Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (437)

Search Parameters:
Keywords = anticancer potency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2862 KB  
Article
Recombinant Oncolytic Vesicular Stomatitis Virus Expressing Mouse Interleukin-12 and Granulocyte-Macrophage Colony-Stimulating Factor (rVSV-dM51-mIL12-mGMCSF) for Immunotherapy of Lung Carcinoma
by Anastasia Ryapolova, Margarita Zinovieva, Kristina Vorona, Bogdan Krapivin, Vasiliy Moroz, Nizami Gasanov, Ilnaz Imatdinov, Almaz Imatdinov, Roman Ivanov, Alexander Karabelsky and Ekaterina Minskaia
Int. J. Mol. Sci. 2025, 26(17), 8567; https://doi.org/10.3390/ijms26178567 - 3 Sep 2025
Abstract
The unique ability of oncolytic viruses (OVs) to replicate in and destroy malignant cells while leaving healthy cells intact and activating the host immune response makes them powerful targeted anti-cancer therapeutic agents. Vesicular stomatitis virus (VSV) only causes mild and asymptomatic infection, lacks [...] Read more.
The unique ability of oncolytic viruses (OVs) to replicate in and destroy malignant cells while leaving healthy cells intact and activating the host immune response makes them powerful targeted anti-cancer therapeutic agents. Vesicular stomatitis virus (VSV) only causes mild and asymptomatic infection, lacks pre-existing immunity, can be genetically engineered for enhanced efficiency and improved safety, and has a broad cell tropism. VSV can facilitate targeted delivery of immunostimulatory cytokines for an enhanced immune response against cancer cells, thus decreasing the possible toxicity frequently observed as a result of systemic delivery. In this study, the oncolytic potency of the two rVSV versions, rVSV-dM51-GFP, delivering green fluorescent protein (GFP), and rVSV-dM51-mIL12-mGMCSF, delivering mouse interleukin-12 (mIL-12) and granulocyte-macrophage colony-stimulating factor (mGMCSF), was compared on the four murine cancer cell lines of different origin and healthy mesenchymal stem cells (MSCs) at 24 h post-infection by flow cytometry. Lewis lung carcinoma (LL/2) cells were demonstrated to be more susceptible to the lytic effects of both rVSV versions compared to melanoma (B16-F10) cells. Detection of expression levels of antiviral and pro-apoptotic genes in response to the rVSV-dM51-GFP infection by quantitative PCR (qPCR) showed lower levels of IFIT, RIG-I, and N-cadherin and higher levels of IFNβ and p53 in LL/2 cells. Subsequently, C57BL/6 mice, infused subcutaneously with the LL/2 cells, were injected intratumorally with the rVSV-dM51-mIL12-mGMCSF 7 days later to assess the synergistic effect of rVSV and immunostimulatory factors. The in vivo study demonstrated that treatment with two rVSV-dM51-mIL12-mGMCSF doses 3 days apart resulted in a tumor growth inhibition index (TGII) of over 50%. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

26 pages, 41897 KB  
Article
Chemical Characterization, Sensory Evaluation, and Biological Activity in Neuronal Cells of Essential Oils (Rose, Eucalyptus, Lemon, and Clove) Used for Olfactory Training
by Antonella Rosa, Franca Piras, Alessandra Piras, Silva Porcedda, Valeria Sogos and Carla Masala
Molecules 2025, 30(17), 3591; https://doi.org/10.3390/molecules30173591 - 2 Sep 2025
Viewed by 137
Abstract
Essential oils (EOs) are natural mixtures of volatile compounds characterized by beneficial pharmacological effects. The repeated inhalation of EOs in olfactory training (OT) has been demonstrated to improve the sense of smell in patients with olfactory deficits. We conducted a conjunct evaluation of [...] Read more.
Essential oils (EOs) are natural mixtures of volatile compounds characterized by beneficial pharmacological effects. The repeated inhalation of EOs in olfactory training (OT) has been demonstrated to improve the sense of smell in patients with olfactory deficits. We conducted a conjunct evaluation of the chemical composition, sensory profile, and bioactivity in cell models of commercial EOs of rose (EO1), eucalyptus (EO2), lemon (EO3), and clove (EO4) used for OT (StimuScent®, Dos Medical, Sense Trading BV, Groningen, The Netherlands). Citronellol, 1,8-cineole, limonene, and eugenol emerged as the most abundant volatile compounds in EO1, EO2, EO3, and EO4, respectively, by GC-MS analysis. Some differences emerged (using a Likert-type scale) in the perception of EO’s odor dimensions (pleasantness, intensity, and familiarity in subjects with hyposmia (n = 8) compared to controls (n = 22). Cytotoxicity assays (24 h of incubation) demonstrated the anticancer effects of EOs (5–100 μg/mL) on SH-SY5Y neuroblastoma cells (the order of potency was EO3 > EO4 > EO2 > EO1), while all EOs showed lower effects on the viability/morphology of human skin HaCaT keratinocytes. SH-SY5Y cancer cells grown for six days with different EOs (at 50 μg/mL) showed evident signs of toxicity and apoptosis. Marked changes in cell morphology (structure/number of processes) were evidenced in clove EO-treated cells. EO’s sensory properties/bioactivity were also related to the in silico physicochemical/pharmacokinetic properties of the main EO components. Our results provide new insights into a more targeted EO application for OT. Full article
Show Figures

Figure 1

5 pages, 585 KB  
Short Note
3-([4-(Acetylamino)phenyl]methoxy-1-carbonyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic Acid
by Kathryn N. Mayeaux, Bailey N. Baxter, Hannah K. Lawley, Caleb N. Lopansri, Mary Helene Marmande, Lucy A. Orr and David C. Forbes
Molbank 2025, 2025(3), M2056; https://doi.org/10.3390/M2056 - 30 Aug 2025
Viewed by 221
Abstract
Overexpression of protein phosphatase 5 (PP5) is linked to tumor cell growth, making it a candidate for small-molecule drug therapy. Since the PP2A domain has been selectively inhibited using functionalized scaffolds that maximize contacts, a similar approach is proposed to work for PP5. [...] Read more.
Overexpression of protein phosphatase 5 (PP5) is linked to tumor cell growth, making it a candidate for small-molecule drug therapy. Since the PP2A domain has been selectively inhibited using functionalized scaffolds that maximize contacts, a similar approach is proposed to work for PP5. As cantharidin’s demethylated cousin, norcantharidin, is a potent but unselective phosphatase inhibitor that can be prepared in just two synthetic steps, the bicyclic scaffold holds promise as an attractive target upon functionalization. Our hypothesis targets PP5 selectivity through derivatives of norcantharidin with functionalized attachments for optimal active-site binding. The methodology offers a promising platform for developing PP5-selective anticancer therapeutics. The approach reported herein exploits anhydride reactivity to yield a carboxylic acid derivative as our next-generation inhibitor of PP5. The methodology offers groundwork for future optimization of norcantharidin-based drug candidates with improved tumor selectivity, potency, and synthetic feasibility. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

29 pages, 3932 KB  
Review
Overview of Primary and Secondary Metabolites of Rugulopteryx okamurae Seaweed: Assessing Bioactivity, Scalability, and Molecular Mechanisms
by Ana Minerva García-Cervantes, José A. M. Prates and José Luis Guil-Guerrero
Mar. Drugs 2025, 23(9), 351; https://doi.org/10.3390/md23090351 - 30 Aug 2025
Viewed by 316
Abstract
Rugulopteryx okamurae is an invasive brown alga that has colonised Mediterranean and northeastern Atlantic coastlines, posing significant ecological and economic challenges. Its biomass is rich in structurally diverse metabolites—including polysaccharides (alginate, fucoidan, laminaran), phlorotannins, diterpenoids, fatty acids, and peptides—many of which exhibit notable [...] Read more.
Rugulopteryx okamurae is an invasive brown alga that has colonised Mediterranean and northeastern Atlantic coastlines, posing significant ecological and economic challenges. Its biomass is rich in structurally diverse metabolites—including polysaccharides (alginate, fucoidan, laminaran), phlorotannins, diterpenoids, fatty acids, and peptides—many of which exhibit notable antioxidant, anti-inflammatory, antimicrobial, and anticancer activities. Comparative assessment of extraction yields, structural features, and bioactivity data highlights phlorotannins and diterpenoids as particularly promising, demonstrating low-micromolar potencies and favourable predicted interactions with key inflammatory and apoptotic targets. Algal polysaccharides exhibit various bioactivities but hold strong potential for scalable and sustainable industrial applications. Emerging compound classes such as fatty acids and peptides display niche bioactivities; however, their structural diversity and mechanisms of action remain insufficiently explored. Insights from in vitro and in silico studies suggest that phlorotannins may modulate NF-κB and MAPK signalling pathways, while diterpenoids are implicated in the induction of mitochondrial apoptosis. Despite these findings, inconsistent extraction methodologies and a lack of in vivo pharmacokinetic and efficacy data limit translational potential. To overcome these limitations, standardized extraction protocols, detailed structure–activity relationship (SAR) and pharmacokinetic studies, and robust in vivo models are urgently needed. Bioactivity-guided valorisation strategies, aligned with ecological management, could transform R. okamurae biomass into a sustainable source for functional foods, cosmetics, and pharmaceuticals applications. Full article
Show Figures

