Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,105)

Search Parameters:
Keywords = artificial selection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
57 pages, 1829 KB  
Systematic Review
Artificial Intelligence and Machine Learning in Cold Spray Additive Manufacturing: A Systematic Literature Review
by Habib Afsharnia and Javaid Butt
J. Manuf. Mater. Process. 2025, 9(10), 334; https://doi.org/10.3390/jmmp9100334 (registering DOI) - 13 Oct 2025
Abstract
Due to its unique benefits over conventional subtractive manufacturing, additive manufacturing methods continue to attract interest in both academia and industry. One such method is called Cold Spray Additive Manufacturing (CSAM), a solid-state coating deposition technology to manufacture repair metallic components using a [...] Read more.
Due to its unique benefits over conventional subtractive manufacturing, additive manufacturing methods continue to attract interest in both academia and industry. One such method is called Cold Spray Additive Manufacturing (CSAM), a solid-state coating deposition technology to manufacture repair metallic components using a gas jet and powder particles. CSAM offers low heat input, stable phases, suitability for heat-sensitive substrates, and high deposition rates. However, persistent challenges include porosity control, geometric accuracy near edges and concavities, anisotropy, and cost sensitivities linked to gas selection and nozzle wear. Interdisciplinary research across manufacturing science, materials characterisation, robotics, control, artificial intelligence (AI), and machine learning (ML) is deployed to overcome these issues. ML supports quality prediction, inverse parameter design, in situ monitoring, and surrogate models that couple process physics with data. To demonstrate the impact of AI and ML on CSAM, this study presents a systematic literature review to identify, evaluate, and analyse published studies in this domain. The most relevant studies in the literature are analysed using keyword co-occurrence and clustering. Four themes were identified: design for CSAM, material analytics, real-time monitoring and defect analytics, and deposition and AI-enabled optimisation. Based on this synthesis, core challenges are identified as small and varied datasets, transfer and identifiability limits, and fragmented sensing. Main opportunities are outlined as physics-based surrogates, active learning, uncertainty-aware inversion, and cloud-edge control for reliable and adaptable ML use in CSAM. By systematically mapping the current landscape, this work provides a critical roadmap for researchers to target the most significant challenges and opportunities in applying AI/ML to industrialise CSAM. Full article
23 pages, 2839 KB  
Article
Risk Prediction of Shipborne Aircraft Landing Based on Deep Learning
by Hao Nian, Xiuquan Deng, Zhipeng Bai and Xingjie Wu
Aerospace 2025, 12(10), 922; https://doi.org/10.3390/aerospace12100922 (registering DOI) - 13 Oct 2025
Abstract
Shipborne fighters play a critical role in far-sea operations. However, their landing process on aircraft carrier decks involves significant risks, where accidents can lead to substantial losses. Timely and accurate risk prediction is, therefore, essential for improving flight training efficiency and enhancing the [...] Read more.
Shipborne fighters play a critical role in far-sea operations. However, their landing process on aircraft carrier decks involves significant risks, where accidents can lead to substantial losses. Timely and accurate risk prediction is, therefore, essential for improving flight training efficiency and enhancing the combat capability of naval aviation forces. Machine-learning algorithms have been explored for predicting landing risks in land-based aircraft. However, owing to the challenges in acquiring relevant data, the application of such methods to shipborne aircraft remains limited. To address this gap, the present study proposes a deep learning-based method for predicting landing risks of shipborne aircraft. A dataset was constructed using simulated ship movements recorded during the sliding phase along with relevant flight parameters. Model training and prediction were conducted using up to ten different input combinations with artificial neural networks, long short-term memory, and transformer neural networks. Experimental results demonstrate that all three models can effectively predict landing parameters, with the lowest average test error reaching 3.5620. The study offers a comprehensive comparison of traditional machine learning and deep learning methods, providing practical insights into input variable selection and model performance evaluation. Although deep learning models, particularly the Transformer, achieved the highest accuracy, in practical applications, the support of hardware performance still needs to be fully considered. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

33 pages, 936 KB  
Review
Analysis of SD-WAN Architectures and Techniques for Efficient Traffic Control Under Transmission Constraints—Overview of Solutions
by Janusz Dudczyk, Mateusz Sergiel and Jaroslaw Krygier
Sensors 2025, 25(20), 6317; https://doi.org/10.3390/s25206317 (registering DOI) - 13 Oct 2025
Abstract
Software-Defined Wide Area Networks (SD-WAN) have emerged as a rapidly evolving technology designed to meet the growing demand for flexible, secure, and scalable network infrastructures. This paper provides a review of SD-WAN techniques, focusing on their principles of operation, mechanisms, and evolution, with [...] Read more.
Software-Defined Wide Area Networks (SD-WAN) have emerged as a rapidly evolving technology designed to meet the growing demand for flexible, secure, and scalable network infrastructures. This paper provides a review of SD-WAN techniques, focusing on their principles of operation, mechanisms, and evolution, with particular attention to applications in resource-constrained environments such as mobile, satellite, and radio networks. The analysis highlights key architectural elements, including security mechanisms, monitoring methods and metrics, and management protocols. A classification of both commercial (e.g., Cisco SD-WAN, Fortinet Secure SD-WAN, VMware SD-WAN, Palo Alto Prisma SD-WAN, HPE Aruba EdgeConnect) and research-based solutions is presented. The overview covers overlay protocols such as Overlay Management Protocol (OMP), Dynamic Multipath Optimization (DMPO), App-ID, OpenFlow, and NETCONF, as well as tunneling mechanisms such as IPsec and WireGuard. The discussion further covers control plane architectures (centralized, distributed, and hybrid) and network monitoring methods, including latency, jitter, and packet loss measurement. The growing importance of Artificial Intelligence (AI) in optimizing path selection and improving threat detection in SD-WAN environments, especially in resource-constrained networks, is emphasized. Analysis of solutions indicates that SD-WAN improves performance, reduces latency, and lowers operating costs compared to traditional WAN architectures. The paper concludes with guidelines and recommendations for using SD-WAN in resource-constrained environments. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

35 pages, 2422 KB  
Article
Contribution of Artificial Neural Networks (ANNs) in Analyzing and Modeling Phenological Synchronization of Fig and Caprifig in Northern Morocco
by Abdelhalim Chmarkhi, Salama El Fatehi, Imane Mehdi, Widad Benziane, Nouhaila Dihaz, Khaoula El Khatib, Aliki Kapazoglou and Younes Hmimsa
Horticulturae 2025, 11(10), 1235; https://doi.org/10.3390/horticulturae11101235 (registering DOI) - 13 Oct 2025
Abstract
The Mediterranean fig (Ficus carica L.) is a dioecious fruit tree of high nutritional and economic value in the Mediterranean basin. In northern Morocco, phenological desynchronization between male and female fig trees limits pollination and production. This study aimed to characterize the [...] Read more.
The Mediterranean fig (Ficus carica L.) is a dioecious fruit tree of high nutritional and economic value in the Mediterranean basin. In northern Morocco, phenological desynchronization between male and female fig trees limits pollination and production. This study aimed to characterize the phenological stages of indigenous fig and caprifig varieties using the BBCH scale and to evaluate the predictive capacity of artificial neural networks (ANNs). This study was conducted in the Bni Ahmed region over two consecutive years (2021 and 2022) at two sites. At each site, a total of 80 female fig trees were selected. Caprifig trees were selected in accordance with their availability (37 trees/site 1; 24 trees/site 2). Local meteorological data were incorporated into the analysis to evaluate the influence of climatic conditions on phenological stages. Our results revealed significant effects of temperature, humidity, and rainfall on phenological dynamics, along with a clear inter-varietal variability and pronounced desynchronization between male and female fig trees. Early-ripening caprifig varieties showed limited pollination efficiency, whereas late-ripening varieties were better synchronized with the longer receptivity period of female fig trees. Importantly, the ANN model demonstrated exceptional predictive performance (R2 up to 0.985, RMSE < 1 day), serving as a robust and practical tool for forecasting key phenological stages and minimizing potential yield losses. These findings demonstrate the value of combining phenological monitoring with AI-based modeling to improve adaptive management of fig orchards under Mediterranean climate change. This is the first study in Morocco to implement such an integrated approach to fig and caprifig trees. Full article
(This article belongs to the Section Fruit Production Systems)
26 pages, 10529 KB  
Systematic Review
Ethics of the Use of Artificial Intelligence in Academia and Research: The Most Relevant Approaches, Challenges and Topics
by Joe Llerena-Izquierdo and Raquel Ayala-Carabajo
Informatics 2025, 12(4), 111; https://doi.org/10.3390/informatics12040111 (registering DOI) - 13 Oct 2025
Abstract
The widespread integration of artificial intelligence into university academic activity requires responsibly addressing the ethical challenges it poses. This study critically analyses these challenges, identifying opportunities and risks in various academic disciplines and practices. A systematic review was conducted using the PRISMA method [...] Read more.
The widespread integration of artificial intelligence into university academic activity requires responsibly addressing the ethical challenges it poses. This study critically analyses these challenges, identifying opportunities and risks in various academic disciplines and practices. A systematic review was conducted using the PRISMA method of publications from January 2024 to January 2025. Based on the selected works (n = 60), through a systematic and rigorous examination, this study identifies ethical challenges in teaching and research; opportunities and risks of its integration into academic practice; specific artificial intelligence tools categorised according to study approach; and a contribution to the current debate, providing criteria and practical guidelines for academics. In conclusion, it can be stated that the integration of AI offers significant opportunities, such as the optimisation of research and personalised learning, as well as notable human and ethical risks, including the loss of critical thinking, technological dependence, and the homogenisation of ideas. It is essential to adopt a conscious approach, with clear guidelines that promote human supervision, ensuring that AI acts as a tool for improvement rather than for the replacement of intelligent human performance, and that it supports human action and discernment in the creation of knowledge. Full article
Show Figures

Figure 1

31 pages, 1305 KB  
Review
Artificial Intelligence in Cardiac Electrophysiology: A Clinically Oriented Review with Engineering Primers
by Giovanni Canino, Assunta Di Costanzo, Nadia Salerno, Isabella Leo, Mario Cannataro, Pietro Hiram Guzzi, Pierangelo Veltri, Sabato Sorrentino, Salvatore De Rosa and Daniele Torella
Bioengineering 2025, 12(10), 1102; https://doi.org/10.3390/bioengineering12101102 - 13 Oct 2025
Abstract
Artificial intelligence (AI) is transforming cardiac electrophysiology across the entire care pathway, from arrhythmia detection on 12-lead electrocardiograms (ECGs) and wearables to the guidance of catheter ablation procedures, through to outcome prediction and therapeutic personalization. End-to-end deep learning (DL) models have achieved cardiologist-level [...] Read more.
Artificial intelligence (AI) is transforming cardiac electrophysiology across the entire care pathway, from arrhythmia detection on 12-lead electrocardiograms (ECGs) and wearables to the guidance of catheter ablation procedures, through to outcome prediction and therapeutic personalization. End-to-end deep learning (DL) models have achieved cardiologist-level performance in rhythm classification and prognostic estimation on standard ECGs, with a reported arrhythmia classification accuracy of ≥95% and an atrial fibrillation detection sensitivity/specificity of ≥96%. The application of AI to wearable devices enables population-scale screening and digital triage pathways. In the electrophysiology (EP) laboratory, AI standardizes the interpretation of intracardiac electrograms (EGMs) and supports target selection, and machine learning (ML)-guided strategies have improved ablation outcomes. In patients with cardiac implantable electronic devices (CIEDs), remote monitoring feeds multiparametric models capable of anticipating heart-failure decompensation and arrhythmic risk. This review outlines the principal modeling paradigms of supervised learning (regression models, support vector machines, neural networks, and random forests) and unsupervised learning (clustering, dimensionality reduction, association rule learning) and examines emerging technologies in electrophysiology (digital twins, physics-informed neural networks, DL for imaging, graph neural networks, and on-device AI). However, major challenges remain for clinical translation, including an external validation rate below 30% and workflow integration below 20%, which represent core obstacles to real-world adoption. A joint clinical engineering roadmap is essential to translate prototypes into reliable, bedside tools. Full article
(This article belongs to the Special Issue Mathematical Models for Medical Diagnosis and Testing)
Show Figures

Figure 1

34 pages, 1960 KB  
Article
Quantum-Inspired Hybrid Metaheuristic Feature Selection with SHAP for Optimized and Explainable Spam Detection
by Qusai Shambour, Mahran Al-Zyoud and Omar Almomani
Symmetry 2025, 17(10), 1716; https://doi.org/10.3390/sym17101716 - 13 Oct 2025
Abstract
The rapid growth of digital communication has intensified spam-related threats, including phishing and malware, which employ advanced evasion tactics. Traditional filtering methods struggle to keep pace, driving the need for sophisticated machine learning (ML) solutions. The effectiveness of ML models hinges on selecting [...] Read more.
The rapid growth of digital communication has intensified spam-related threats, including phishing and malware, which employ advanced evasion tactics. Traditional filtering methods struggle to keep pace, driving the need for sophisticated machine learning (ML) solutions. The effectiveness of ML models hinges on selecting high-quality input features, especially in high-dimensional datasets where irrelevant or redundant attributes impair performance and computational efficiency. Guided by principles of symmetry to achieve an optimal balance between model accuracy, complexity, and interpretability, this study proposes an Enhanced Hybrid Quantum-Inspired Firefly and Artificial Bee Colony (EHQ-FABC) algorithm for feature selection in spam detection. EHQ-FABC leverages the Firefly Algorithm’s local exploitation and the Artificial Bee Colony’s global exploration, augmented with quantum-inspired principles to maintain search space diversity and a symmetrical balance between exploration and exploitation. It eliminates redundant attributes while preserving predictive power. For interpretability, Shapley Additive Explanations (SHAPs) are employed to ensure symmetry in explanation, meaning features with equal contributions are assigned equal importance, providing a fair and consistent interpretation of the model’s decisions. Evaluated on the ISCX-URL2016 dataset, EHQ-FABC reduces features by over 76%, retaining only 17 of 72 features, while matching or outperforming filter, wrapper, embedded, and metaheuristic methods. Tested across ML classifiers like CatBoost, XGBoost, Random Forest, Extra Trees, Decision Tree, K-Nearest Neighbors, Logistic Regression, and Multi-Layer Perceptron, EHQ-FABC achieves a peak accuracy of 99.97% with CatBoost and robust results across tree ensembles, neural, and linear models. SHAP analysis highlights features like domain_token_count and NumberOfDotsinURL as key for spam detection, offering actionable insights for practitioners. EHQ-FABC provides a reliable, transparent, and efficient symmetry-aware solution, advancing both accuracy and explainability in spam detection. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

18 pages, 7473 KB  
Article
Modeling the Soil Surface Temperature–Wind Speed–Evaporation Relationship Using a Feedforward Backpropagation ANN in Al Medina, Saudi Arabia
by Samyah Salem Refadah, Sultan AlAbadi, Mansour Almazroui, Mohammad Ayaz Khan, Mohamed ElKashouty and Mohd Yawar Ali Khan
Technologies 2025, 13(10), 461; https://doi.org/10.3390/technologies13100461 (registering DOI) - 12 Oct 2025
Abstract
Artificial neural networks (ANNs) offer considerable advantages in predicting evaporation (EVAP), particularly in handling nonlinear relationships and complex interactions among factors like soil surface temperature (SST) and wind speed (WS). In Al Medina, Saudi Arabia, the connections [...] Read more.
Artificial neural networks (ANNs) offer considerable advantages in predicting evaporation (EVAP), particularly in handling nonlinear relationships and complex interactions among factors like soil surface temperature (SST) and wind speed (WS). In Al Medina, Saudi Arabia, the connections among WS, SST at 5 cm, SST at 10 cm, and EVAP have been modeled using an ANN. This study demonstrates the practical effectiveness and applicability of the approach in simulating complex nonlinear dynamics in real-life systems. The modeling process employs time series data for WS, SST at both 5 cm and 10 cm, and EVAP, gathered from January to December (2002–2010). Four ANNs labeled T1–T4 were developed and trained with the feedforward backpropagation (FFBP) algorithm using MATLAB routines, each featuring a distinct configuration. The networks were further refined through the enumeration technique, ultimately selecting the most efficient network for forecasting EVAP values. The results from the ANN model are compared with the actual measured EVAP values. The mean square error (MSE) values for the optimal network topology are 0.00343, 0.00394, 0.00309, and 0.00306 for T1, T2, T3, and T4, respectively. Full article
(This article belongs to the Special Issue Sustainable Water and Environmental Technologies of Global Relevance)
Show Figures

Figure 1

30 pages, 2150 KB  
Article
A Multi-Objective Artificial Bee Colony Algorithm Incorporating Q-Learning Search for the Flexible Job Shop Scheduling Problems with Multi-Type Automated Guided Vehicles
by Shihong Ge, Hao Zhang, Zhigang Xu and Zhiqi Yang
Appl. Sci. 2025, 15(20), 10948; https://doi.org/10.3390/app152010948 - 12 Oct 2025
Abstract
The flexible job shop scheduling problem (FJSP) with transportation resources such as automated guided vehicles (AGVs) is prevalent in manufacturing enterprises. Multi-type AGVs are widely adopted to transfer jobs and realize the collaboration of different machines, but are often ignored in current research. [...] Read more.
The flexible job shop scheduling problem (FJSP) with transportation resources such as automated guided vehicles (AGVs) is prevalent in manufacturing enterprises. Multi-type AGVs are widely adopted to transfer jobs and realize the collaboration of different machines, but are often ignored in current research. Therefore, this paper addresses the FJSP with multi-type AGVs (FJSP-MTA). Considering the difficulties caused by the introduction of transportation and the NP-hard nature, the artificial bee colony (ABC) algorithm is adopted as a fundamental solution approach. Accordingly, a Q-learning hybrid multi-objective ABC (Q-HMOABC) algorithm is proposed to deal with the FJSP-MTA. First, to minimize both the makespan and total energy consumption (TEC), this paper proposes a novel mixed-integer linear programming (MILP) model. In Q-HMOABC, a three-layer encoding strategy based on operation sequence, machine assignment, and AGV dispatching with type selection is used. Moreover, during the employed bee phase, Q-learning is employed to update all individuals; during the onlooker bee phase, variable neighborhood search (VNS) is used to update nondominated solutions; and during the scout bee phase, a restart strategy is adopted. Experimental results demonstrate the effectiveness and superiority of Q-HMOABC. Full article
26 pages, 11124 KB  
Article
Ecological Effects and Microbial Regulatory Mechanisms of Functional Grass Species Assembly in the Restoration of “Heitutan” Degraded Alpine Grasslands
by Zongcheng Cai, Jianjun Shi, Shouquan Fu, Liangyu Lv, Fayi Li, Qingqing Liu, Hairong Zhang and Shancun Bao
Microorganisms 2025, 13(10), 2341; https://doi.org/10.3390/microorganisms13102341 (registering DOI) - 11 Oct 2025
Viewed by 26
Abstract
The restoration of “Heitutan” degraded grasslands on the Qinghai-Tibetan Plateau was hindered by suboptimal grass species mixtures, leading to low vegetation productivity, impaired soil nutrient cycling, and microbial functional degradation. Based on a 22-year controlled field experiment, this study systematically elucidated the regulatory [...] Read more.
The restoration of “Heitutan” degraded grasslands on the Qinghai-Tibetan Plateau was hindered by suboptimal grass species mixtures, leading to low vegetation productivity, impaired soil nutrient cycling, and microbial functional degradation. Based on a 22-year controlled field experiment, this study systematically elucidated the regulatory mechanisms of different artificial grass mixtures on vegetation community characteristics, soil physicochemical properties, and bacterial community structure and function. The results demonstrated that mixed-sowing treatments significantly improved soil conditions and enhanced aboveground biomass. The HC treatment (Elymus nutans Griseb. + Poa crymophila Keng ex L. Liu cv. ‘Qinghai’ + Festuca sinensis Keng ex S. L. Lu cv. ‘Qinghai’) achieved aboveground biomass of 1580.0 and 1645.0 g·m−2, representing 66.14% and 60.91% increases, respectively, compared to the HA monoculture (E. nutans). Concurrently, this treatment increased soil organic matter content by 52.3% and 48.4%, total nitrogen by 59.4% and 69.2%, while reducing electrical conductivity by 48.99% and 51.72%, with optimal pH stabilization (7.34–7.38). These findings confirmed that optimized grass mixtures effectively enhance soil physicochemical properties and carbon–nitrogen retention. Microbiome analysis revealed that the HE treatment (E. nutans + P. crymophila + F. sinensis + Poa poophagorum Bor. + Festuca kryloviana Reverd. cv. ‘Huanhu’) exhibited superior α-diversity indices (OTU, Shannon, Ace, Chao1, Pielou) with increases of 9.36%, 4.20%, 15.0%, 1.76%, and 13.4%, respectively, over HA, accompanied by optimal community evenness (lowest Simpson index). Core bacterial phyla included Pseudomonadota (22.7–29.9%), Acidobacteriota (21.5–23.6%), and Actinomycetota (13.6–16.0%), with significant suppression of pathogenic bacteria. Co-occurrence network analysis identified specialized functional modules, with HC and HD treatments (E. nutans + P. crymophila + F. sinensis + P. poophagorum) forming a “nitrogen transformation–antibiotic secretion” network (57.3% positive connections). Structural equation modeling (SEM) revealed that mixed sowing had the strongest direct effect on bacterial diversity (β = 0.76), surpassing indirect effects via soil (β = 0.37) and vegetation (β = 0.11). Redundancy analysis (RDA) identified vegetation cover (24.7% explained variance) and soil pH (20.0%) as key drivers of bacterial community assembly. Principal component analysis (PCA) confirmed HC and HD treatments as the most effective restoration strategies. This study elucidated a tripartite “vegetation–soil–microorganism” restoration mechanism, demonstrating that intermediate-diversity mixtures (3–4 species) optimize ecosystem recovery through niche complementarity, pathogen suppression, and enhanced nutrient cycling. These findings provided a scientific basis for species selection in alpine grassland restoration. Full article
Show Figures

Figure 1

19 pages, 2314 KB  
Article
Utilization-Driven Performance Enhancement in Storage Area Networks
by Guixiang Lyu, Liudong Xing and Zhiguo Zeng
Telecom 2025, 6(4), 77; https://doi.org/10.3390/telecom6040077 (registering DOI) - 11 Oct 2025
Viewed by 30
Abstract
Efficient resource utilization and low response times are critical challenges in storage area network (SAN) systems, especially as data-intensive applications like those driven by the Internet of Things and Artificial Intelligence place increasing demands on reliable, high-performance data storage solutions. Addressing these challenges, [...] Read more.
Efficient resource utilization and low response times are critical challenges in storage area network (SAN) systems, especially as data-intensive applications like those driven by the Internet of Things and Artificial Intelligence place increasing demands on reliable, high-performance data storage solutions. Addressing these challenges, this paper contributes by proposing a proactive, utilization-driven traffic redistribution strategy to achieve balanced load distribution across switches, thereby improving the overall SAN performance and alleviating the risk of overload-incurred cascading failures. The proposed approach incorporates a Jackson Queueing Network-based method to evaluate both utilization and response time of individual switches, as well as the overall system response time. Based on a comprehensive case study of a mesh SAN system, two key parameters—the transition probability adjustment step size and the node selection window size—are analyzed for their impact on the effectiveness of the proposed strategy, revealing several valuable insights into fine-tuning traffic redistribution parameters. Full article
Show Figures

Figure 1

20 pages, 5063 KB  
Article
AI Diffusion Models Generate Realistic Synthetic Dental Radiographs Using a Limited Dataset
by Brian Kirkwood, Byeong Yeob Choi, James Bynum and Jose Salinas
J. Imaging 2025, 11(10), 356; https://doi.org/10.3390/jimaging11100356 (registering DOI) - 11 Oct 2025
Viewed by 64
Abstract
Generative Artificial Intelligence (AI) has the potential to address the limited availability of dental radiographs for the development of Dental AI systems by creating clinically realistic synthetic dental radiographs (SDRs). Evaluation of artificially generated images requires both expert review and objective measures of [...] Read more.
Generative Artificial Intelligence (AI) has the potential to address the limited availability of dental radiographs for the development of Dental AI systems by creating clinically realistic synthetic dental radiographs (SDRs). Evaluation of artificially generated images requires both expert review and objective measures of fidelity. A stepwise approach was used to processing 10,000 dental radiographs. First, a single dentist screened images to determine if specific image selection criterion was met; this identified 225 images. From these, 200 images were randomly selected for training an AI image generation model. Second, 100 images were randomly selected from the previous training dataset and evaluated by four dentists; the expert review identified 57 images that met image selection criteria to refine training for two additional AI models. The three models were used to generate 500 SDRs each and the clinical realism of the SDRs was assessed through expert review. In addition, the SDRs generated by each model were objectively evaluated using quantitative metrics: Fréchet Inception Distance (FID) and Kernel Inception Distance (KID). Evaluation of the SDR by a dentist determined that expert-informed curation improved SDR realism, and refinement of model architecture produced further gains. FID and KID analysis confirmed that expert input and technical refinement improve image fidelity. The convergence of subjective and objective assessments strengthens confidence that the refined model architecture can serve as a foundation for SDR image generation, while highlighting the importance of expert-informed data curation and domain-specific evaluation metrics. Full article
(This article belongs to the Topic Machine Learning and Deep Learning in Medical Imaging)
Show Figures

Figure 1

28 pages, 3979 KB  
Review
Beyond Deterministic Forecasts: A Scoping Review of Probabilistic Uncertainty Quantification in Short-to-Seasonal Hydrological Prediction
by David De León Pérez, Sergio Salazar-Galán and Félix Francés
Water 2025, 17(20), 2932; https://doi.org/10.3390/w17202932 (registering DOI) - 11 Oct 2025
Viewed by 222
Abstract
This Scoping Review methodically synthesizes methodological trends in predictive uncertainty (PU) quantification for short-to-seasonal hydrological modeling-based forecasting. The analysis encompasses 572 studies from 2017 to 2024, with the objective of addressing the central question: What are the emerging trends, best practices, and gaps [...] Read more.
This Scoping Review methodically synthesizes methodological trends in predictive uncertainty (PU) quantification for short-to-seasonal hydrological modeling-based forecasting. The analysis encompasses 572 studies from 2017 to 2024, with the objective of addressing the central question: What are the emerging trends, best practices, and gaps in this field? In accordance with the six-stage protocol that is aligned with PRISMA-ScR standards, 92 studies were selected for in-depth evaluation. The results of the study indicate the presence of three predominant patterns: (1) exponential growth in the applications of machine learning and artificial intelligence; (2) geographic concentration in Chinese, North American, and European watersheds; and (3) persistent operational barriers, particularly in data-scarce tropical regions with limited flood and streamflow forecasting validation. Hybrid statistical-AI modeling frameworks have been shown to enhance forecast accuracy and PU quantification; however, these frameworks are encumbered by constraints in computational demands and interpretability, with inadequate validation for extreme events highlighting critical gaps. The review emphasizes standardized metrics, broader validation, and adaptive postprocessing to enhance applicability, advocating robust frameworks integrating meteorological input to hydrological output postprocessing for minimizing uncertainty chains and supporting water management. This study provides an updated field mapping, identifies knowledge gaps, and prioritizes research for the operational integration of advanced PU quantification. Full article
(This article belongs to the Section Hydrology)
Show Figures

Graphical abstract

15 pages, 606 KB  
Systematic Review
Artificial Intelligence for Risk–Benefit Assessment in Hepatopancreatobiliary Oncologic Surgery: A Systematic Review of Current Applications and Future Directions on Behalf of TROGSS—The Robotic Global Surgical Society
by Aman Goyal, Michail Koutentakis, Jason Park, Christian A. Macias, Isaac Ballard, Shen Hong Law, Abhirami Babu, Ehlena Chien Ai Lau, Mathew Mendoza, Susana V. J. Acosta, Adel Abou-Mrad, Luigi Marano and Rodolfo J. Oviedo
Cancers 2025, 17(20), 3292; https://doi.org/10.3390/cancers17203292 (registering DOI) - 11 Oct 2025
Viewed by 87
Abstract
Background: Hepatopancreatobiliary (HPB) surgery is among the most complex domains in oncologic care, where decisions entail significant risk–benefit considerations. Artificial intelligence (AI) has emerged as a promising tool for improving individualized decision-making through enhanced risk stratification, complication prediction, and survival modeling. However, its [...] Read more.
Background: Hepatopancreatobiliary (HPB) surgery is among the most complex domains in oncologic care, where decisions entail significant risk–benefit considerations. Artificial intelligence (AI) has emerged as a promising tool for improving individualized decision-making through enhanced risk stratification, complication prediction, and survival modeling. However, its role in HPB oncologic surgery has not been comprehensively assessed. Methods: This systematic review was conducted in accordance with PRISMA guidelines and registered with PROSPERO ID: CRD420251114173. A comprehensive search across six databases was performed through 30 May 2025. Eligible studies evaluated AI applications in risk–benefit assessment in HPB cancer surgery. Inclusion criteria encompassed peer-reviewed, English-language studies involving human s ubjects. Two independent reviewers conducted study selection, data extraction, and quality appraisal. Results: Thirteen studies published between 2020 and 2024 met the inclusion criteria. Most studies employed retrospective designs with sample sizes ranging from small institutional cohorts to large national databases. AI models were developed for cancer risk prediction (n = 9), postoperative complication modeling (n = 4), and survival prediction (n = 3). Common algorithms included Random Forest, XGBoost, Decision Trees, Artificial Neural Networks, and Transformer-based models. While internal performance metrics were generally favorable, external validation was reported in only five studies, and calibration metrics were often lacking. Integration into clinical workflows was described in just two studies. No study addressed cost-effectiveness or patient perspectives. Overall risk of bias was moderate to high, primarily due to retrospective designs and incomplete reporting. Conclusions: AI demonstrates early promise in augmenting risk–benefit assessment for HPB oncologic surgery, particularly in predictive modeling. However, its clinical utility remains limited by methodological weaknesses and a lack of real-world integration. Future research should focus on prospective, multicenter validation, standardized reporting, clinical implementation, cost-effectiveness analysis, and the incorporation of patient-centered outcomes. Full article
Show Figures

Figure 1

27 pages, 1131 KB  
Review
Beyond Antibiotics: Repurposing Non-Antibiotic Drugs as Novel Antibacterial Agents to Combat Resistance
by Gagan Tiwana, Ian Edwin Cock, Stephen Maxwell Taylor and Matthew James Cheesman
Int. J. Mol. Sci. 2025, 26(20), 9880; https://doi.org/10.3390/ijms26209880 - 10 Oct 2025
Viewed by 229
Abstract
The escalating global threat of antimicrobial resistance (AMR) necessitates innovative therapeutic strategies beyond traditional antibiotic development. Drug repurposing offers a rapid, cost-effective approach by identifying new antibacterial applications for existing non-antibiotic drugs with established safety profiles. Emerging evidence indicates that diverse classes of [...] Read more.
The escalating global threat of antimicrobial resistance (AMR) necessitates innovative therapeutic strategies beyond traditional antibiotic development. Drug repurposing offers a rapid, cost-effective approach by identifying new antibacterial applications for existing non-antibiotic drugs with established safety profiles. Emerging evidence indicates that diverse classes of non-antibiotic drugs, including non-steroidal anti-inflammatory drugs (NSAIDs), statins, antipsychotics, calcium channel blockers and antidepressants, exhibit intrinsic antibacterial activity, or potentiate antibiotic efficacy. This review critically explores the mechanisms by which drugs that are not recognised as antibiotics exert antibacterial effects, including efflux pump inhibition, membrane disruption, biofilm inhibition, and quorum sensing interference. We discuss specific examples that demonstrate reductions in minimum inhibitory concentrations (MICs) of antibiotics when combined with these drugs, underscoring their potential as antibiotic adjuvants. Furthermore, we examine pharmacokinetic considerations, toxicity challenges, and clinical feasibility for repurposing these agents as standalone antibacterials or in combination therapies. Finally, we highlight future directions, including the integration of artificial intelligence and machine learning to prioritise drug candidates for repurposing, and the development of targeted delivery systems to enhance bacterial selectivity while minimising host toxicity. By exploring the overlooked potential of non-antibiotic drugs, this review seeks to stimulate translational research aimed at leveraging these agents in combating resistant bacterial infections. Nonetheless, it is crucial to acknowledge that such drugs may also pose unintended risks, including gut microbiota disruption and facilitation of resistance development. Hence, future research should pursue these opportunities with equal emphasis on efficacy, safety, and resistance mitigation. Full article
(This article belongs to the Collection Latest Review Papers in Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop