Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = antalarmin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2752 KB  
Article
Design, Synthesis, and Biological Evaluations of Novel Thiazolo[4,5-d]pyrimidine Corticotropin Releasing Factor (CRF) Receptor Antagonists as Potential Treatments for Stress Related Disorders and Congenital Adrenal Hyperplasia (CAH)
by Md Rabiul Islam, Christos Markatos, Ioannis Pirmettis, Minas Papadopoulos, Vlasios Karageorgos, George Liapakis and Hesham Fahmy
Molecules 2024, 29(15), 3647; https://doi.org/10.3390/molecules29153647 - 1 Aug 2024
Viewed by 2504
Abstract
Corticotropin-releasing factor (CRF) is a key neuropeptide hormone that is secreted from the hypothalamus. It is the master hormone of the HPA axis, which orchestrates the physiological and behavioral responses to stress. Many disorders, including anxiety, depression, addiction relapse, and others, are related [...] Read more.
Corticotropin-releasing factor (CRF) is a key neuropeptide hormone that is secreted from the hypothalamus. It is the master hormone of the HPA axis, which orchestrates the physiological and behavioral responses to stress. Many disorders, including anxiety, depression, addiction relapse, and others, are related to over-activation of this system. Thus, new molecules that may interfere with CRF receptor binding may be of value to treat neuropsychiatric stress-related disorders. Also, CRF1R antagonists have recently emerged as potential treatment options for congenital adrenal hyperplasia. Previously, several series of CRF1 receptor antagonists were developed by our group. In continuation of our efforts in this direction, herein we report the synthesis and biological evaluation of a new series of CRF1R antagonists. Representative compounds were evaluated for their binding affinities compared to antalarmin. Four compounds (2, 5, 20, and 21) showed log IC50 values of −8.22, −7.95, −8.04, and −7.88, respectively, compared to −7.78 for antalarmin. This result indicates that these four compounds are superior to antalarmin by 2.5, 1.4, 1.7, and 1.25 times, respectively. It is worth mentioning that compound 2, in terms of IC50, is among the best CRF1R antagonists ever developed in the last 40 years. The in silico physicochemical properties of the lead compounds showed good drug-like properties. Thus, further research in this direction may lead to better and safer CRF receptor antagonists that may have clinical applications, particularly for stress-related disorders and the treatment of congenital adrenal hyperplasia. Full article
Show Figures

Graphical abstract

17 pages, 12384 KB  
Article
The Effects of Alcohol Intoxication and Withdrawal on Hypothalamic Neurohormones and Extrahypothalamic Neurotransmitters
by Balázs Simon, András Buzás, Péter Bokor, Krisztina Csabafi, Katalin Eszter Ibos, Éva Bodnár, László Török, Imre Földesi, Andrea Siska and Zsolt Bagosi
Biomedicines 2023, 11(5), 1288; https://doi.org/10.3390/biomedicines11051288 - 27 Apr 2023
Cited by 2 | Viewed by 2533
Abstract
The aim of the present study was to determine the effects of alcohol intoxication and withdrawal on hypothalamic neurohormones such as corticotropin-releasing factor (CRF) and arginine vasopressin (AVP), and extrahypothalamic neurotransmitters such as striatal dopamine (DA), amygdalar gamma aminobutyric acid (GABA), and hippocampal [...] Read more.
The aim of the present study was to determine the effects of alcohol intoxication and withdrawal on hypothalamic neurohormones such as corticotropin-releasing factor (CRF) and arginine vasopressin (AVP), and extrahypothalamic neurotransmitters such as striatal dopamine (DA), amygdalar gamma aminobutyric acid (GABA), and hippocampal glutamate (GLU). In addition, the participation of the two CRF receptors, CRF1 and CRF2, was investigated. For this purpose, male Wistar rats were exposed to repeated intraperitoneal (ip) administration of alcohol every 12 h, for 4 days and then for 1 day of alcohol abstinence. On the fifth or sixth day, intracerebroventricular (icv) administration of selective CRF1 antagonist antalarmin or selective CRF2 antagonist astressin2B was performed. After 30 min, the expression and concentration of hypothalamic CRF and AVP, the concentration of plasma adrenocorticotropic hormone (ACTH) and corticosterone (CORT), and the release of striatal DA, amygdalar GABA, and hippocampal GLU were measured. Our results indicate that the neuroendocrine changes induced by alcohol intoxication and withdrawal are mediated by CRF1, not CRF2, except for the changes in hypothalamic AVP, which are not mediated by CRF receptors. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

20 pages, 2425 KB  
Article
HIV-1 Tat Protein Promotes Neuroendocrine Dysfunction Concurrent with the Potentiation of Oxycodone’s Psychomotor Effects in Female Mice
by Mohammed F. Salahuddin, Fakhri Mahdi, Suresh P. Sulochana and Jason J. Paris
Viruses 2021, 13(5), 813; https://doi.org/10.3390/v13050813 - 30 Apr 2021
Cited by 12 | Viewed by 3813
Abstract
Human immunodeficiency virus (HIV) is associated with neuroendocrine dysfunction which may contribute to co-morbid stress-sensitive disorders. The hypothalamic-pituitary-adrenal (HPA) or -gonadal (HPG) axes are perturbed in up to 50% of HIV patients. The mechanisms are not known, but we have found the HIV-1 [...] Read more.
Human immunodeficiency virus (HIV) is associated with neuroendocrine dysfunction which may contribute to co-morbid stress-sensitive disorders. The hypothalamic-pituitary-adrenal (HPA) or -gonadal (HPG) axes are perturbed in up to 50% of HIV patients. The mechanisms are not known, but we have found the HIV-1 trans-activator of transcription (Tat) protein to recapitulate the clinical phenotype in male mice. We hypothesized that HPA and/or HPG dysregulation contributes to Tat-mediated interactions with oxycodone, an opioid often prescribed to HIV patients, in females. Female mice that conditionally-expressed the Tat1–86 protein [Tat(+) mice] or their counterparts that did not [Tat(−) control mice] were exposed to forced swim stress (or not) and behaviorally-assessed for motor and anxiety-like behavior. Some mice had glucocorticoid receptors (GR) or corticotropin-releasing factor receptors (CRF-R) pharmacologically inhibited. Some mice were ovariectomized (OVX). As seen previously in males, Tat elevated basal corticosterone levels and potentiated oxycodone’s psychomotor activity in females. Unlike males, females did not demonstrate adrenal insufficiency and oxycodone potentiation was not regulated by GRs or CRF-Rs. Rather OVX attenuated Tat/oxycodone interactions. Either Tat or oxycodone increased anxiety-like behavior and their combination increased hypothalamic allopregnanolone. OVX increased basal hypothalamic allopregnanolone and obviated Tat or oxycodone-mediated fluctuations. Together, these data provide further evidence for Tat-mediated dysregulation of the HPA axis and reveal the importance of HPG axis regulation in females. HPA/HPG disruption may contribute vulnerability to affective and substance use disorders. Full article
(This article belongs to the Special Issue HIV and Drugs of Abuse)
Show Figures

Graphical abstract

20 pages, 4204 KB  
Article
Stress and Nasal Allergy: Corticotropin-Releasing Hormone Stimulates Mast Cell Degranulation and Proliferation in Human Nasal Mucosa
by Mika Yamanaka-Takaichi, Yukari Mizukami, Koji Sugawara, Kishiko Sunami, Yuichi Teranishi, Yukimi Kira, Ralf Paus and Daisuke Tsuruta
Int. J. Mol. Sci. 2021, 22(5), 2773; https://doi.org/10.3390/ijms22052773 - 9 Mar 2021
Cited by 9 | Viewed by 12991
Abstract
Psychological stress exacerbates mast cell (MC)-dependent inflammation, including nasal allergy, but the underlying mechanisms are not thoroughly understood. Because the key stress-mediating neurohormone, corticotropin-releasing hormone (CRH), induces human skin MC degranulation, we hypothesized that CRH may be a key player in stress-aggravated nasal [...] Read more.
Psychological stress exacerbates mast cell (MC)-dependent inflammation, including nasal allergy, but the underlying mechanisms are not thoroughly understood. Because the key stress-mediating neurohormone, corticotropin-releasing hormone (CRH), induces human skin MC degranulation, we hypothesized that CRH may be a key player in stress-aggravated nasal allergy. In the current study, we probed this hypothesis in human nasal mucosa MCs (hM-MCs) in situ using nasal polyp organ culture and tested whether CRH is required for murine M-MC activation by perceived stress in vivo. CRH stimulation significantly increased the number of hM-MCs, stimulated both their degranulation and proliferation ex vivo, and increased stem cell factor (SCF) expression in human nasal mucosa epithelium. CRH also sensitized hM-MCs to further CRH stimulation and promoted a pro-inflammatory hM-MC phenotype. The CRH-induced increase in hM-MCs was mitigated by co-administration of CRH receptor type 1 (CRH-R1)-specific antagonist antalarmin, CRH-R1 small interfering RNA (siRNA), or SCF-neutralizing antibody. In vivo, restraint stress significantly increased the number and degranulation of murine M-MCs compared with sham-stressed mice. This effect was mitigated by intranasal antalarmin. Our data suggest that CRH is a major activator of hM-MC in nasal mucosa, in part via promoting SCF production, and that CRH-R1 antagonists such as antalarmin are promising candidate therapeutics for nasal mucosa neuroinflammation induced by perceived stress. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

20 pages, 1629 KB  
Article
HIV-1 Tat Dysregulates the Hypothalamic-Pituitary-Adrenal Stress Axis and Potentiates Oxycodone-Mediated Psychomotor and Anxiety-Like Behavior of Male Mice
by Mohammed F. Salahuddin, Fakhri Mahdi and Jason J. Paris
Int. J. Mol. Sci. 2020, 21(21), 8212; https://doi.org/10.3390/ijms21218212 - 3 Nov 2020
Cited by 21 | Viewed by 4004
Abstract
Human immunodeficiency virus (HIV) is associated with co-morbid affective and stress-sensitive neuropsychiatric disorders that may be related to dysfunction of the hypothalamic-pituitary-adrenal (HPA) stress axis. The HPA axis is perturbed in up to 46% of HIV patients, but the mechanisms are not known. [...] Read more.
Human immunodeficiency virus (HIV) is associated with co-morbid affective and stress-sensitive neuropsychiatric disorders that may be related to dysfunction of the hypothalamic-pituitary-adrenal (HPA) stress axis. The HPA axis is perturbed in up to 46% of HIV patients, but the mechanisms are not known. The neurotoxic HIV-1 regulatory protein, trans-activator of transcription (Tat), may contribute. We hypothesized that HPA dysregulation may contribute to Tat-mediated interactions with oxycodone, a clinically-used opioid often prescribed to HIV patients. In transgenic male mice, Tat expression produced significantly higher basal corticosterone levels with adrenal insufficiency in response to a natural stressor or pharmacological blockade of HPA feedback, recapitulating the clinical phenotype. On acute exposure, HIV-1 Tat interacted with oxycodone to potentiate psychomotor and anxiety like-behavior in an open field and light-dark transition tasks, whereas repeated exposure sensitized stress-related psychomotor behavior and the HPA stress response. Pharmacological blockade of glucocorticoid receptors (GR) partially-restored the stress response and decreased oxycodone-mediated psychomotor behavior in Tat-expressing mice, implicating GR in these effects. Blocking corticotrophin-releasing factor (CRF) receptors reduced anxiety-like behavior in mice that were exposed to oxycodone. Together, these effects support the notion that Tat exposure can dysregulate the HPA axis, potentially raising vulnerability to stress-related substance use and affective disorders. Full article
Show Figures

Graphical abstract

Back to TopTop