Design, Synthesis, and Biological Evaluations of Novel Thiazolo[4,5-d]pyrimidine Corticotropin Releasing Factor (CRF) Receptor Antagonists as Potential Treatments for Stress Related Disorders and Congenital Adrenal Hyperplasia (CAH)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design Rationale
2.2. Chemistry
2.3. Biological Evaluation
2.4. Structure-Activity Relationship (SAR) of the Lead Compounds
2.5. Prediction of Physicochemical Parameters and BBB Permeability
2.6. Significance
3. Materials and Methods
3.1. Chemistry
3.1.1. Materials and General Information
3.1.2. General Synthetic Procedure for Preparation of Intermediate Compounds (I–IV)
7-(N-Butyl-N-ethylamino)-2-thioxo-5-methyl-3-(2,4,-dichlorophenyl)thiazolo[4,5-d]pyrimidine (IVa)
7-(N,N-Dipropylamino)-2-thioxo-5-methyl-3-(2,4-dichlorophenyl)thiazolo[4,5-d]pyrimidine (IVb)
7-(N,N-Bis(2-methoxyethyl)amino)-2-thioxo-5-methyl-3-(2,4-dichlorophenyl)thiazolo[4,5-d]pyrimidine (IVc)
7-(N,N-Dipentylamino)-2-thioxo-5-methyl-3-(2,4-dichlorophenyl)thiazolo[4,5-d]pyrimidine (IVd)
7-(N-Propyl-N-(cyclopropylmethyl))amino-2-thioxo-5-methyl-3-(2,4-dichlorophenyl)thiazolo[4,5-d]pyrimidine (IVe)
7-(N-Pentan-3-yl)amino-2-thioxo-5-methyl-3-(2,4-dichlorophenyl)thiazolo[4,5-d]pyrimidine (IVf)
7-(N-Heptan-4-yl)amino-2-thioxo-5-methyl-3-(2,4-dichlorophenyl)thiazolo[4,5-d]pyrimidine (IVg)
7-(N,N-Dipropylamino)-2-thioxo-5-methyl-3-(2-bromo-4-isopropylphenyl)thiazolo[4,5-d]pyrimidine (IVh)
7-(N,N-Bis(2-methoxyethyl)amino)-2-thioxo-5-methyl-3-(2-bromo-4-isopropylphenyl)thiazolo[4,5-d]pyrimidine (IVi)
7-(N,N-Dipentylamino)-2-thioxo-5-methyl-3-(2-bromo-4-isopropylphenyl)thiazolo[4,5-d]pyrimidine (IVj)
7-(N-Propyl-N-(cyclopropylmethyl))amino-2-thioxo-5-methyl-3-(2-bromo-4-isopropylphenyl)thiazolo[4,5-d]pyrimidine (IVk)
7-(N-Pentan-3-yl)amino-2-thioxo-5-methyl-3-(2-bromo-4-isopropylphenyl)thiazolo[4,5-d]pyrimidine (IVl)
7-(N-Heptan-4-yl)amino-2-thioxo-5-methyl-3-(2-bromo-4-isopropylphenyl)thiazolo[4,5-d]pyrimidine (IVm)
7-(N-Butyl-N-ethylamino)-2-thioxo-5-methyl-3-(2,4-dimethylphenyl)thiazolo[4,5-d]pyrimidine (IVn)
7-(N,N-Dipropylamino)-2-thioxo-5-methyl-3-(2,4-dimethylphenyl)thiazolo[4,5-d]pyrimidine (IVo)
7-(N,N-Bis(2-methoxyethyl)amino)-2-thioxo-5-methyl-3-(2,4-dimethylphenyl)thiazolo[4,5-d]pyrimidine (IVp)
7-(N-Propyl-N-(cyclopropylmethyl))amino-2-thioxo-5-methyl-3-(2,4-dimethylphenyl)thiazolo[4,5-d]pyrimidine (IVq)
7-(N-Pentan-3-yl)amino-2-thioxo-5-methyl-3-(2,4-dimethylphenyl)thiazolo[4,5-d]pyrimidine (IVr)
7-(N-Heptan-4-yl)amino-2-thioxo-5-methyl-3-(2,4-dimethylphenyl)thiazolo[4,5-d]pyrimidine (IVs)
7-(N-Butyl-N-ethyl)amino-2-thioxo-5-methyl-3-(2-methyl-4-methoxylphenyl)thiazolo[4,5-d]pyrimidine (IVt)
7-(N,N-Dipropyl)amino-2-thioxo-5-methyl-3-(2-methyl-4-methoxylphenyl)thiazolo[4,5-d]pyrimidine (IVu)
7-(N-Propyl-N-(cyclopropylmethyl))amino-2-thioxo-5-methyl-3-(2-methyl-4-methoxylphenyl)thiazolo[4,5-d]pyrimidine (IVv)
7-(N-Pentan-3-yl)amino-2-thioxo-5-methyl-3-(2-methyl-4-methoxylphenyl)thiazolo[4,5-d]pyrimidine (IVw)
3.1.3. General Synthetic Procedure for the Preparation of Final Targeted Compounds
7-(N-Butyl-N-ethylamino)-2-(methylimino)-5-methyl-3-(2,4-dichlorophenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (1)
7-(N,N-Dipropylamino)-2-(methylimino)-5-methyl-3-(2,4-dichlorophenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (2)
7-(N,N-Bis(2-methoxyethyl)amino)-2-(methylimino)-5-methyl-3-(2,4-dichlorophenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (3)
7-(N,N-Dipentylamino)-2-(methylimino)-5-methyl-3-(2,4-dichlorophenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (4)
7-(N-Propyl-N-(cyclopropylmethyl))amino-2-(methylimino)-5-methyl-3-(2,4-dichlorophenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (5)
7-(N-Pentan-3-yl)amino-2-(methylimino)-5-methyl-3-(2,4-dichlorophenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (6)
7-(N-Heptan-4-yl)amino-2-(methylimino)-5-methyl-3-(2,4-dichlorophenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (7)
7-(N,N-Dipropylamino)-2-(methylimino)-5-methyl-3-(2-bromo-4-isopropylphenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (8)
7-(N-Propyl-N-(cyclopropylmethyl))amino-2-(methylimino)-5-methyl-3-(2-bromo-4-isopropylphenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (9)
7-(N,N-Bis(2-methoxyethyl)amino)-2-(methylimino)-5-methyl-3-(2-bromo-4-isopropylphenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (10)
7-(N,N-Dipentylamino)-2-(methylimino)-5-methyl-3-(2-bromo-4-isopropylphenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (11)
7-(N-Pentan-3-yl)amino-2-(methylimino)-5-methyl-3-(2-bromo-4-isopropylphenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (12)
7-(N-Heptan-4-yl)amino-2-(methylimino)-5-methyl-3-(2-bromo-4-isopropylphenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (13)
7-(N-Butyl-N-ethylamino)-2-(methylimino)-5-methyl-3-(2,4-dimethylphenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (14)
7-(N,N-Dipropylamino)-2-(methylimino)-5-methyl-3-(2,4-dimethylphenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (15)
7-(N,N-Bis(2-methoxyethyl)amino)-2-(methylimino)-5-methyl-3-(2,4-dimethylphenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (16)
7-(N-Propyl-N-(cyclopropylmethyl))amino-2-(methylimino)-5-methyl-3-(2,4-dimethylphenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (17)
7-(N-Pentan-3-yl)amino-2-(methylimino)-5-methyl-3-(2,4-dimethylphenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (18)
7-(N-Heptan-4-yl)amino-2-(methylimino)-5-methyl-3-(2,4-dimethylphenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (19)
7-(N-Butyl-N-ethylamino)-2-(methylimino)-5-methyl-3-(2-methyl-4-methoxylphenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (20)
7-(N,N-Dipropylamino)-2-(methylimino)-5-methyl-3-(2-methyl-4-methoxylphenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (21)
7-(N-Propyl-N-(cyclopropylmethyl))amino-2-(methylimino)-5-methyl-3-(2-methyl-4-methoxylphenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (22)
7-(N-Pentan-3-yl)amino-2-(methylimino)-5-methyl-3-(2-methyl-4-methoxylphenyl)-2,3-dihydrothiazolo[4,5-d]pyrimidine (23)
3.2. Biological Evaluation
3.3. Physicochemical Properties and ADME Analysis
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spiess, J.; Rivier, J.; Rivier, C.; Vale, W. Primary structure of corticotropin-releasing factor from ovine hypothalamus. Proc. Natl. Acad. Sci. USA 1981, 78, 6517–6521. [Google Scholar] [CrossRef] [PubMed]
- Owens, M.J.; Nemeroff, C.B. Physiology and pharmacology of corticotropin-releasing factor. Pharmacol. Rev. 1991, 43, 425–473. [Google Scholar] [PubMed]
- Amano, M. Corticotropin-Releasing Hormone. In Handbook of Hormones: Comparative Endocrinology for Basic and Clinical Research; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 23–25. [Google Scholar] [CrossRef]
- Gjerstad, J.K.; Lightman, S.L.; Spiga, F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress 2018, 21, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, M.; Kori, M.; Kobayashi, K.; Yano, T.; Sako, Y.; Tanaka, M.; Kanzaki, N.; Gyorkos, A.C. Design and Synthesis of Benzimidazoles As Novel Corticotropin-Releasing Factor 1 Receptor Antagonists. J. Med. Chem. 2016, 59, 2551–2566. [Google Scholar] [CrossRef] [PubMed]
- Raadsheer, F.C.; Hoogendijk, W.J.; Stam, F.C.; Tilders, F.J.; Swaab, D.F. Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 1994, 60, 436–444. [Google Scholar] [CrossRef]
- Fossey, M.D.; Lydiard, R.B.; Ballenger, J.C.; Laraia, M.T.; Bissette, G.; Nemeroff, C.B. Cerebrospinal fluid corticotropin-releasing factor concentrations in patients with anxiety disorders and normal comparison subjects. Biol. Psychiatry 1996, 39, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Bale, T.L.; Vale, W.W. CRF and CRF receptors: Role in stress responsivity and other behaviors. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 525–557. [Google Scholar] [CrossRef] [PubMed]
- De Souza, E.B. Corticotropin-releasing factor receptors: Physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrinology 1995, 20, 789–819. [Google Scholar] [CrossRef] [PubMed]
- Dautzenberg, F.M.; Hauger, R.L. The CRF peptide family and their receptors: Yet more partners discovered. Trends Pharmacol. Sci. 2002, 23, 71–77. [Google Scholar] [CrossRef]
- Lovenberg, T.W.; Liaw, C.W.; Grigoriadis, D.E.; Clevenger, W.; Chalmers, D.T.; De Souza, E.B.; Oltersdorf, T. Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain. Proc. Natl. Acad. Sci. USA 1995, 92, 836–840. [Google Scholar] [CrossRef]
- Grigoriadis, D.E. The corticotropin-releasing factor receptor: A novel target for the treatment of depression and anxiety-related disorders. Expert. Opin. Ther. Targets 2005, 9, 651–684. [Google Scholar] [CrossRef] [PubMed]
- Gold, P.W.; Chrousos, G.P. Organization of the stress system and its dysregulation in melancholic and atypical depression: High vs low CRH/NE states. Mol. Psychiatry 2002, 7, 254–275. [Google Scholar] [CrossRef]
- Keck, M.E.; Holsboer, F. Hyperactivity of CRH neuronal circuits as a target for therapeutic interventions in affective disorders. Peptides 2001, 22, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Reul, J.M.; Holsboer, F. Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr. Opin. Pharmacol. 2002, 2, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Dautzenberg, F.M.; Kilpatrick, G.J.; Hauger, R.L.; Moreau, J. Molecular biology of the CRH receptors—In the mood. Peptides 2001, 22, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Behan, D.P.; Heinrichs, S.C.; Troncoso, J.C.; Liu, X.J.; Kawas, C.H.; Ling, N.; De Souza, E.B. Displacement of corticotropin releasing factor from its binding protein as a possible treatment for Alzheimer’s disease. Nature 1995, 378, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Makrigiannakis, A.; Zoumakis, E.; Kalantaridou, S.; Coutifaris, C.; Margioris, A.N.; Coukos, G.; Rice, K.C.; Gravanis, A.; Chrousos, G.P. Corticotropin-releasing hormone promotes blastocyst implantation and early maternal tolerance. Nat. Immunol. 2001, 2, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Martinez, V.; Rivier, J.; Wang, L.; Tache, Y. Central injection of a new corticotropin-releasing factor (CRF) antagonist, astressin, blocks CRF- and stress-related alterations of gastric and colonic motor function. J. Pharmacol. Exp. Ther. 1997, 280, 754–760. [Google Scholar] [PubMed]
- Chrousos, G.P.; Torpy, D.J.; Gold, P.W. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: Clinical implications. Ann. Intern. Med. 1998, 129, 229–240. [Google Scholar] [CrossRef]
- Orth, D.N. Corticotropin-releasing hormone in humans. Endocr. Rev. 1992, 13, 164–191. [Google Scholar] [CrossRef]
- Parkes, D.G.; Weisinger, R.S.; May, C.N. Cardiovascular actions of CRH and urocortin: An update. Peptides 2001, 22, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Venihaki, M.; Majzoub, J.A. Animal models of CRH deficiency. Front. Neuroendocrinol. 1999, 20, 122–145. [Google Scholar] [CrossRef]
- Venihaki, M.; Dikkes, P.; Carrigan, A.; Karalis, K.P. Corticotropin-releasing hormone regulates IL-6 expression during inflammation. J. Clin. Investig. 2001, 108, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Zoumakis, E.; Margioris, A.N.; Makrigiannakis, A.; Stournaras, C.; Gravanis, A. Human endometrium as a neuroendocrine tissue: Expression, regulation and biological roles of endometrial corticotropin-releasing hormone (CRH) and opioid peptides. J. Endocrinol. Investig. 1997, 20, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Kolber, B.J.; Roberts, M.S.; Howell, M.P.; Wozniak, D.F.; Sands, M.S.; Muglia, L.J. Central amygdala glucocorticoid receptor action promotes fear-associated CRH activation and conditioning. Proc. Natl. Acad. Sci. USA 2008, 105, 12004–12009. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.A.; Kucenas, S.; Bowman, T.A.; Ruhlman, M.; Knuepfer, M.M. Angiotensin II and CRF receptors in the central nucleus of the amygdala mediate hemodynamic response variability to cocaine in conscious rats. Brain Res. 2010, 1309, 53–65. [Google Scholar] [CrossRef]
- Sarnyai, Z.; Biro, E.; Gardi, J.; Vecsernyes, M.; Julesz, J.; Telegdy, G. Brain corticotropin-releasing factor mediates ‘anxiety-like’ behavior induced by cocaine withdrawal in rats. Brain Res. 1995, 675, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Crofford, L.J.; Sano, H.; Karalis, K.; Webster, E.L.; Goldmuntz, E.A.; Chrousos, G.P.; Wilder, R.L. Local secretion of corticotropin-releasing hormone in the joints of Lewis rats with inflammatory arthritis. J. Clin. Investig. 1992, 90, 2555–2564. [Google Scholar] [CrossRef] [PubMed]
- Crofford, L.J.; Sano, H.; Karalis, K.; Friedman, T.C.; Epps, H.R.; Remmers, E.F.; Mathern, P.; Chrousos, G.P.; Wilder, R.L. Corticotropin-releasing hormone in synovial fluids and tissues of patients with rheumatoid arthritis and osteoarthritis. J. Immunol. 1993, 151, 1587–1596. [Google Scholar] [CrossRef]
- Chikanza, I.C.; Petrou, P.; Kingsley, G.; Chrousos, G.; Panayi, G.S. Defective hypothalamic response to immune and inflammatory stimuli in patients with rheumatoid arthritis. Arthritis Rheum. 1992, 35, 1281–1288. [Google Scholar] [CrossRef]
- Wood, S.K.; Woods, J.H. Corticotropin-releasing factor receptor-1: A therapeutic target for cardiac autonomic disturbances. Expert. Opin. Ther. Targets 2007, 11, 1401–1413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhao, S.; Ma, Y.; Xiao, Z.; Xue, B.; Dong, Y.; Wang, Q.; Xu, H.; Zhang, X.; Wang, Y. Hyperexcitation of ovBNST CRF neurons during stress contributes to female-biased expression of anxiety-like avoidance behaviors. Sci. Adv. 2024, 10, eadk7636. [Google Scholar] [CrossRef] [PubMed]
- Ibarguen-Vargas, Y.; Leman, S.; Palme, R.; Belzung, C.; Surget, A. CRF-R1 Antagonist Treatment Exacerbates Circadian Corticosterone Secretion under Chronic Stress, but Preserves HPA Feedback Sensitivity. Pharmaceutics 2021, 13, 2114. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Zhang, G.; Xiang, S.; Jiang, C.; Chen, Z.; Li, Y.; Huang, B.; Zhou, W.; Lian, Q.; Wu, B. The Antagonism of Corticotropin-Releasing Factor Receptor-1 in Brain Suppress Stress-Induced Propofol Self-Administration in Rats. Front. Behav. Neurosci. 2021, 15, 775209. [Google Scholar] [CrossRef] [PubMed]
- Torres-Reveron, A.; Rivera-Lopez, L.L.; Flores, I.; Appleyard, C.B. Antagonizing the corticotropin releasing hormone receptor 1 with antalarmin reduces the progression of endometriosis. PLoS ONE 2018, 13, e0197698. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.W.; Fitzgerald, L.; Wong, H.; Lelas, S.; Zhang, G.; Lindner, M.D.; Wallace, T.; McElroy, J.; Lodge, N.J.; Gilligan, P.; et al. The pharmacology of DMP696 and DMP904, non-peptidergic CRF1 receptor antagonists. CNS Drug Rev. 2005, 11, 21–52. [Google Scholar] [CrossRef] [PubMed]
- Lelas, S.; Wong, H.; Li, Y.W.; Heman, K.L.; Ward, K.A.; Zeller, K.L.; Sieracki, K.K.; Polino, J.L.; Godonis, H.E.; Ren, S.X.; et al. Anxiolytic-like effects of the corticotropin-releasing factor1 (CRF1) antagonist DMP904 [4-(3-pentylamino)-2,7-dimethyl-8-(2-methyl-4-methoxyphenyl)-pyrazolo-[1,5-a]-pyr imidine] administered acutely or chronically at doses occupying central CRF1 receptors in rats. J. Pharmacol. Exp. Ther. 2004, 309, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Morabbi, M.J.; Razaghi, E.; Moazen-Zadeh, E.; Safi-Aghdam, H.; Zarrindast, M.R.; Vousoghi, N.; Akhondzadeh, S. Pexacerfont as a CRF1 antagonist for the treatment of withdrawal symptoms in men with heroin/methamphetamine dependence: A randomized, double-blind, placebo-controlled clinical trial. Int. Clin. Psychopharmacol. 2018, 33, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Ising, M.; Zimmermann, U.S.; Kunzel, H.E.; Uhr, M.; Foster, A.C.; Learned-Coughlin, S.M.; Holsboer, F.; Grigoriadis, D.E. High-affinity CRF1 receptor antagonist NBI-34041: Preclinical and clinical data suggest safety and efficacy in attenuating elevated stress response. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2007, 32, 1941–1949. [Google Scholar] [CrossRef]
- Zorrilla, E.P.; Koob, G.F. Progress in corticotropin-releasing factor-1 antagonist development. Drug Discov. Today 2010, 15, 371–383. [Google Scholar] [CrossRef]
- Spierling, S.R.; Zorrilla, E.P. Don’t stress about CRF: Assessing the translational failures of CRF1antagonists. Psychopharmacology 2017, 234, 1467–1481. [Google Scholar] [CrossRef] [PubMed]
- Auchus, R.J.; Sarafoglou, K.; Fechner, P.Y.; Vogiatzi, M.G.; Imel, E.A.; Davis, S.M.; Giri, N.; Sturgeon, J.; Roberts, E.; Chan, J.L.; et al. Crinecerfont Lowers Elevated Hormone Markers in Adults With 21-Hydroxylase Deficiency Congenital Adrenal Hyperplasia. J. Clin. Endocrinol. Metab. 2022, 107, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Schröder, M.A.M.; Claahsen—Van der Grinten, H.L. Novel treatments for congenital adrenal hyperplasia. Rev. Endocr. Metab. Disord. 2022, 23, 631–645. [Google Scholar] [CrossRef] [PubMed]
- Reisch, N. Review of Health Problems in Adult Patients with Classic Congenital Adrenal Hyperplasia due to 21-Hydroxylase Deficiency. Exp. Clin. Endocrinol. Diabetes 2019, 127, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Whittle, E.; Falhammar, H. Glucocorticoid Regimens in the Treatment of Congenital Adrenal Hyperplasia: A Systematic Review and Meta-Analysis. J. Endocr. Soc. 2019, 3, 1227–1245. [Google Scholar] [CrossRef] [PubMed]
- Turcu, A.F.; Auchus, R.J. The next 150 years of congenital adrenal hyperplasia. J. Steroid Biochem. Mol. Biol. 2015, 153, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Sarafoglou, K.; Forlenza, G.P.; Yaw Addo, O.; Kyllo, J.; Lteif, A.; Hindmarsh, P.C.; Petryk, A.; Gonzalez-Bolanos, M.T.; Miller, B.S.; Thomas, W. Obesity in children with congenital adrenal hyperplasia in the Minnesota cohort: Importance of adjusting body mass index for height-age. Clin. Endocrinol. 2017, 86, 708–716. [Google Scholar] [CrossRef]
- Prete, A.; Auchus, R.J.; Ross, R.J. Clinical advances in the pharmacotherapy of congenital adrenal hyperplasia. Eur. J. Endocrinol. 2022, 186, R1–R14. [Google Scholar] [CrossRef] [PubMed]
- Newfield, R.S.; Sarafoglou, K.; Fechner, P.Y.; Nokoff, N.J.; Auchus, R.J.; Vogiatzi, M.G.; Jeha, G.S.; Giri, N.; Roberts, E.; Sturgeon, J.; et al. Crinecerfont, a CRF1 Receptor Antagonist, Lowers Adrenal Androgens in Adolescents With Congenital Adrenal Hyperplasia. J. Clin. Endocrinol. Metab. 2023, 108, 2871–2878. [Google Scholar] [CrossRef]
- Chrousos, G.P. Crinecerfont in a First Clinical Application of a CRH Antagonist: Further Potential Uses Are Still an Open Chapter! J. Clin. Endocrinol. Metab. 2024, 109, e1365–e1366. [Google Scholar] [CrossRef]
- Available online: https://adisinsight.springer.com/drugs/800050153 (accessed on 3 March 2022).
- Teleb, M.; Kuppast, B.; Spyridaki, K.; Liapakis, G.; Fahmy, H. Synthesis of 2-imino and 2-hydrazono thiazolo[4,5-d]pyrimidines as corticotropin releasing factor (CRF) antagonists. Eur. J. Med. Chem. 2017, 138, 900–908. [Google Scholar] [CrossRef]
- Kuppast, B.; Spyridaki, K.; Lynch, C.; Hu, Y.; Liapakis, G.; Davies, G.E.; Fahmy, H. Synthesis of new thiazolo[4,5-d]pyrimidines as Corticotropin releasing factor modulators. Med. Chem. 2014, 11, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Kuppast, B.; Spyridaki, K.; Liapakis, G.; Fahmy, H. Synthesis of substituted pyrimidines as corticotropin releasing factor (CRF) receptor ligands. Eur. J. Med. Chem. 2014, 78, 1–9. [Google Scholar] [CrossRef]
- Islam, M.R.; Teleb, M.; Karageorgos, V.; Sakellaris, S.; Papadopoulos, M.; Pirmettis, I.; Fronczek, F.R.; Liapakis, G.; Fahmy, H. Design, synthesis, structural optimization, SAR, in silico prediction of physicochemical properties and pharmacological evaluation of novel & potent thiazolo[4,5-d]pyrimidine corticotropin releasing factor (CRF) receptor antagonists. Eur. J. Pharm. Sci. 2022, 169, 106084. [Google Scholar] [PubMed]
- Chen, Y.L.; Obach, R.S.; Braselton, J.; Corman, M.L.; Forman, J.; Freeman, J.; Gallaschun, R.J.; Mansbach, R.; Schmidt, A.W.; Sprouse, J.S.; et al. 2-aryloxy-4-alkylaminopyridines: Discovery of novel corticotropin-releasing factor 1 antagonists. J. Med. Chem. 2008, 51, 1385–1392. [Google Scholar] [CrossRef]
- Gewald, K.; Hain, U. Zur Chemie der 4-aminothiazolin-2-thione. Monatshefte Fur Chem. 1981, 112, 1394–1404. [Google Scholar] [CrossRef]
- Gewald, K.; Hain, U.; Schindler, R. ZurChemie der 4-Amino-thiazolin-2-thione. Mitt. Monatsh. Fur Chem. Chem. Mon. 1994, 125, 1129–1143. [Google Scholar] [CrossRef]
- Fahmy, H.T.; Rostom, S.A.; Saudi, M.N.; Zjawiony, J.K.; Robins, D.J. Synthesis and in vitro evaluation of the anticancer activity of novel fluorinated thiazolo[4, 5-d]pyrimidines. Arch. Der Pharm. 2003, 336, 216–225. [Google Scholar] [CrossRef]
- Badawey, E.; Rida, S.M.; Hazza, A.A.; Fahmy, H.T.; Gohar, Y.M. Potential antimicrobials.II. Synthesis and in vitro anti-microbial evaluation of some thiazolo[4,5-d]pyrimidines. Eur. J. Med. Chem. 1993, 28, 97–101. [Google Scholar] [CrossRef]
- Gkountelias, K.; Tselios, T.; Venihaki, M.; Deraos, G.; Lazaridis, I.; Rassouli, O.; Gravanis, A.; Liapakis, G. Alanine scanning mutagenesis of the second extracellular loop of type 1 corticotropin-releasing factor receptor revealed residues critical for peptide binding. Mol. Pharmacol. 2009, 75, 793–800. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, J.; Xu, Y.; Zhou, N.; Peng, J.; Xiong, Z.; Liu, X.; Luo, X.; Luo, C.; Chen, K.; et al. In silico ADME/T modelling for rational drug design. Q. Rev. Biophys. 2015, 48, 488–515. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Shaker, B.; Yu, M.S.; Song, J.S.; Ahn, S.; Ryu, J.Y.; Oh, K.S.; Na, D. LightBBB: Computational prediction model of blood-brain-barrier penetration based on LightGBM. Bioinformatics 2021, 37, 1135–1139. [Google Scholar] [CrossRef] [PubMed]
- Chrousos, G.P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N. Engl. J. Med. 1995, 332, 1351–1362. [Google Scholar] [CrossRef] [PubMed]
- Chrousos, G.P.; Gold, P.W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 1992, 267, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Rivier, C.; Vale, W. Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature 1983, 305, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Tsigos, C.; Chrousos, G.P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 2002, 53, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Fasipe, O. Neuropharmacological classification of antidepressant agents based on their mechanisms of action. Arch. Med. Health Sci. 2018, 6, 81–94. [Google Scholar] [CrossRef]
- Al-Harbi, K.S. Treatment-resistant depression: Therapeutic trends, challenges, and future directions. Patient Prefer. Adherence 2012, 6, 369–388. [Google Scholar] [CrossRef]
- Fava, G.A. May antidepressant drugs worsen the conditions they are supposed to treat? The clinical foundations of the oppositional model of tolerance. Ther. Adv. Psychopharmacol. 2020, 10, 2045125320970325. [Google Scholar] [CrossRef]
- Pagán-Busigó, J.E.; López-Carrasquillo, J.; Appleyard, C.B.; Torres-Reverón, A. Beyond depression and anxiety; a systematic review about the role of corticotropin-releasing hormone antagonists in diseases of the pelvic and abdominal organs. PLoS ONE 2022, 17, e0264909. [Google Scholar] [CrossRef] [PubMed]
- Auchus, R.J.; Hamidi, O.; Pivonello, R.; Bancos, I.; Russo, G.; Witchel, S.F.; Isidori, A.M.; Rodien, P.; Srirangalingam, U.; Kiefer, F.W.; et al. Phase 3 Trial of Crinecerfont in Adult Congenital Adrenal Hyperplasia. N. Engl. J. Med. 2024. [Google Scholar] [CrossRef] [PubMed]
- Sarafoglou, K.; Barnes, C.N.; Huang, M.; Imel, E.A.; Madu, I.J.; Merke, D.P.; Moriarty, D.; Nakhle, S.; Newfield, R.S.; Vogiatzi, M.G.; et al. Tildacerfont in Adults With Classic Congenital Adrenal Hyperplasia: Results from Two Phase 2 Studies. J. Clin. Endocrinol. Metab. 2021, 106, e4666–e4679. [Google Scholar] [CrossRef] [PubMed]
- Sarafoglou, K.; Kim, M.S.; Lodish, M.; Felner, E.I.; Martinerie, L.; Nokoff, N.J.; Clemente, M.; Fechner, P.Y.; Vogiatzi, M.G.; Speiser, P.W.; et al. Phase 3 Trial of Crinecerfont in Pediatric Congenital Adrenal Hyperplasia. N. Engl. J. Med. 2024. [Google Scholar] [CrossRef] [PubMed]
- Reisch, N. Block and Replace—A New Therapeutic Concept in Congenital Adrenal Hyperplasia? J. Clin. Endocrinol. Metab. 2021, 107, e423–e425. [Google Scholar] [CrossRef] [PubMed]
- Makurvet, F.D. Biologics vs. small molecules: Drug costs and patient access. Med. Drug Discov. 2021, 9, 100075. [Google Scholar] [CrossRef]
- Fleck, B.A.; Hoare, S.R.; Pick, R.R.; Bradbury, M.J.; Grigoriadis, D.E. Binding kinetics redefine the antagonist pharmacology of the corticotropin-releasing factor type 1 receptor. J. Pharmacol. Exp. Ther. 2012, 341, 518–531. [Google Scholar] [CrossRef]
No | R1 | R2 | X/Y |
---|---|---|---|
1 | C2H5 | C4H9 | 2,4-di Cl |
2 | C3H7 | C3H7 | 2,4-di Cl |
3 | C2H4-O-CH3 | C2H4-O-CH3 | 2,4-di Cl |
4 | C5H11 | C5H11 | 2,4-di Cl |
5 | c-propylmethyl | C3H7 | 2,4-di Cl |
6 | C2H5-CH-C2H5 | H | 2,4-di Cl |
7 | C3H7-CH-C3H7 | H | 2,4-di Cl |
8 | C3H7 | C3H7 | 2-Br-4-CH(CH3)2 |
9 | c-propylmethyl | C3H7 | 2-Br-4-CH(CH3)2 |
10 | C2H4-O-CH3 | C2H4-O-CH3 | 2-Br-4-CH(CH3)2 |
11 | C5H11 | C5H11 | 2-Br-4-CH(CH3)2 |
12 | C2H5-CH-C2H5 | H | 2-Br-4-CH(CH3)2 |
13 | C3H7-CH-C3H7 | H | 2-Br-4-CH(CH3)2 |
14 | C2H5 | C4H9 | 2,4-di CH3 |
15 | C3H7 | C3H7 | 2,4-diCH3 |
16 | C2H4-O-CH3 | C2H4-O-CH3 | 2,4-di CH3 |
17 | c-propylmethyl | C3H7 | 2,4-di CH3 |
18 | C2H5-CH-C2H5 | H | 2,4-di CH3 |
19 | C3H7-CH-C3H7 | H | 2,4-di CH3 |
20 | C2H5 | C4H9 | 2-CH3-4-OCH3 |
21 | C3H7 | C3H7 | 2-CH3-4-OCH3 |
22 | c-propylmethyl | C3H7 | 2-CH3-4-OCH3 |
23 | C2H5-CH-C2H5 | H | 2-CH3-4-OCH3 |
Comp | Anta | 2 | 5 | 10 | 14 | 19 | 20 | 21 | 22 | 23 |
---|---|---|---|---|---|---|---|---|---|---|
IC50 (nM) | 16.63 | 6.10 | 11.12 | 31.05 | 144.2 | 41.11 | 9.16 | 13.12 | 91.62 | 111.4 |
Comp | MW | RB | HBA | HBD | cLogP | Vio LR | BBB Permeability |
---|---|---|---|---|---|---|---|
2 | 424.39 | 6 | 3 | 0 | 3.72 | 0 | Permeable |
5 | 436.40 | 6 | 3 | 0 | 3.94 | 0 | Permeable |
19 | 397.58 | 7 | 3 | 1 | 3.41 | 0 | Permeable |
20 | 399.55 | 7 | 4 | 0 | 2.64 | 0 | permeable |
21 | 399.55 | 7 | 4 | 0 | 2.64 | 0 | Permeable |
Antalarmin | 378.55 | 6 | 2 | 0 | 4.33 | 1 | Permeable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.R.; Markatos, C.; Pirmettis, I.; Papadopoulos, M.; Karageorgos, V.; Liapakis, G.; Fahmy, H. Design, Synthesis, and Biological Evaluations of Novel Thiazolo[4,5-d]pyrimidine Corticotropin Releasing Factor (CRF) Receptor Antagonists as Potential Treatments for Stress Related Disorders and Congenital Adrenal Hyperplasia (CAH). Molecules 2024, 29, 3647. https://doi.org/10.3390/molecules29153647
Islam MR, Markatos C, Pirmettis I, Papadopoulos M, Karageorgos V, Liapakis G, Fahmy H. Design, Synthesis, and Biological Evaluations of Novel Thiazolo[4,5-d]pyrimidine Corticotropin Releasing Factor (CRF) Receptor Antagonists as Potential Treatments for Stress Related Disorders and Congenital Adrenal Hyperplasia (CAH). Molecules. 2024; 29(15):3647. https://doi.org/10.3390/molecules29153647
Chicago/Turabian StyleIslam, Md Rabiul, Christos Markatos, Ioannis Pirmettis, Minas Papadopoulos, Vlasios Karageorgos, George Liapakis, and Hesham Fahmy. 2024. "Design, Synthesis, and Biological Evaluations of Novel Thiazolo[4,5-d]pyrimidine Corticotropin Releasing Factor (CRF) Receptor Antagonists as Potential Treatments for Stress Related Disorders and Congenital Adrenal Hyperplasia (CAH)" Molecules 29, no. 15: 3647. https://doi.org/10.3390/molecules29153647
APA StyleIslam, M. R., Markatos, C., Pirmettis, I., Papadopoulos, M., Karageorgos, V., Liapakis, G., & Fahmy, H. (2024). Design, Synthesis, and Biological Evaluations of Novel Thiazolo[4,5-d]pyrimidine Corticotropin Releasing Factor (CRF) Receptor Antagonists as Potential Treatments for Stress Related Disorders and Congenital Adrenal Hyperplasia (CAH). Molecules, 29(15), 3647. https://doi.org/10.3390/molecules29153647