainage in the salvage case. Conclusions: The free microvascular ALT is a reliable and highly adaptable method for distal forearm and hand reconstruction. It provides excellent soft tissue coverage, allows for secondary contouring, and achieves both functional and aesthetic goals. Furthermore, intraosseous venous anastomosis using a coupler device might represent a novel adjunct that may expand reconstructive options in cases with absent or unusable recipient veins. Full article
(This article belongs to the Special Issue Microsurgery: Current and Future Challenges)
Show Figures

Figure 1

20 pages, 55265 KB  
Article
Learning Precise Mask Representation for Siamese Visual Tracking
by Peng Yang, Fen Hu, Qinghui Wang and Lei Dou
Sensors 2025, 25(18), 5743; https://doi.org/10.3390/s25185743 - 15 Sep 2025
Viewed by 509
Abstract
Siamese network trackers are a prominent paradigm in visual object tracking due to efficient similarity learning. However, most Siamese trackers are restricted to the bounding box tracking format, which often fails to accurately describe the appearance of non-rigid targets with complex deformations. Additionally, [...] Read more.
Siamese network trackers are a prominent paradigm in visual object tracking due to efficient similarity learning. However, most Siamese trackers are restricted to the bounding box tracking format, which often fails to accurately describe the appearance of non-rigid targets with complex deformations. Additionally, since the bounding box frequently includes excessive background pixels, trackers are sensitive to similar distractors. To address these issues, we propose a novel segmentation-assisted model that learns binary mask representations of targets. This model is generic and can be seamlessly integrated into various Siamese frameworks, enabling pixel-wise segmentation tracking instead of the suboptimal bounding box tracking. Specifically, our model features two core components: (i) a multi-stage precise mask representation module composed of cascaded U-Net decoders, designed to predict segmentation masks of targets, and (ii) a saliency localization head based on the Euclidean model, which extracts spatial position constraints to boost the decoder’s discriminative capability. Extensive experiments on five tracking benchmarks demonstrate that our method effectively improves the performance of both anchor-based and anchor-free Siamese trackers. Notably, on GOT-10k, our method increases the AO scores of the baseline trackers SiamRPN++ (anchor-based) and SiamBAN (anchor-free) by 5.2% and 7.5%, respectively while maintaining speeds exceeding 60 FPS. Full article
(This article belongs to the Special Issue Deep Learning Technology and Image Sensing: 2nd Edition)
Show Figures

Figure 1

22 pages, 8527 KB  
Article
MCEM: Multi-Cue Fusion with Clutter Invariant Learning for Real-Time SAR Ship Detection
by Haowei Chen, Manman He, Zhen Yang and Lixin Gan
Sensors 2025, 25(18), 5736; https://doi.org/10.3390/s25185736 - 14 Sep 2025
Viewed by 503
Abstract
Small-vessel detection in Synthetic Aperture Radar (SAR) imagery constitutes a critical capability for maritime surveillance systems. However, prevailing methodologies such as sea-clutter statistical models and deep learning-based detectors face three fundamental limitations: weak target scattering signatures, complex sea clutter interference, and computational inefficiency. [...] Read more.
Small-vessel detection in Synthetic Aperture Radar (SAR) imagery constitutes a critical capability for maritime surveillance systems. However, prevailing methodologies such as sea-clutter statistical models and deep learning-based detectors face three fundamental limitations: weak target scattering signatures, complex sea clutter interference, and computational inefficiency. These challenges create inherent trade-offs between noise suppression and feature preservation while hindering high-resolution representation learning. To address these constraints, we propose the Multi-cue Efficient Maritime detector (MCEM), an anchor-free framework integrating three synergistic components: a Feature Extraction Module (FEM) with scale-adaptive convolutions for enhanced signature representation; a Feature Fusion Module (F2M) decoupling target-background ambiguities; and a Detection Head Module (DHM) optimizing accuracy-efficiency balance. Comprehensive evaluations demonstrate MCEM’s state-of-the-art performance: achieving 45.1% APS on HRSID (+2.3pp over YOLOv8) and 77.7% APL on SSDD (+13.9pp over same baseline), the world’s most challenging high-clutter SAR datasets. The framework enables robust maritime surveillance in complex oceanic conditions, particularly excelling in small target detection amidst high clutter. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