Graphical abstract

15 pages, 1329 KB  
Article
First In Vitro Characterization of Salinomycinic Acid-Containing Two-Line Ferrihydrite Composites with Pronounced Antitumor Activity as MRI Contrast Agents
by Irena Pashkunova-Martic, Joachim Friske, Daniela Paneva, Zara Cherkezova-Zheleva, Michaela Hejl, Michael Jakupec, Simone Braeuer, Peter Dorkov, Bernhard K. Keppler, Thomas H. Helbich and Juliana Ivanova
Int. J. Mol. Sci. 2025, 26(17), 8405; https://doi.org/10.3390/ijms26178405 - 29 Aug 2025
Viewed by 198
Abstract
Iron(III) (Fe(III)) complexes have recently emerged as safer alternatives to magnetic resonance imaging (MRI) contrast agents (CAs), reigniting interest in biomedical research. Although gadolinium Gd(III)-based contrast agents (CAs) have been widely used in MRI over the past four decades, their use in the [...] Read more.
Iron(III) (Fe(III)) complexes have recently emerged as safer alternatives to magnetic resonance imaging (MRI) contrast agents (CAs), reigniting interest in biomedical research. Although gadolinium Gd(III)-based contrast agents (CAs) have been widely used in MRI over the past four decades, their use in the current clinical routine is severely constrained due to concerns about high toxicity and environmental impact. Research is now focusing on synthesizing safer contrast agents with alternative paramagnetic ions like Fe(III) or Mn(II). MRI CAs with integrated potent therapeutic moieties may offer synergistic advantages over traditional contrast agents in clinical use. The study explored the use of salinomycin-ferrihydrite composites as possible effective ensembles of imaging and therapeutic units in the same molecule, evaluating their anticancer activity and influence on the signal in MRI. The composites were characterized using Mössbauer spectroscopy and ICP-MS for iron content determination. The in vitro relaxivity measurements in a high-field MR scanner demonstrated the potency of the composites as T2 enhancers. The antitumor activity of one selected Sal-ferrihydrite composite was tested in three human cancer cell lines: A549 (non-small cell lung cancer); SW480 (colon cancer); and CH1/PA1 (ovarian teratocarcinoma) by the MTT cell viability assay. The new Sal-ferrihydrite composite showed a pronounced cytotoxicity in all three human cancers in line with enhanced signal in MRI, which makes it a promising candidate for future biomedical applications. The superior cytotoxic effect, together with the strong signal enhancement, makes these compounds promising candidates for further detailed investigations as future theranostic agents. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

15 pages, 1611 KB  
Article
Sea Anemone Stichodactyla Haddoni Venom: Extraction Method Dictates Composition and Functional Potency
by Meiling Huang, Ming Li, Rong Zhu, Kailin Mao, Kun Pan, Xuefeidan Liu and Bingmiao Gao
Mar. Drugs 2025, 23(9), 333; https://doi.org/10.3390/md23090333 - 23 Aug 2025
Viewed by 437
Abstract
Sea anemone venoms contain diverse toxins that have significant pharmacological potential, including anticancer, ecticidal, and immunotherapeutic properties. However, critically, the extraction methodology influences venom composition and bioactivity. This study characterized venom from Stichodactyla haddoni obtained via homogenization, electrical stimulation, and milking. Extraction yields [...] Read more.
Sea anemone venoms contain diverse toxins that have significant pharmacological potential, including anticancer, ecticidal, and immunotherapeutic properties. However, critically, the extraction methodology influences venom composition and bioactivity. This study characterized venom from Stichodactyla haddoni obtained via homogenization, electrical stimulation, and milking. Extraction yields varied significantly between methods: the homogenization, electrical stimulation, and milking of healthy sea anemones yielded crude venoms at rates of 17.8%, 3.4%, and 1.5%, respectively. SDS-PAGE revealed distinct protein banding patterns and concentrations, while RP-HPLC demonstrated method-dependent compositional differences. Comprehensive proteomic profiling identified 2370 proteins, encompassing both unique and shared components across extraction techniques. Label-free quantitative analysis confirmed significant variations in protein abundance that was attributable to the extraction method. Cytotoxicity assays against cancer cell lines revealed concentration-dependent inhibition, with milking-derived venom exhibiting the highest potency. Insecticidal activity against Tenebrio molitor was also method-dependent, with milking venom inducing the highest mortality rate. These findings elucidate the profound impact of extraction methodology on the protein composition and functional activities of S. haddoni venom, providing crucial insights for its optimized exploitation in pharmacological development. Full article
Show Figures

Figure 1

24 pages, 1620 KB  
Article
Novel Indole-Based Sulfonylhydrazones as Potential Anti-Breast Cancer Agents: Synthesis, In Vitro Evaluation, ADME, and QSAR Studies
by Violina T. Angelova, Rositsa Mihaylova, Zvetanka Zhivkova, Nikolay Vassilev, Boris Shivachev and Irini Doytchinova
Pharmaceuticals 2025, 18(8), 1231; https://doi.org/10.3390/ph18081231 - 20 Aug 2025
Viewed by 504
Abstract
Background: Breast cancer continues to pose a significant global health challenge despite advances in early detection and targeted therapies. The development of novel chemotherapeutic agents remains crucial, particularly those with selective cytotoxicity toward specific breast cancer subtypes. Methods: A series of [...] Read more.
Background: Breast cancer continues to pose a significant global health challenge despite advances in early detection and targeted therapies. The development of novel chemotherapeutic agents remains crucial, particularly those with selective cytotoxicity toward specific breast cancer subtypes. Methods: A series of ten hybrid indolyl-methylidene phenylsulfonylhydrazones and one bis-indole derivative were designed, synthesized, and structurally characterized using NMR and high-resolution mass spectrometry (HRMS). Prior to synthesis, in silico screening was performed to assess drug likeness and ADME-related properties. Single-crystal X-ray diffraction was conducted for compound 3e. The cytotoxic potential of the synthesized compounds was evaluated using the MTT assay against MCF-7 (ER-α⁺) and MDA-MB-231 (triple-negative) breast cancer cell lines. Additionally, quantitative structure–activity relationship (QSAR) analysis was conducted to identify key structural features contributing to activity. Results: Most compounds exhibited selective cytotoxicity against MCF-7 cells. Notably, compound 3b demonstrated the highest potency with an IC50 of 4.0 μM and a selectivity index (SI) of 20.975. Compound 3f showed strong activity against MDA-MB-231 cells (IC50 = 4.7 μM). QSAR analysis revealed that the presence of a non-substituted phenyl ring and specific indolyl substituents (5-methoxy, 1-acetyl, 5-chloro) significantly contributed to enhanced cytotoxic activity and ligand efficiency. Conclusion: The synthesized phenylsulfonylhydrazone hybrids exhibit promising and selective cytotoxicity, particularly against ER-α⁺ breast cancer cells. Structural insights from QSAR analysis provide a valuable foundation for the further optimization of this scaffold as a potential source of selective anticancer agents. Full article
(This article belongs to the Special Issue Advances in Hydrazone Compounds with Anticancer Activity)
Show Figures

Graphical abstract

16 pages, 1674 KB  
Article
Enhanced Anticancer Activity of Atractylodin-Loaded Poly(lactic-co-glycolic Acid) Nanoparticles Against Cholangiocarcinoma
by Tullayakorn Plengsuriyakarn, Luxsana Panrit and Kesara Na-Bangchang
Polymers 2025, 17(15), 2151; https://doi.org/10.3390/polym17152151 - 6 Aug 2025
Viewed by 472
Abstract
Cholangiocarcinoma (CCA) is highly prevalent in the Greater Mekong sub-region, especially northeastern Thailand, where infection with the liver fluke Opisthorchis viverrini is a major etiological factor. Limited therapeutic options and the absence of reliable early diagnosis tools impede effective disease control. Atractylodes lancea [...] Read more.
Cholangiocarcinoma (CCA) is highly prevalent in the Greater Mekong sub-region, especially northeastern Thailand, where infection with the liver fluke Opisthorchis viverrini is a major etiological factor. Limited therapeutic options and the absence of reliable early diagnosis tools impede effective disease control. Atractylodes lancea (Thunb.) DC.—long used in Thai and East Asian medicine, contains atractylodin (ATD), a potent bioactive compound with anticancer potential. Here, we developed ATD-loaded poly(lactic co-glycolic acid) nanoparticles (ATD PLGA NPs) and evaluated their antitumor efficacy against CCA. The formulated nanoparticles had a mean diameter of 229.8 nm, an encapsulation efficiency of 83%, and exhibited biphasic, sustained release, reaching a cumulative release of 92% within seven days. In vitro, ATD-PLGA NPs selectively reduced the viability of CL-6 and HuCCT-1 CCA cell lines, with selectivity indices (SI) of 3.53 and 2.61, respectively, outperforming free ATD and 5-fluorouracil (5-FU). They suppressed CL-6 cell migration and invasion by up to 90% within 12 h and induced apoptosis in 83% of cells through caspase-3/7 activation. Micronucleus assays showed lower mutagenic potential than the positive control. In vivo, ATD-PLGA NPs dose-dependently inhibited tumor growth and prolonged survival in CCA-xenografted nude mice; the high-dose regimen matched or exceeded the efficacy of 5-FU. Gene expression analysis revealed significant downregulation of pro-tumorigenic factors (VEGF, MMP-9, TGF-β, TNF-α, COX-2, PGE2, and IL-6) and upregulation of the anti-inflammatory cytokine IL-10. Collectively, these results indicate that ATD-PLGA NPs are a promising nanotherapeutic platform for targeted CCA treatment, offering improved anticancer potency, selectivity, and safety compared to conventional therapies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

24 pages, 6550 KB  
Article
DNA Fingerprint Profile of Zizania spp. Plant, Monitoring Its Leaves with Screening of Their Biological Activity: Antimicrobial, Antioxidant and Cytotoxicity
by Latifah A. Al Shammari
Life 2025, 15(8), 1240; https://doi.org/10.3390/life15081240 - 5 Aug 2025
Viewed by 474
Abstract
This study presents an integrated approach combining molecular, phytochemical, and biological analyses to characterize a newly discovered Zizania specimen from the northern Nile Delta, Egypt. Genetic fingerprinting using RAPD and ISSR markers revealed 85% band-sharing similarity with Zizania texana (Z. texana), [...] Read more.
This study presents an integrated approach combining molecular, phytochemical, and biological analyses to characterize a newly discovered Zizania specimen from the northern Nile Delta, Egypt. Genetic fingerprinting using RAPD and ISSR markers revealed 85% band-sharing similarity with Zizania texana (Z. texana), though distinct morphological and genetic traits suggested potential intraspecific variation. Phytochemical profiling identified high concentrations of bioactive compounds, including quercetin (42.1 µg/mL), β-caryophyllene (11.21%), and gallic acid (23.4 µg/mL), which are pertinent and correlated with robust biological activities. The ethanolic leaf extract exhibited significant antioxidant capacity (IC50 = 38.6 µg/mL in DPPH assay), potent antimicrobial effects against Candida albicans (C. albicans) (IC50 = 4.9 ± 0.6 µg/mL), and dose-dependent cytotoxicity against cancer cell lines. MCF-7 has the lowest IC50 (28.3 ± 1.5 µg/mL), indicating the highest potency among the tested cell lines. In contrast, HepG2 demonstrates moderate sensitivity (IC50 = 31.4 ± 1.8 µg/mL), while A549 shows the highest IC50 value (36.9 ± 2.0 µg/mL), indicating greater resistance. These findings underscore the taxonomic novelty of the specimen and its potential as a source of natural antioxidants, antimicrobials, and anticancer agents. The study highlights the importance of interdisciplinary approaches in resolving taxonomic uncertainties and unlocking the medicinal value of understudied aquatic plants. Full article
(This article belongs to the Special Issue Therapeutic Innovations from Plants and Their Bioactive Extracts)
Show Figures

Figure 1

30 pages, 4011 KB  
Article
Multitarget Design of Steroidal Inhibitors Against Hormone-Dependent Breast Cancer: An Integrated In Silico Approach
by Juan Rodríguez-Macías, Oscar Saurith-Coronell, Carlos Vargas-Echeverria, Daniel Insuasty Delgado, Edgar A. Márquez Brazón, Ricardo Gutiérrez De Aguas, José R. Mora, José L. Paz and Yovanni Marrero-Ponce
Int. J. Mol. Sci. 2025, 26(15), 7477; https://doi.org/10.3390/ijms26157477 - 2 Aug 2025
Viewed by 582
Abstract
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha [...] Read more.
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha (ER-α), and HER2. Using a robust 3D-QSAR model (R2 = 0.86; Q2_LOO = 0.86) built from 52 steroidal structures, we identified molecular features associated with high anticancer potential, specifically increased polarizability and reduced electronegativity. From a virtual library of 271 DFT-optimized analogs, 31 compounds were selected based on predicted potency (pIC50 > 7.0) and screened via molecular docking against PR (PDB 2W8Y), HER2 (PDB 7JXH), and ER-α (PDB 6VJD). Seven candidates showed strong binding affinities (ΔG ≤ −9 kcal/mol for at least two targets), with Estero-255 emerging as the most promising. This compound demonstrated excellent conformational stability, a robust hydrogen-bonding network, and consistent multitarget engagement. Molecular dynamics simulations over 100 nanoseconds confirmed the structural integrity of the top ligands, with low RMSD values, compact radii of gyration, and stable binding energy profiles. Key interactions included hydrophobic contacts, π–π stacking, halogen–π interactions, and classical hydrogen bonds with conserved residues across all three targets. These findings highlight Estero-255, alongside Estero-261 and Estero-264, as strong multitarget candidates for further development. By potentially disrupting the PI3K/AKT/mTOR signaling pathway, these compounds offer a promising strategy for overcoming resistance in hormone-driven breast cancer. Experimental validation, including cytotoxicity assays and ADME/Tox profiling, is recommended to confirm their therapeutic potential. Full article
Show Figures

Graphical abstract

19 pages, 1941 KB  
Article
Structural, Quantum Chemical, and Cytotoxicity Analysis of Acetylplatinum(II) Complexes with PASO2 and DAPTA Ligands
by Stefan Richter, Dušan Dimić, Milena R. Kaluđerović, Fabian Mohr and Goran N. Kaluđerović
Inorganics 2025, 13(8), 253; https://doi.org/10.3390/inorganics13080253 - 27 Jul 2025
Viewed by 760
Abstract
The development of novel platinum-based anticancer agents remains a critical objective in medicinal inorganic chemistry, particularly in light of resistance and toxicity limitations associated with cisplatin. In this study, the synthesis, structural characterization, quantum chemical analysis, and cytotoxic evaluation of four new acetylplatinum(II) [...] Read more.
The development of novel platinum-based anticancer agents remains a critical objective in medicinal inorganic chemistry, particularly in light of resistance and toxicity limitations associated with cisplatin. In this study, the synthesis, structural characterization, quantum chemical analysis, and cytotoxic evaluation of four new acetylplatinum(II) complexes (cis-[Pt(COMe)2(PASO2)2], cis-[Pt(COMe)2(DAPTA)2], trans-[Pt(COMe)Cl(DAPTA)2], and trans-[Pt(COMe)Cl(PASO2)]: 14, respectively) bearing cage phosphine ligands PASO2 (2-thia-1,3,5-triaza-phosphaadamantane 2,2-dioxide) and DAPTA (3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) are presented. The coordination geometries and NMR spectral features of the cis/trans isomers were elucidated through multinuclear NMR and DFT calculations at the B3LYP/6-311++G(d,p)/LanL2DZ level, with strong agreement between experimental and theoretical data. Quantum Theory of Atoms in Molecules (QTAIM) analysis was applied to investigate bonding interactions and assess the covalent character of Pt–ligand bonds. Cytotoxicity was evaluated against five human cancer cell lines. The PASO2-containing complex in cis-configuration, 1, demonstrated superior activity against thyroid (8505C) and head and neck (A253) cancer cells, with potency surpassing that of cisplatin. The DAPTA complex 2 showed enhanced activity toward ovarian (A2780) cancer cells. These findings highlight the influence of ligand structure and isomerism on biological activity, supporting the rational design of phosphine-based Pt(II) anticancer drugs. Full article
Show Figures

Figure 1

38 pages, 2987 KB  
Review
Benzothiazole-Based Therapeutics: FDA Insights and Clinical Advances
by Subba Rao Cheekatla
Chemistry 2025, 7(4), 118; https://doi.org/10.3390/chemistry7040118 - 25 Jul 2025
Viewed by 2523
Abstract
Benzothiazole derivatives have emerged as being highly significant in drug discovery due to their versatile biological activities and structural adaptability. Incorporating nitrogen and sulfur, this fused heterocyclic scaffold exhibits wide-ranging pharmacological properties, including anticancer, antimicrobial, anti-inflammatory, antidiabetic, neuroprotective, and diagnostic applications. A diverse [...] Read more.
Benzothiazole derivatives have emerged as being highly significant in drug discovery due to their versatile biological activities and structural adaptability. Incorporating nitrogen and sulfur, this fused heterocyclic scaffold exhibits wide-ranging pharmacological properties, including anticancer, antimicrobial, anti-inflammatory, antidiabetic, neuroprotective, and diagnostic applications. A diverse set of clinically approved and investigational compounds, such as flutemetamol for Alzheimer’s diagnosis, riluzole for ALS, and quizartinib for AML, illustrates the scaffold’s therapeutic potential in varied applications. These agents act via mechanisms such as enzyme inhibition, receptor modulation, and amyloid imaging, demonstrating the scaffold’s high binding affinity and target specificity. Advances in synthetic strategies and our understanding of structure–activity relationships (SARs) continue to drive the development of novel benzothiazole-based therapeutics with improved potency, selectivity, and safety profiles. We also emphasize recent in vitro and in vivo studies, including drug candidates in clinical trials, to provide a comprehensive perspective on the therapeutic potential of benzothiazole-based compounds in modern drug discovery. This review brings together recent progress to help guide the development of new benzothiazole-based compounds for future therapeutic applications. Full article
Show Figures

Graphical abstract

32 pages, 3865 KB  
Article
Purine–Hydrazone Scaffolds as Potential Dual EGFR/HER2 Inhibitors
by Fatemah S. Albalawi, Mashooq A. Bhat, Ahmed H. Bakheit, A. F. M. Motiur Rahman, Nawaf A. Alsaif, Alan M. Jones and Isolda Romero-Canelon
Pharmaceuticals 2025, 18(7), 1051; https://doi.org/10.3390/ph18071051 - 17 Jul 2025
Viewed by 748
Abstract
Background/Objectives: The dual targeting of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) represents an effective approach for cancer treatment. The current study involved the design, synthesis, and biological evaluation of a new series of purine-containing hydrazones, 6 [...] Read more.
Background/Objectives: The dual targeting of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) represents an effective approach for cancer treatment. The current study involved the design, synthesis, and biological evaluation of a new series of purine-containing hydrazones, 624 (a,b), as anticancer agents targeting EGFR and HER2 kinases. Methods: The proposed compounds were initially screened in silico using molecular docking to investigate their binding affinity to the active sites of EGFR and HER2 kinase domains. Subsequently, the compounds were synthesized and evaluated in vitro for their antiproliferative activity, using the MTT assay, against the various cancer cell lines A549, SKOV-3, A2780, and SKBR-3, with lapatinib as the reference drug. The most active derivatives were then examined to determine their inhibitory activity against EGFR and HER2 kinases. Results: Among the assessed compounds, significant antiproliferative activity was demonstrated by 19a, 16b, and 22b. 19a exhibited substantial anticancer efficacy against A549 and SKBR-3, with IC50 values of 0.81 µM and 1.41 µM, respectively. This activity surpassed lapatinib, which has an IC50 of 11.57 µM on A549 and 8.54 µM on SKBR-3 cells. Furthermore, 19a, 16b, and 22b exhibited superior EGFR inhibitory efficacy compared with lapatinib (IC50 = 0.13 µM), with IC50 values of 0.08, 0.06, and 0.07 µM, respectively. Regarding HER2, 22b demonstrated the greatest potency with an IC50 of 0.03 µM, equipotent to lapatinib (IC50 = 0.03 µM). Flow cytometry analysis of A549 cells treated with 19a and 22b indicated their ability to arrest the cell cycle during the G1 phase and to trigger cellular apoptosis. Conclusions: Compounds 19a, 16b, and 22b represent intriguing candidates for the development of an anticancer agent targeting EGFR and HER2 kinases. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

14 pages, 3439 KB  
Article
The Novel Diketopiperazine Derivative, Compound 5-3, Selectively Inhibited the Proliferation of FLT3-ITD Mutant Acute Myeloid Leukemia (AML) Cells
by Shijie Bi, Yating Cao, Shiyuan Fang, Yanyan Chu, Zixuan Zhang, Meng Li, Rilei Yu, Jinbo Yang, Yu Tang and Peiju Qiu
Mar. Drugs 2025, 23(7), 289; https://doi.org/10.3390/md23070289 - 16 Jul 2025
Viewed by 750
Abstract
The internal tandem duplication mutation of FMS-like tyrosine kinase 3 (FLT3-ITD) is associated with high recurrence and mortality rates in acute myeloid leukemia (AML), making it a critical target for anti-AML therapies. Plinabulin is a diketopiperazines derivative that exhibits extensive anti-cancer potency by [...] Read more.
The internal tandem duplication mutation of FMS-like tyrosine kinase 3 (FLT3-ITD) is associated with high recurrence and mortality rates in acute myeloid leukemia (AML), making it a critical target for anti-AML therapies. Plinabulin is a diketopiperazines derivative that exhibits extensive anti-cancer potency by targeting β-tubulin. We designed and synthesized a novel FLT3 inhibitor, namely 5-3, based on the structure of plinabulin and evaluated its effect on FLT3-ITD mutant AML cells. The results indicated that 5-3 potently and selectively inhibits the growth of mutant FLT3-expressingleukemia cells, and had no effect on FLT3 wide-type cancer cells, suggesting the antiproliferative activity of 5-3 depends highly on FLT3-ITD expression. Mechanically, 5-3 significantly suppressed the phosphorylation of FLT3 signaling pathway, including STAT5, Erk and Akt. Moreover, the efficiency of compound 5-3 is not associated with Plinabulin’s typical target, β-tubulin. In conclusion, the study identified diketopiperazine derivative as a novel FLT3-ITD selective inhibitor. These results demonstrated that 5-3 might be a drug candidate for the treatment of FLT3-ITD-positive AML. Full article
Show Figures

Graphical abstract

16 pages, 644 KB  
Article
Isolation and Identification of Secondary Metabolites in Rheum tataricum L.fil. Growing in Kazakhstan and Surveying of Its Anticancer Potential
by Aiman A. Turgunbayeva, Nurgul A. Sultanova, Mohammad Saleh Hamad, Victor A. Savelyev, Elena I. Chernyak, Irina Yu. Bagryanskaya, Mikhail A. Pokrovsky, Andrey G. Pokrovsky, Nadezhda G. Gemejiyeva and Elvira E. Shults
Molecules 2025, 30(14), 2978; https://doi.org/10.3390/molecules30142978 - 15 Jul 2025
Viewed by 623
Abstract
Rheum tataricum L.fil., known for its high tolerance to drought, salinity, and nutritional deficiency, is the least studied species of wild rhubarb. Extract of roots and rhizomes of R. tataricum has been traditionally used for the treatment of different diseases such as liver, [...] Read more.
Rheum tataricum L.fil., known for its high tolerance to drought, salinity, and nutritional deficiency, is the least studied species of wild rhubarb. Extract of roots and rhizomes of R. tataricum has been traditionally used for the treatment of different diseases such as liver, kidney, womb, and bladder diseases and also relapsing fever. An ethanol extract of the roots of R. tataricum was prepared and further successively fractionated by extraction with tert-butyl methyl ether (TBME) and ethyl acetate (EtOAc). The obtained extract fractions were subjected to a series of chromatographic separations on silica gel for the isolation of its individual compounds. A total of 12 individual compounds, 2-O-β-D-glucopyranoside of R-(4-hydroxyphenyl)-2-butanol (rhododendrin) 1, gallic acid 2, 2-O-β-D-glucopyranoside of S-4-(4-hydroxyphenyl)-2-butanol (epi-rhododendrin) 3, their aglycones (-)-(2R)-rhododendrol 4 and (+)-(2S)-rhododendrol 5, gallotannin β-glucogallin 6, chlorogenic acids (3,5-di-O-caffeoylquinic acid 7 and 5-O-caffeoyl-3-O-(p-coumaroyl) quinic acid 8), 4-(4-hydroxyphenyl)-2-butanon (raspberry ketone) 9 and three stilbenes (rhaponticin 10, desoxyrhaponticin 11 and resveratroloside 12), were isolated and characterized. The structure of desoxyrhaponticin 11 was confirmed by X-ray diffraction analyses. The results of in vitro biological assays (the MTT test) showed that ethanol extract Rheum tataricum was non-toxic against the normal epithelial VERO cells. The isolated compounds 1, 4, 11 and 12 exhibited cytotoxicity against a cervical cancer cell line (CaSki), breast adenocarcinoma (MCF7) and glioblastoma cell line (SNB-19) at low micromolar concentrations. Polyhydroxystilbenes 11 and 12 showed the best potency against adenocarcinoma cells (GI50 = 7–8 μM). The inhibition activity towards cancer cells was comparable to those of the standard drug doxorubicin. The available from R. tataricum secondary metabolites may serve as new leads for the discovery of anticancer drugs. Full article
Show Figures

Graphical abstract

Back to TopTop