Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (356)

Search Parameters:
Keywords = antiviral drug discovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 4789 KB  
Review
Recent Advances in the Development of Metal-Glycoconjugates for Medicinal Applications
by Federica Brescia, Ioannis Titilas, Simona Cacciapuoti and Luca Ronconi
Molecules 2025, 30(17), 3537; https://doi.org/10.3390/molecules30173537 - 29 Aug 2025
Abstract
Rapidly proliferating tumor cells exhibit elevated demands for nutrients and energy to support their uncontrolled growth, with glucose serving as a key metabolic substrate. Glucose is transported into cells via facilitated diffusion mediated by glucose transporters (GLUTs), after which it undergoes a series [...] Read more.
Rapidly proliferating tumor cells exhibit elevated demands for nutrients and energy to support their uncontrolled growth, with glucose serving as a key metabolic substrate. Glucose is transported into cells via facilitated diffusion mediated by glucose transporters (GLUTs), after which it undergoes a series of enzymatic reactions to generate energy. To accommodate their heightened metabolic needs, cancer cells frequently overexpress GLUTs, thereby enhancing glucose uptake. Notably, aerobic glycolysis—commonly referred to as the “Warburg effect”—has been identified as the predominant pathway of glucose metabolism within tumor tissues, even in the presence of adequate oxygen levels. Consequently, the conjugation of chemotherapeutic agents, including metallodrugs, to glucose-mimicking substrates holds significant potential for achieving tumor-specific intracellular drug delivery by exploiting the elevated glucose uptake characteristic of cancer cells. Moreover, in recent years, glycosylation of metal scaffolds has been extended to the development of bioactive metallodrugs for applications other than cancer treatment, such as potential tumor imaging, antiviral, antimicrobial, antiparasitic and anti-neurodegenerative agents. Accordingly, major advancements in the design of metal-based glycoconjugates for medicinal applications are here summarized and critically discussed, focusing on related results and discoveries published subsequently to our previous (2015) review article on the topic. Full article
44 pages, 2436 KB  
Review
Antiviral Strategies Targeting Enteroviruses: Current Advances and Future Directions
by Michelle Felicia Lee, Seng Kong Tham and Chit Laa Poh
Viruses 2025, 17(9), 1178; https://doi.org/10.3390/v17091178 - 28 Aug 2025
Viewed by 114
Abstract
Enteroviruses, a diverse genus within the Picornaviridae family, are responsible for a wide range of human infections, including hand, foot, and mouth disease, respiratory disease, aseptic meningitis, encephalitis, myocarditis, and acute flaccid paralysis. Despite their substantial global health burden and the frequent emergence [...] Read more.
Enteroviruses, a diverse genus within the Picornaviridae family, are responsible for a wide range of human infections, including hand, foot, and mouth disease, respiratory disease, aseptic meningitis, encephalitis, myocarditis, and acute flaccid paralysis. Despite their substantial global health burden and the frequent emergence of outbreaks, no specific antiviral therapies are currently approved for clinical use against non-polio enteroviruses. This review provides a comprehensive overview of the current landscape of antiviral strategies targeting enteroviruses, including direct-acting antivirals such as capsid binders, protease inhibitors, and viral RNA polymerase inhibitors. We also examine the potential of host-targeting agents that interfere with virus–host interactions essential for replication. Emerging strategies such as immunotherapeutic approaches, RNA interference, CRISPR-based antivirals, and peptide-based antivirals are also explored. Furthermore, we address key challenges, including viral diversity, drug resistance, and limitations in preclinical models. By highlighting recent advances and ongoing efforts in antiviral development, this review aims to guide future research and accelerate the discovery of effective therapies against enterovirus infections. Full article
(This article belongs to the Special Issue Picornavirus Evolution, Host Adaptation and Antiviral Strategies)
Show Figures

Figure 1

16 pages, 296 KB  
Review
Human Metapneumovirus: A Narrative Review on Emerging Strategies for Prevention and Treatment
by Nicola Principi, Valentina Fainardi and Susanna Esposito
Viruses 2025, 17(8), 1140; https://doi.org/10.3390/v17081140 - 20 Aug 2025
Viewed by 645
Abstract
Human metapneumovirus (HMPV) is a major cause of acute respiratory tract infections, particularly in infants, young children, older adults, and immunocompromised individuals. Since its discovery in 2001, the virus has been recognized for its significant clinical and socioeconomic impact. Despite extensive research, no [...] Read more.
Human metapneumovirus (HMPV) is a major cause of acute respiratory tract infections, particularly in infants, young children, older adults, and immunocompromised individuals. Since its discovery in 2001, the virus has been recognized for its significant clinical and socioeconomic impact. Despite extensive research, no licensed vaccines or antiviral therapies are currently available for HMPV. This review aims to synthesize current knowledge on HMPV prevention and treatment, and to highlight promising avenues for future interventions. Several monoclonal antibodies (mAbs) targeting conserved epitopes of the HMPV fusion (F) protein have shown strong neutralizing activity in vitro and in animal models, although none have reached clinical trials. Vaccine development, including subunit, live attenuated, vector-based, and mRNA platforms, is progressing, with some candidates showing promise in adult populations. However, data in children, especially seronegative infants, remain limited. Antiviral research has explored repurposed drugs such as ribavirin and probenecid, along with novel agents like fusion inhibitors and T-cell-based immunotherapies, though none are yet approved. The development of safe, effective interventions—especially multivalent approaches targeting multiple respiratory viruses—remains a high priority. Continued research is essential to bridge the gap between preclinical promise and clinical application and to reduce the burden of HMPV infection worldwide. Full article
(This article belongs to the Section General Virology)
15 pages, 4767 KB  
Article
First Report of the Yezo Virus Isolates Detection in Russia
by Mikhail Kartashov, Kirill Svirin, Alina Zheleznova, Alexey Yanshin, Nikita Radchenko, Valentina Kurushina, Tatyana Tregubchak, Lada Maksimenko, Mariya Sivay, Vladimir Ternovoi, Alexander Agafonov and Anastasia Gladysheva
Viruses 2025, 17(8), 1125; https://doi.org/10.3390/v17081125 - 15 Aug 2025
Viewed by 649
Abstract
The recent discovery of the Yezo virus (YEZV) in Japan and China has raised particular concern due to its potential to cause human diseases ranging from mild febrile illnesses to severe neurological disorders. We report, for the first time, the detection of five [...] Read more.
The recent discovery of the Yezo virus (YEZV) in Japan and China has raised particular concern due to its potential to cause human diseases ranging from mild febrile illnesses to severe neurological disorders. We report, for the first time, the detection of five YEZV isolates in I. persulcatus ticks from three regions of Russia. The analysis was performed using 5318 ticks of two Ixodes genus collected in 2024 from 23 regions of Russia. The minimum infection rate of YEZV in Russia among I. persulcatus ticks was 0.12% (95% CI: 0.05–0.28). The westernmost and northernmost YEZV detection points have been recorded. YEZV isolates circulating in Russia are genetically diverse. Protein domains of Russian YEZV isolates’ genomes were characterized using HMMER, AlphaFold 3, and InterProScan. The YEZV nucleoprotein (N) of Russian isolates has a racket-shaped structure with “head” and “stalk” domains similar to those of Orthonairovirus haemorrhagiae. The Lys261–Arg261 substitution in the YEZV N Chita 2024-1 isolate occurs in the α11 structure in the region of interaction with viral RNA. Our results show that the distribution area of YEZV is much wider than previously known, provide new data on complete YEZV genomes, extend our structural insight into YEZV N, and suggest a potential target for antiviral drug development to treat YEZV infection. Full article
(This article belongs to the Special Issue Tick-Borne Viruses: Transmission and Surveillance, 2nd Edition)
Show Figures