23 pages, 2150 KB  
Article
Trajectory-Regularized Localization in Asynchronous Acoustic Networks via Enhanced PSO Optimization
by Jingyi Zhou, Qiushi Zhao, Zihan Feng, Kunyu Wu, Lei Zhang and Hao Qin
Sensors 2025, 25(18), 5722; https://doi.org/10.3390/s25185722 - 13 Sep 2025
Viewed by 511
Abstract
Indoor localization of fast-moving targets under asynchronous acoustic sensing is severely constrained by non-line-of-sight (NLOS) propagation and sparse anchor deployments. To overcome these limitations, we propose a trajectory reconstruction-based framework that simultaneously exploits time-of-arrival (ToA) and frequency-of-arrival (FoA) measurements. By embedding temporal continuity [...] Read more.
Indoor localization of fast-moving targets under asynchronous acoustic sensing is severely constrained by non-line-of-sight (NLOS) propagation and sparse anchor deployments. To overcome these limitations, we propose a trajectory reconstruction-based framework that simultaneously exploits time-of-arrival (ToA) and frequency-of-arrival (FoA) measurements. By embedding temporal continuity and motion dynamics into the localization model, we cast the problem as a constrained nonlinear least squares optimization over the entire trajectory rather than isolated snapshots. To efficiently solve this high-dimensional problem, we design an enhanced particle swarm optimization (PSO) algorithm featuring adaptive phase switching and noise-resilient updates. Simulation results under varying noise conditions show that our method achieves superior accuracy and robustness compared to conventional least squares estimators, especially for high-speed trajectories. Real-world experiments using a passive acoustic testbed further validate the effectiveness of the proposed framework, with over 90% of localization errors confined within 3 m. The method is model-driven, training-free, and scalable to asynchronous and anchor-sparse environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

27 pages, 26151 KB  
Article
EfficientRDet: An EfficientDet-Based Framework for Precise Ship Detection in Remote Sensing Imagery
by Weikang Zuo and Shenghui Fang
Remote Sens. 2025, 17(18), 3160; https://doi.org/10.3390/rs17183160 - 11 Sep 2025
Viewed by 428
Abstract
Detecting arbitrarily oriented ships in remote sensing images remains challenging due to diverse orientations, complex backgrounds, and scale variations, leading to a struggle in balancing detector accuracy with efficiency. We propose EfficientRDet, an enhanced rotated-ship detection algorithm built upon the EfficientDet framework. EfficientRDet [...] Read more.
Detecting arbitrarily oriented ships in remote sensing images remains challenging due to diverse orientations, complex backgrounds, and scale variations, leading to a struggle in balancing detector accuracy with efficiency. We propose EfficientRDet, an enhanced rotated-ship detection algorithm built upon the EfficientDet framework. EfficientRDet adapts to rotated objects via an angle prediction branch and then significantly boosts accuracy with a novel pseudo-two-stage paradigm comprising a Rotated-Bounding-Box Refinement Branch (RRB) and a Class-Score Refinement Branch (CRB). Further precision is gained through an optimized Enhanced BiFPN (E-BiFPN), an Attention Head, and Distribution Focal (DF) angle representation. Extensive experiments on the HRSC2016 (optical) and RSDD-SAR datasets show that EfficientRDet consistently outperforms state-of-the-art methods, achieving 97.60% AP50 on HRSC2016 and 93.58% AP50 on RSDD-SAR. Comprehensive ablation studies confirm the effectiveness of all proposed mechanisms. EfficientRDet thus offers a promising and practical solution for precise, efficient ship detection across diverse remote sensing imagery. Full article
Show Figures

Figure 1

19 pages, 1074 KB  
Article
Inflammation-Based Prognostication in Advanced-Stage NSCLC: A Retrospective Cohort Study
by Carina Golban, Cristina-Miriam Blaga, Norberth-Istvan Varga, Alina Gabriela Negru, Delia Hutanu, Sorin Saftescu and Serban Mircea Negru
Cancers 2025, 17(17), 2910; https://doi.org/10.3390/cancers17172910 - 5 Sep 2025
Viewed by 827
Abstract
Background/Objectives: Neutrophil-to-lymphocyte ratio (NLR), a marker of systemic inflammation, has prognostic value in non-small cell lung cancer (NSCLC), but its longitudinal performance in routine care is unclear. We evaluated baseline and 12-month changes in NLR and hemoglobin in a single-center, Eastern European [...] Read more.
Background/Objectives: Neutrophil-to-lymphocyte ratio (NLR), a marker of systemic inflammation, has prognostic value in non-small cell lung cancer (NSCLC), but its longitudinal performance in routine care is unclear. We evaluated baseline and 12-month changes in NLR and hemoglobin in a single-center, Eastern European cohort. Methods: In this retrospective study, 180 adults with histologically confirmed NSCLC, diagnosed May 2022–April 2024 at a Romanian tertiary center, were followed until 30 April 2025. Baseline demographics, tumor characteristics, molecular profiles, laboratory parameters, and treatments were extracted from electronic health records. Progression-free survival (PFS) was the primary endpoint, overall survival (OS) the secondary, analyzed using Kaplan–Meier curves and Cox proportional hazards models. An additional treatment-start-anchored sensitivity analysis in treated patients was conducted. Results: The cohort (median age 67.8 years, 68.9% stage IV) received chemo-immunotherapy (58.9%), immunotherapy (26.7%), chemotherapy (9.4%), or supportive care (5.0%). Median for PFS was 8.2 months and for OS 14.5 months. A high baseline NLR (≥3, 58.9%) increased progression risk (HR 1.60, 95% CI 1.10–2.32, p = 0.014), with a trend for worse OS (HR 1.45, 95% CI 0.99–2.12). A 12-month NLR increase (62.2%) further elevated progression risk (HR 1.52, 95% CI 1.05–2.20, p = 0.026). Low hemoglobin (<12 g/dL) had a non-significant effect (HR 1.38, 95% CI 0.97–1.96, p = 0.074). PD-L1 ≥ 50% and chemo-immunotherapy correlated with longer PFS. Findings were consistent in the treatment-start anchored sensitivity analysis. Conclusions: These exploratory findings suggest that inexpensive hematologic markers can complement clinical assessment in advanced-stage NSCLC; prospective multi-center validation is warranted. Full article
(This article belongs to the Special Issue Clinical Pathology of Lung Cancer (2nd Edition))
Show Figures

Figure 1

18 pages, 5808 KB  
Article
Numerical Investigation of the Reinforcement Effect of Fully Grouted Bolts on Layered Rock Masses Under Triaxial Loading with One Free Surface
by Shiming Jia, Yiming Zhao, Zhengzheng Xie, Zhe Xiang and Yanpei An
Appl. Sci. 2025, 15(17), 9689; https://doi.org/10.3390/app15179689 - 3 Sep 2025
Viewed by 509
Abstract
The layered composite roof of a coal mine roadway exhibits heterogeneity, with pronounced variations in layer thickness and strength. Fully grouted rock bolts installed in such layered roofs usually penetrate two or more strata and bond with them to form an integrated anchorage [...] Read more.
The layered composite roof of a coal mine roadway exhibits heterogeneity, with pronounced variations in layer thickness and strength. Fully grouted rock bolts installed in such layered roofs usually penetrate two or more strata and bond with them to form an integrated anchorage system. Roof failure typically initiates in the shallow strata and progressively propagates to deeper layers; thus, the mechanical properties of the rock at the free surface critically influence the overall stability of the layered roof and the load-transfer behavior of the bolts. In this study, a layered rock mass model was developed using three-dimensional particle flow code (PFC3D), and a triaxial loading scheme with a single free surface was applied to investigate the effects of free-surface rock properties, support parameters, and confining pressure on the load-bearing performance of the layered rock mass. The main findings are as follows: (1) Without support, the ultimate bearing capacity of a hard-rock-free-surface specimen is about 1.2 times that of a soft-rock-free-surface specimen. Applying support strengths of 0.2 MPa and 0.4 MPa enhanced the bearing capacity by 29–38% and 46–75%, respectively. (2) The evolution of axial stress in the bolts reflects the migration of the load-bearing core of the anchored body. Enhancing support strength improves the stress state of bolts and effectively mitigates the effects of high-stress conditions. (3) Under loading, soft rock layers exhibit greater deformation than hard layers. A hard-rock free surface effectively resists extrusion deformation from deeper soft rocks and provides higher bearing capacity. Shallow free-surface failure is significantly suppressed in anchored bodies, and “compression arch” zones are formed within multiple layers due to bolt support. Full article
(This article belongs to the Special Issue Innovations in Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

32 pages, 13967 KB  
Article
MCH-YOLOv12: Research on Surface Defect Detection Algorithm for Aluminum Profiles Based on Improved YOLOv12
by Yuyu Sun, Heqi Yan, Zongkai Shang and Mingxiao Yang
Sensors 2025, 25(17), 5389; https://doi.org/10.3390/s25175389 - 1 Sep 2025
Viewed by 911
Abstract
Surface defect detection in aluminum profiles is critical for maintaining product quality and ensuring efficient industrial production. However, existing detection algorithms often struggle to address the challenges of imbalanced defect categories, low detection accuracy for small-scale defects, and irregular flaw geometries. These limitations [...] Read more.
Surface defect detection in aluminum profiles is critical for maintaining product quality and ensuring efficient industrial production. However, existing detection algorithms often struggle to address the challenges of imbalanced defect categories, low detection accuracy for small-scale defects, and irregular flaw geometries. These limitations compromise both detection accuracy and algorithmic robustness. Accordingly, we proposed MCH-YOLOv12—an improved YOLOv12-based algorithm for precise defect detection. Firstly, we enhanced the original Ghost convolution by incorporating multi-scale feature extraction and named the improved version MultiScaleGhost, which replaced the standard convolutions in the Backbone of YOLOv12. This improvement mitigated the limitations of single-scale convolution, enhancing feature representation and the detection of irregularly shaped defects. Secondly, we addressed the directional and edge-specific nature of defects by enhancing the traditional Channel-wise Gated Linear Unit (CGLU). We proposed the Spatial-Channel Collaborative Gated Linear Unit (SCCGLU), which was embedded after the C3k2 module in the Neck of YOLOv12 to better capture fine-grained features. Finally, we designed a Hybrid Head combining anchor-based and anchor-free detection to improve adaptability to defects of various sizes and shapes. Experimental results on an aluminum profile defect dataset demonstrated improved accuracy, reduced category imbalance, and lower parameters and Floating Point Operations (FLOPs), making the algorithm suitable for real-time industrial inspection. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

13 pages, 2822 KB  
Article
Doxorubicin-Loaded Nanoparticle Treatment Enhances Diffuse Large B-Cell Lymphoma Cell Death
by Ihab Abd-Elrahman, Noha Khairi, Taher Nassar, Riki Perlman and Dina Ben Yehuda
Cells 2025, 14(17), 1334; https://doi.org/10.3390/cells14171334 - 28 Aug 2025
Viewed by 710
Abstract
Drug resistance remains a major obstacle in cancer treatment despite advances in therapeutic regimens. To address this, we explored the potential of Doxorubicin (Dox) delivery in poly (lactide-co-glycolic acid) (PLGA) nanoparticles to enhance Diffuse large B-cell lymphoma (DLBCL) cell death. This research investigates [...] Read more.
Drug resistance remains a major obstacle in cancer treatment despite advances in therapeutic regimens. To address this, we explored the potential of Doxorubicin (Dox) delivery in poly (lactide-co-glycolic acid) (PLGA) nanoparticles to enhance Diffuse large B-cell lymphoma (DLBCL) cell death. This research investigates the potential of Doxorubicin and advanced delivery methods. We used PLGA nanoparticles with Oleyl cysteineamide (OCA); its amphiphilic nature enables interfacial anchoring and thiol surface functionalization of PLGA NPs. Compared to PLGA-NPs, PLGA-OCA-NPs enhance immunity and induce tumor cell death. They also show significant apoptotic cell death and induced immune responses in DLBCL mouse models. Dox-conjugated PLGA-OCA-NPs (DOX-OCA) exhibit significant in vitro and in vivo anticancer activity compared to free DOX, showing remarkable antitumor effects with reduced systemic toxicity in mouse models. Our findings underscore the promising potential of PLGA-OCA-NPs in DLBCL treatment, offering a hopeful future in cancer therapy. This innovative delivery system offers enhanced immune responses and effectively addresses toxicity concerns, marking a significant step forward in cancer therapy. Full article
(This article belongs to the Special Issue Progress of Nanoparticles in the Treatment of Cancers)
Show Figures

Figure 1

16 pages, 11273 KB  
Article
Structure Modeling and Virtual Screening with HCAR3 to Discover Potential Therapeutic Molecules
by Yulan Liu, Yunlu Peng, Zhihao Zhao, Yilin Guo, Bin Lin and Ying-Chih Chiang
Pharmaceuticals 2025, 18(9), 1290; https://doi.org/10.3390/ph18091290 - 28 Aug 2025
Viewed by 590
Abstract
Background: Hydroxycarboxylic acid receptor 3 (HCAR3) is a receptor that is mainly expressed in human adipose tissue. It can inhibit lipolysis through the inhibition of adenylyl cyclase; thus, it is closely related to the regulation of lipids in the human body. This [...] Read more.
Background: Hydroxycarboxylic acid receptor 3 (HCAR3) is a receptor that is mainly expressed in human adipose tissue. It can inhibit lipolysis through the inhibition of adenylyl cyclase; thus, it is closely related to the regulation of lipids in the human body. This makes HCAR3 a compelling target for developing drugs against dyslipidemia. Notably, the reported active compounds for HCAR3 are all carboxylic acids. This observation is in line with the fact that ARG111 has been reported as the key residue to anchor the active compound in a closely related homologous protein—HCAR2. Methods: In this study, we aim to discover new chemicals, through virtual screening, that may bind with HCAR3. As there are several choices for the receptor conformation, cross-docking was conducted and the root-mean-square deviation of the docking pose from the conformation of the crystal ligand was employed to determine the best receptor conformation for screening. Ligands from the ZINC20 database were screened through molecular docking, and 30 candidates were subjected to 100 ns MD simulations. Six stable complexes were further assessed by umbrella sampling to estimate binding affinity. Results: The homology model (HCAR3_homology) was selected as the receptor. Following the protocol determined by the retrospective docking process, prospective docking was conducted to screen the ligands from the ZINC20 database. Subsequently, the top 30 compounds with a good docking score and a good interaction with ARG111 were subjected to 100 ns molecular dynamics (MD) simulations, and their binding stability was analyzed based on the resulting trajectories. Finally, six compounds were chosen for binding free energy calculation using umbrella sampling; all showed negative binding affinities. Conclusions: All six compounds selected for umbrella sampling showed negative binding affinities, suggesting their potential as novel HCAR3 ligands for the development of drugs against dyslipidemia. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

20 pages, 3351 KB  
Article
Amphiphobic Modification of Sandstone Surfaces Using Perfluorinated Siloxane for Enhanced Oil Recovery
by Fajun Guo, Huajiao Guan, Hong Chen, Yan Zhao, Yayuan Tao, Tong Guan, Ruiyang Liu, Wenzhao Sun, Huabin Li, Xudong Yu and Lide He
Processes 2025, 13(8), 2627; https://doi.org/10.3390/pr13082627 - 19 Aug 2025
Viewed by 466
Abstract
This study establishes a covalently anchored wettability alteration strategy for enhanced oil recovery (EOR) using perfluorinated siloxane (CQ), addressing limitations of conventional modifiers reliant on unstable physical adsorption. Instead, CQ forms irreversible chemical bonds with rock surfaces via Si-O-Si linkages (verified by FT-IR/EDS), [...] Read more.
This study establishes a covalently anchored wettability alteration strategy for enhanced oil recovery (EOR) using perfluorinated siloxane (CQ), addressing limitations of conventional modifiers reliant on unstable physical adsorption. Instead, CQ forms irreversible chemical bonds with rock surfaces via Si-O-Si linkages (verified by FT-IR/EDS), imparting durable amphiphobicity with water and oil contact angles of 135° and 116°, respectively. This modification exhibits exceptional stability: increasing salinity from 2536 to 10,659 mg/L reduced angles by only 6° (water) and 4° (oil), while 70 °C aging in aqueous/oleic phases preserved amphiphobicity without reversion—supported by >300 °C thermal decomposition in TGA; confirming chemical bonding durability. Mechanistic analysis identifies dual EOR pathways: amphiphobic surfaces lower rolling angles, surface free energy (SFE), and fluid adhesion to facilitate pore migration, while CQ intrinsically reduces oil-water interfacial tension (IFT). Core displacement experiments showed that injecting 0.05 wt% CQ followed by secondary waterflooding yielded an additional 10–18% increase in oil recovery. This improvement is attributed to enhanced mobilization of residual oil, with greater EOR efficacy observed in smaller pore throats. Field trials at the Huabei Oilfield validated practical applicability: Production rates of test wells C-9 and C-17 increased several-fold, accompanied by reduced water cuts. Integrating fundamental research, laboratory experiments, and field validation, this work systematically demonstrates a wettability-alteration-based EOR method and offers important technical insights for analogous reservoir development. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop