Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = associated natural gas (ANG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 5598 KB  
Article
Natural Gas Flaring Management System: A Novel Tool for Sustainable Gas Flaring Reduction in Nigeria
by Robin Abu, Kumar Patchigolla, Nigel Simms and Edward John Anthony
Appl. Sci. 2023, 13(3), 1866; https://doi.org/10.3390/app13031866 - 31 Jan 2023
Cited by 3 | Viewed by 3813
Abstract
The use of hydrocarbon fuels increases with population growth and rising standards of living, and so does natural gas flaring. Natural gas flaring is both a waste of natural resources and a violation of Nigeria’s energy policy for sustainable development through natural gas [...] Read more.
The use of hydrocarbon fuels increases with population growth and rising standards of living, and so does natural gas flaring. Natural gas flaring is both a waste of natural resources and a violation of Nigeria’s energy policy for sustainable development through natural gas conservation. However, it remains the most cost-efficient and effective associated natural gas (ANG) management option in developing countries such as Nigeria. The World Bank’s initiative to eliminate routine gas flaring by 2030 has increased the need to limit or eliminate routine gas flaring. Often, studies on natural gas utilisation techniques fail to consider the lack of practical tools that integrate economic, technical, and regulatory factors into a gas flaring management framework, and the intricacies of existing tools, which often come at the expense of simplicity to achieve real-time information output. This paper aims to establish a framework and ANG management tool to reduce regular gas flaring in Nigeria. This research established a management framework (using a flowchart decision tree) and models to provide a user-friendly ANG flaring tool (using a MATLAB graphical front end user interface with back-end ASPEN HYSYS thermodynamic models). This was combined with techno-economic models for liquefied natural gas, gas-to-methanol, and gas-to-wire ANG utilisation options. The tool was then tested with data obtained from Fields Y and X in the Niger Delta region of Nigeria. The results, considering both economic and technical factors, showed that the choice of liquefied natural gas for Field Y was best due to its proximity to the pipeline infrastructure and its cost-effectiveness, and the availability of a high-demand LNG market for that area. For Field X, gas-to-wire was best due to its proximity to the electrical grid and high electricity requirements for that area. Additional geographical profiles in West Africa and ANG utilisation alternatives were recommended for further investigation. This paper developed and validated a one-of-a-kind ANG flaring management tool that incorporates techno-economic analysis of selected ANG utilisation options to assist operators and investors in making more profitable investment decisions. Full article
Show Figures

Figure 1

23 pages, 6432 KB  
Article
Natural Gas Storage Filled with Peat-Derived Carbon Adsorbent: Influence of Nonisothermal Effects and Ethane Impurities on the Storage Cycle
by Andrey V. Shkolin, Evgeny M. Strizhenov, Sergey S. Chugaev, Ilya E. Men’shchikov, Viktoriia V. Gaidamavichute, Alexander E. Grinchenko and Anatoly A. Zherdev
Nanomaterials 2022, 12(22), 4066; https://doi.org/10.3390/nano12224066 - 18 Nov 2022
Cited by 5 | Viewed by 2028
Abstract
Adsorbed natural gas (ANG) is a promising solution for improving the safety and storage capacity of low-pressure gas storage systems. The structural–energetic and adsorption properties of active carbon ACPK, synthesized from cheap peat raw materials, are presented. Calculations of the methane–ethane mixture adsorption [...] Read more.
Adsorbed natural gas (ANG) is a promising solution for improving the safety and storage capacity of low-pressure gas storage systems. The structural–energetic and adsorption properties of active carbon ACPK, synthesized from cheap peat raw materials, are presented. Calculations of the methane–ethane mixture adsorption on ACPK were performed using the experimental adsorption isotherms of pure components. It is shown that the accumulation of ethane can significantly increase the energy capacity of the ANG storage. Numerical molecular modeling of the methane–ethane mixture adsorption in slit-like model micropores has been carried out. The molecular effects associated with the displacement of ethane by methane molecules and the formation of a molecule layered structure are shown. The integral molecular adsorption isotherm of the mixture according to the molecular modeling adequately corresponds to the ideal adsorbed solution theory (IAST). The cyclic processes of gas charging and discharging from the ANG storage based on the ACPK are simulated in three modes: adiabatic, isothermal, and thermocontrolled. The adiabatic mode leads to a loss of 27–33% of energy capacity at 3.5 MPa compared to the isothermal mode, which has a 9.4–19.5% lower energy capacity compared to the thermocontrolled mode, with more efficient desorption of both methane and ethane. Full article
(This article belongs to the Special Issue Nanomaterials for Chemical Engineering)
Show Figures

Figure 1

Back to TopTop