Figure 1

24 pages, 9295 KB  
Review
Cannabis Derivatives as Ingredients of Functional Foods to Combat the COVID-19 Pandemic
by Xiaoli Qin, Xiai Yang, Yanchun Deng, Litao Guo, Zhimin Li, Xiushi Yang and Chunsheng Hou
Foods 2025, 14(16), 2830; https://doi.org/10.3390/foods14162830 - 15 Aug 2025
Viewed by 568
Abstract
Lower respiratory infections predominantly affect children under five and the elderly, with influenza viruses and respiratory syncytial viruses (including SARS-CoV-2) being the most common pathogens. The COVID-19 pandemic has posed significant global public health challenges. While vaccination remains crucial, its efficacy is limited, [...] Read more.
Lower respiratory infections predominantly affect children under five and the elderly, with influenza viruses and respiratory syncytial viruses (including SARS-CoV-2) being the most common pathogens. The COVID-19 pandemic has posed significant global public health challenges. While vaccination remains crucial, its efficacy is limited, highlighting the need for complementary approaches to mitigate immune hyperactivation in severe COVID-19 cases. Medicinal plants like Cannabis sativa show therapeutic potential, with over 85% of SARS-CoV-2-infected patients in China receiving traditional herbal treatments. This review explores the antiviral applications of cannabis and its bioactive compounds, particularly against SARS-CoV-2, while evaluating their pharmacological and food industry potential. Cannabis contains over 100 cannabinoids, terpenes, flavonoids, and fatty acids. Cannabinoids may block viral entry, modulate immune responses (e.g., suppressing pro-inflammatory cytokines via CB2/PPARγ activation), and alleviate COVID-19-related psychological stress. There are several challenges with pharmacological and food applications of cannabinoids, including clinical validation of cannabinoids for COVID-19 treatment and optimizing cannabinoid solubility/bioavailability for functional foods. However, rising demand for health-focused products presents market opportunities. Genetic engineering to enhance cannabinoid yields and integrated pharmacological studies are needed to unlock cannabis’s full potential in drug discovery and nutraceuticals. Cannabis-derived compounds hold promise for antiviral therapies and functional ingredients, though further research is essential to ensure safety and efficacy. Full article
(This article belongs to the Special Issue Functional Food and Safety Evaluation: Second Edition)
Show Figures

Figure 1

19 pages, 5300 KB  
Article
Structural Features of Nucleoproteins from the Recently Discovered Orthonairovirus songlingense and Norwavirus beijiense
by Alexey O. Yanshin, Daria I. Ivkina, Vitaliy Yu. Tuyrin, Irina A. Osinkina, Anton E. Tishin, Sergei E. Olkin, Egor O. Ukladov, Nikita S. Radchenko, Sergey G. Arkhipov, Yury L. Ryzhykau, Na Li, Alexander P. Agafonov, Ilnaz R. Imatdinov and Anastasia V. Gladysheva
Int. J. Mol. Sci. 2025, 26(15), 7445; https://doi.org/10.3390/ijms26157445 - 1 Aug 2025
Viewed by 343
Abstract
The recent discovery of Orthonairovirus songlingense (SGLV) and Norwavirus beijiense (BJNV) in China has raised significant concern due to their potential to cause severe human disease. However, little is known about the structural features and function of their nucleoproteins, which play a key [...] Read more.
The recent discovery of Orthonairovirus songlingense (SGLV) and Norwavirus beijiense (BJNV) in China has raised significant concern due to their potential to cause severe human disease. However, little is known about the structural features and function of their nucleoproteins, which play a key role in the viral life cycle. By combining small-angle X-ray scattering (SAXS) data and AlphaFold 3 simulations, we reconstructed the BJNV and SGLV nucleoprotein structures for the first time. The SGLV and BJNV nucleoproteins have structures that are broadly similar to those of Orthonairovirus haemorrhagiae (CCHFV) nucleoproteins despite low sequence similarity. Based on structural analysis, several residues located in the positively charged region of BJNV and SGLV nucleoproteins have been indicated to be important for viral RNA binding. A positively charged RNA-binding crevice runs along the interior of the SGLV and BJNV ribonucleoprotein complex (RNP), shielding the viral RNA. Despite the high structural similarity between SGLV and BJNV nucleoprotein monomers, their RNPs adopt distinct conformations. These findings provide important insights into the molecular mechanisms of viral genome packaging and replication in these emerging pathogens. Also, our work demonstrates that experimental SAXS data can validate and improve predicted AlphaFold 3 structures to reflect their solution structure and also provides the first low-resolution structures of the BJNV and SGLV nucleoproteins for the future development of POC tests, vaccines, and antiviral drugs. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

24 pages, 1024 KB  
Review
SARS-CoV-2 Infection and Antiviral Strategies: Advances and Limitations
by Vinicius Cardoso Soares, Isabela Batista Gonçalves Moreira and Suelen Silva Gomes Dias
Viruses 2025, 17(8), 1064; https://doi.org/10.3390/v17081064 - 30 Jul 2025
Viewed by 911
Abstract
Since the onset of the COVID-19 pandemic, remarkable progress has been made in the development of antiviral therapies for SARS-CoV-2. Several direct-acting antivirals, such as remdesivir, molnupiravir, and nirmatrelvir/ritonavir, offer clinical benefits. These agents have significantly contributed to reducing the viral loads and [...] Read more.
Since the onset of the COVID-19 pandemic, remarkable progress has been made in the development of antiviral therapies for SARS-CoV-2. Several direct-acting antivirals, such as remdesivir, molnupiravir, and nirmatrelvir/ritonavir, offer clinical benefits. These agents have significantly contributed to reducing the viral loads and duration of the illness, as well as the disease’s severity and mortality. However, despite these advances, important limitations remain. The continued emergence of resistant SARS-CoV-2 variants highlights the urgent need for adaptable and durable therapeutic strategies. Therefore, this review aims to provide an updated overview of the main antiviral strategies that are used and the discovery of new drugs against SARS-CoV-2, as well as the therapeutic limitations that have shaped clinical management in recent years. The major challenges include resistance associated with viral mutations, limited treatment windows, and unequal access to treatment. Moreover, there is an ongoing need to identify novel compounds with broad-spectrum activity, improved pharmacokinetics, and suitable safety profiles. Combination treatment regimens represent a promising strategy to increase the efficacy of treating COVID-19 while minimizing the potential for resistance. Ideally, these interventions should be safe, affordable, and easy to administer, which would ensure broad global access and equitable treatment and enable control of COVID-19 cases and preparedness for future threats. Full article
Show Figures

Figure 1

20 pages, 732 KB  
Review
AI Methods Tailored to Influenza, RSV, HIV, and SARS-CoV-2: A Focused Review
by Achilleas Livieratos, George C. Kagadis, Charalambos Gogos and Karolina Akinosoglou
Pathogens 2025, 14(8), 748; https://doi.org/10.3390/pathogens14080748 - 30 Jul 2025
Viewed by 877
Abstract
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based [...] Read more.
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based triage models using eXtreme Gradient Boosting (XGBoost) and Random Forests, as well as imaging classifiers built on convolutional neural networks (CNNs), have improved diagnostic accuracy across respiratory infections. Transformer-based architectures and social media surveillance pipelines have enabled real-time monitoring of COVID-19. In HIV research, support-vector machines (SVMs), logistic regression, and deep neural network (DNN) frameworks advance viral-protein classification and drug-resistance mapping, accelerating antiviral and vaccine discovery. Despite these successes, persistent challenges remain—data heterogeneity, limited model interpretability, hallucinations in large language models (LLMs), and infrastructure gaps in low-resource settings. We recommend standardized open-access data pipelines and integration of explainable-AI methodologies to ensure safe, equitable deployment of AI-driven interventions in future viral-outbreak responses. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

15 pages, 2357 KB  
Article
Development of a Novel, Highly Sensitive System for Evaluating Ebola Virus Particle Formation
by Wakako Furuyama, Miako Sakaguchi, Hanako Ariyoshi and Asuka Nanbo
Viruses 2025, 17(7), 1016; https://doi.org/10.3390/v17071016 - 19 Jul 2025
Viewed by 634
Abstract
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and effective countermeasures remain limited. The EBOV-encoded major matrix protein VP40 is essential for viral assembly, budding, and particle release, making it a promising target for antiviral drug development. However, no approved drugs currently [...] Read more.
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and effective countermeasures remain limited. The EBOV-encoded major matrix protein VP40 is essential for viral assembly, budding, and particle release, making it a promising target for antiviral drug development. However, no approved drugs currently target the viral particle formation process. In this study, we established a simple and highly sensitive screening system to evaluate VP40-mediated virus-like particle (VLP) formation under biosafety level −2 conditions. The system uses the HiBiT luminescence-based reporter fused to VP40, allowing for the detection of VP40 release. Our results demonstrate that the HiBiT sequence fused at the N-terminus [HiBiT-VP40 (N)] retains VP40′s ability to form VLPs, supporting its use as a functional reporter. Furthermore, we validated the system by assessing the role of Rab11-dependent trafficking in VP40-mediated budding and by evaluating the effect of nocodazole, a microtubule depolymerizer, on VLP release. This novel screening system provides a convenient and reliable platform for screening potential inhibitors targeting the late stages of EBOV infection, including viral particle formation and release. Additionally, its potential adaptability to other filoviruses suggests wide applicability in the discovery and development of additional novel therapeutic agents. Full article
Show Figures

Figure 1

25 pages, 3522 KB  
Article
Repurposing of Some Nucleoside Analogs Targeting Some Key Proteins of the Avian H5N1 Clade 2.3.4.4b to Combat the Circulating HPAI in Birds: An In Silico Approach
by Mohd Yasir Khan, Abid Ullah Shah, Nithyadevi Duraisamy, Mohammed Cherkaoui and Maged Gomaa Hemida
Viruses 2025, 17(7), 972; https://doi.org/10.3390/v17070972 - 10 Jul 2025
Viewed by 670
Abstract
(1) Background: The highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b is an emerging threat that poses a great risk to the poultry industry. A few human cases have been linked to the infection with this clade in many parts of the world, [...] Read more.
(1) Background: The highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b is an emerging threat that poses a great risk to the poultry industry. A few human cases have been linked to the infection with this clade in many parts of the world, including the USA. Unfortunately, there are no specific vaccines or antiviral drugs that could help prevent and treat the infection caused by this virus in birds. Our major objective is to identify/repurpose some (novel/known) antiviral compounds that may inhibit viral replication by targeting some key viral proteins. (2) Methods: We used state-of-the-art machine learning tools such as molecular docking and MD-simulation methods from Biovia Discovery Studio (v24.1.0.321712). The key target proteins such as hemagglutinin (HA), neuraminidase (NA), Matrix-2 protein (M2), and the cap-binding domain of PB2 (PB2/CBD) homology models were validated through structural assessment via DOPE scores, Ramachandran plots, and Verify-3D metrics, ensuring reliable structural representations, confirming their reliability for subsequent in silico approaches. These approaches include molecular docking followed by molecular dynamics simulation for 50 nanoseconds (ns), highlighting the structural stability and compactness of the docked complexes. (3) Results: Molecular docking revealed strong binding affinities for both sofosbuvir and GS441524, particularly with the NA and PB2/CBD protein targets. Among them, GS441524 exhibited superior interaction scores and a greater number of hydrogen bonds with key functional residues of NA and PB2/CBD. The MM-GBSA binding free energy calculations further supported these findings, as GS441524 displayed more favorable binding energies compared to several known standard inhibitors, including F0045S for HA, Zanamivir for NA, Rimantadine and Amantadine for M2, and PB2-39 for PB2/CBD. Additionally, 50 ns molecular dynamics simulations highlighted the structural stability and compactness of the GS441524-PB2/CBD complex, further supporting its potential as a promising antiviral candidate. Furthermore, hydrogen bond monitor analysis over the 50 ns simulation confirmed persistent and specific interactions between the ligand and proteins, suggesting that GS441524 may effectively inhibit the NA, and PB2/CBD might potentially disrupt PB2-mediated RNA synthesis. (4) Conclusions: Our findings are consistent with previous evidence supporting the antiviral activity of certain nucleoside analog inhibitors, including GS441524, against various coronaviruses. These results further support the potential repurposing of GS441524 as a promising therapeutic candidate against H5N1 avian influenza clade 2.3.4.4b. However, further functional studies are required to validate these in silico predictions and support the inhibitory action of GS441524 against the targeted proteins of H5N1, specifically clade 2.3.4.4b. Full article
(This article belongs to the Special Issue Interplay Between Influenza Virus and Host Factors)
Show Figures

Figure 1

14 pages, 694 KB  
Article
In Vitro Antiviral Activity of the Fungal Metabolite 6-Pentyl-α-Pyrone Against Bovine Coronavirus: A Translational Study to SARS-CoV-2
by Violetta Iris Vasinioti, Amienwanlen Eugene Odigie, Maria Stella Lucente, Luca Del Sorbo, Cristiana Catella, Elisabetta Casalino, Maria Michela Salvatore, Alessia Staropoli, Francesco Vinale, Maria Tempesta, Filomena Fiorito, Anna Andolfi, Alessio Buonavoglia, Annamaria Pratelli and Paolo Capozza
Vet. Sci. 2025, 12(7), 634; https://doi.org/10.3390/vetsci12070634 - 2 Jul 2025
Viewed by 834
Abstract
The recent COVID-19 pandemic has prompted the scientific community to prioritize the discovery of preventive methods and new therapeutics, including the investigation of natural compounds with antiviral potential. Fungal secondary metabolites (SMs) represent a promising source of antiviral drugs due to their structural [...] Read more.
The recent COVID-19 pandemic has prompted the scientific community to prioritize the discovery of preventive methods and new therapeutics, including the investigation of natural compounds with antiviral potential. Fungal secondary metabolites (SMs) represent a promising source of antiviral drugs due to their structural diversity and intrinsic biocompatibility. Herein, the antiviral activity of 6-pentyl-α-pyrone (6PP) against bovine coronavirus (BCoV) has been evaluated in vitro. Considering that BCoV and SARS-CoV-2 are both members of the Betacoronavirus genus and share several key features, BCoV represents a valuable reference model for human coronavirus research. A non-cytotoxic dose of 6PP was used on MDBK cells to evaluate its antiviral activity against BCoV. Different experimental conditions were employed to examine cell monolayer protection both pre- and post-infection, as well as the potential inhibition of viral internalization. Overall, post-infection 6PP treatment reduced viral load and decreased viral internalization. Results were analyzed using viral titration and quantitative PCR, while data interpretation was performed by statistical software tools. This study presents a novel fluorescence quantification approach with high confidence demonstrated by its significant concordance with RT-qPCR results. These data suggest that 6PP could be an effective antiviral agent for BCoV, warranting further investigation of its role in coronavirus inhibition. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Graphical abstract

25 pages, 3008 KB  
Review
Deep Generative Models for the Discovery of Antiviral Peptides Targeting Dengue Virus: A Systematic Review
by Huynh Anh Duy and Tarapong Srisongkram
Int. J. Mol. Sci. 2025, 26(13), 6159; https://doi.org/10.3390/ijms26136159 - 26 Jun 2025
Cited by 2 | Viewed by 689
Abstract
Dengue virus (DENV) remains a critical global health challenge, with no approved antiviral treatments currently available. The growing prevalence of DENV infections highlights the urgent need for effective therapeutics. Antiviral peptides (AVPs) have gained significant attention due to their potential to inhibit viral [...] Read more.
Dengue virus (DENV) remains a critical global health challenge, with no approved antiviral treatments currently available. The growing prevalence of DENV infections highlights the urgent need for effective therapeutics. Antiviral peptides (AVPs) have gained significant attention due to their potential to inhibit viral replication. However, traditional drug discovery methods are often time-consuming and resource-intensive. Advances in artificial intelligence, particularly deep generative models (DGMs), offer a promising approach to accelerating AVP discovery. This report provides a comprehensive assessment of the role of DGMs in identifying novel AVPs for DENV. It presents an extensive survey of existing antimicrobial and AVP datasets, peptide sequence feature representations, and the integration of DGMs into computational peptide design. Additionally, in vitro and in silico screening data from previous studies highlight the therapeutic potential of AVPs against DENV. Variational autoencoders and generative adversarial networks have been extensively documented in the literature for their applications in AVP generation. These models have demonstrated a remarkable capacity to generate diverse and structurally viable compounds, significantly expanding the repertoire of potential antiviral candidates. Additionally, this report assesses both the strengths and limitations of DGMs, providing valuable insights for guiding future research directions. As a data-driven and scalable framework, DGMs offer a promising avenue for the rational design of potent AVPs targeting DENV and other emerging viral pathogens, contributing to the advancement of next-generation therapeutic strategies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 986 KB  
Review
COVID-19 and a Tale of Three Drugs: To Repurpose, or Not to Repurpose–That Was the Question
by Chris R. Triggle and Ross MacDonald
Viruses 2025, 17(7), 881; https://doi.org/10.3390/v17070881 - 23 Jun 2025
Viewed by 1192
Abstract
On 11 March 2020, the World Health Organisation (WHO) declared a global pandemic caused by the SARS-CoV-2 coronavirus that earlier in February 2020 the WHO had named COVID-19 (coronavirus disease 2019). There were neither drugs nor vaccines that were known to be effective [...] Read more.
On 11 March 2020, the World Health Organisation (WHO) declared a global pandemic caused by the SARS-CoV-2 coronavirus that earlier in February 2020 the WHO had named COVID-19 (coronavirus disease 2019). There were neither drugs nor vaccines that were known to be effective against the virus, stimulating an urgent worldwide search for treatments. An evaluation of existing drugs by ‘repurposing’ was initiated followed by a transition to de novo drug discovery. Repurposing of an already approved drug may accelerate the introduction of that drug into clinical use by circumventing early, including preclinical studies otherwise essential for a de novo drug and reducing development costs. Early in the pandemic three drugs were identified as repurposing candidates for the treatment of COVID-19: (i) hydroxychloroquine, an anti-malarial also used to treat rheumatoid arthritis and lupus; (ii) ivermectin, an antiparasitic approved for both human and veterinary use; (iii) remdesivir, an anti-viral originally developed to treat hepatitis C. The scientific evidence, both for and against the efficacy of these three drugs as treatments for COVID-19, vied with public demand and politicization as unqualified opinions clashed with evidence-based medicine. To quote Hippocrates, “There are in fact two things, science and opinion; the former begets knowledge, the latter ignorance”. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

70 pages, 6601 KB  
Systematic Review
Plants Metabolites as In Vitro Inhibitors of SARS-CoV-2 Targets: A Systematic Review and Computational Analysis
by Brendo Araujo Gomes, Diégina Araújo Fernandes, Thamirys Silva da Fonseca, Mariana Freire Campos, Patrícia Alves Jural, Marcos Vinicius Toledo e Silva, Larissa Esteves Carvalho Constant, Andrex Augusto Silva da Veiga, Beatriz Ribeiro Ferreira, Ellen Santos Magalhães, Hagatha Bento Mendonça Pereira, Beatriz Graziela Martins de Mattos, Beatriz Albuquerque Custódio de Oliveira, Stephany da Silva Costa, Flavia Maria Mendonça do Amaral, Danilo Ribeiro de Oliveira, Ivana Correa Ramos Leal, Gabriel Rocha Martins, Gilda Guimarães Leitão, Diego Allonso, Simony Carvalho Mendonça, Marcus Tullius Scotti and Suzana Guimarães Leitãoadd Show full author list remove Hide full author list
Drugs Drug Candidates 2025, 4(2), 27; https://doi.org/10.3390/ddc4020027 - 14 Jun 2025
Viewed by 1236
Abstract
Background/Objectives: Since the emergence of the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the discovery of compounds with antiviral potential from medicinal plants has been extensively researched. This study aimed to investigate plant metabolites with in vitro inhibitory potential [...] Read more.
Background/Objectives: Since the emergence of the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the discovery of compounds with antiviral potential from medicinal plants has been extensively researched. This study aimed to investigate plant metabolites with in vitro inhibitory potential against SARS-CoV-2 targets, including 3CLpro, PLpro, Spike protein, and RdRp. Methods: A systematic review was conducted following PRISMA guidelines, with literature searches performed in six electronic databases (Scielo, ScienceDirect, Scopus, Springer, Web of Science, and PubMed) from January 2020 to February 2024. Computational analyses using SwissADME, pkCSM, ADMETlab, ProTox3, Toxtree, and DataWarrior were performed to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles as well as other medicinal chemistry parameters of these compounds. Results: A total of 330 plant-derived compounds with inhibitory activities against the proposed targets were identified, with compounds showing IC50 values as low as 0.01 μM. Our findings suggest that several plant metabolites exhibit significant in vitro inhibition of SARS-CoV-2 targets; however, few molecules exhibit drug development viability without further adjustments. Additionally, after these evaluations, two phenolic acids, salvianic acid A and protocatechuic acid methyl ester, stood out for their potential as candidates for developing antiviral therapies, with IC50 values of 2.15 μM against 3CLpro and 3.76 μM against PLpro; respectively; and satisfactory in silico drug-likeness and ADMET profiles. Conclusions: These results reinforce the importance of plant metabolites as potential targets for antiviral drug discovery. Full article
(This article belongs to the Special Issue Fighting SARS-CoV-2 and Related Viruses)
Show Figures

Graphical abstract

18 pages, 2815 KB  
Article
The Involvement of MGF505 Genes in the Long-Term Persistence of the African Swine Fever Virus in Gastropods
by Sona Hakobyan, Nane Bayramyan, Zaven Karalyan, Roza Izmailyan, Aida Avetisyan, Arpine Poghosyan, Elina Arakelova, Tigranuhi Vardanyan and Hranush Avagyan
Viruses 2025, 17(6), 824; https://doi.org/10.3390/v17060824 - 7 Jun 2025
Viewed by 684
Abstract
African swine fever virus (ASFV), a highly contagious and lethal virus affecting domestic and wild pigs, has raised global concerns due to its continued spread across Europe and Asia. While traditional transmission pathways involve suids and soft ticks, this study investigates the potential [...] Read more.
African swine fever virus (ASFV), a highly contagious and lethal virus affecting domestic and wild pigs, has raised global concerns due to its continued spread across Europe and Asia. While traditional transmission pathways involve suids and soft ticks, this study investigates the potential role of freshwater gastropods as environmental reservoirs capable of sustaining ASFV. We analysed ASFV survival in ten gastropod species after long-term co-incubation with the virus. Viral transcriptional activity, particularly of the late gene B646L and members of the multigene family MGF505, was evaluated in snail faeces up to nine weeks post-infection. Results revealed that several gastropods, including Melanoides tuberculata, Tarebia granifera, Physa fontinalis, and Pomacea bridgesii, support long-term persistence of ASFV, accompanied by increased MGF505 gene expression. Notably, the simultaneous activation of MGF5052R and MGF50511R significantly correlated with higher B646L expression and extended viral survival, suggesting a functional role in ASFV maintenance. Conversely, antiviral (AV) activity assays showed that some gastropod faeces reduced replication of the unrelated Influenza virus, hinting at induced host defences. A negative correlation was observed between AV activity and the expression of MGF505 2R/11R, implying that ASFV may suppress antiviral responses to facilitate persistence. These findings suggest that certain gastropods may serve as overlooked environmental hosts, contributing to ASFV epidemiology via long term viral shedding. Further research is needed to clarify the mechanisms underlying ASFV–host interactions and to assess the ecological and epidemiological implications of gastropods in ASFV transmission cycles. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop