Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,835)

Search Parameters:
Keywords = atomic physics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5258 KB  
Article
Bilayer TMDs for Future FETs: Carrier Dynamics and Device Implications
by Shoaib Mansoori, Edward Chen and Massimo Fischetti
Nanomaterials 2025, 15(19), 1526; https://doi.org/10.3390/nano15191526 (registering DOI) - 5 Oct 2025
Abstract
Bilayer transition metal dichalcogenides (TMDs) are promising materials for next-generation field-effect transistors (FETs) due to their atomically thin structure and favorable transport properties. In this study, we employ density functional theory (DFT) to compute the electronic band structures and phonon dispersions of bilayer [...] Read more.
Bilayer transition metal dichalcogenides (TMDs) are promising materials for next-generation field-effect transistors (FETs) due to their atomically thin structure and favorable transport properties. In this study, we employ density functional theory (DFT) to compute the electronic band structures and phonon dispersions of bilayer WS2, WSe2, and MoS2, and the electron-phonon scattering rates using the EPW (electron-phonon Wannier) method. Carrier transport is then investigated within a semiclassical full-band Monte Carlo framework, explicitly including intrinsic electron-phonon scattering, dielectric screening, scattering with hybrid plasmon–phonon interface excitations (IPPs), and scattering with ionized impurities. Freestanding bilayers exhibit the highest mobilities, with hole mobilities reaching 2300 cm2/V·s in WS2 and 1300 cm2/V·s in WSe2. Using hBN as the top gate dielectric preserves or slightly enhances mobility, whereas HfO2 significantly reduces transport due to stronger IPP and remote phonon scattering. Device-level simulations of double-gate FETs indicate that series resistance strongly limits performance, with optimized WSe2 pFETs achieving ON currents of 820 A/m, and a 10% enhancement when hBN replaces HfO2. These results show the direct impact of first-principles electronic structure and scattering physics on device-level transport, underscoring the importance of material properties and the dielectric environment in bilayer TMDs. Full article
(This article belongs to the Special Issue First Principles Study of Two-Dimensional Materials)
24 pages, 4745 KB  
Review
Recent Progress on the Characterization of Polymer Crystallization by Atomic Force Microscopy
by Shen Chen, Min Chen and Hanying Li
Polymers 2025, 17(19), 2692; https://doi.org/10.3390/polym17192692 (registering DOI) - 5 Oct 2025
Abstract
The crystallization behavior of polymers affects the structure of aggregated states, which influences the properties of materials. Atomic force microscopy (AFM) is a helpful characterization tool with high spatial resolution at the nanometer-to-micrometer scale and low-destruction imaging capabilities, making it an important means [...] Read more.
The crystallization behavior of polymers affects the structure of aggregated states, which influences the properties of materials. Atomic force microscopy (AFM) is a helpful characterization tool with high spatial resolution at the nanometer-to-micrometer scale and low-destruction imaging capabilities, making it an important means of studying polymer crystallography. This review is intended for scientists in polymer materials and physics, aiming to inspire how the rich applications of AFM can be harnessed to address fundamental scientific questions in polymer crystallization. This paper reviews recent advances in polymer crystallization characterization based on AFM, focusing on its applications in visualizing hierarchical polymer crystal structures (single crystals, spherulites, dendritic crystals, and shish kebab crystals), investigating crystallization kinetics (in situ monitoring of crystal growth), and analyzing structure–property relationships (structural changes under temperature and stress). Finally, we introduce the application of the latest AFM technology in addressing key issues in polymer crystallization, such as single-molecule force spectroscopy (SMFS) and atomic force microscopy–infrared spectroscopy (AFM-IR). As AFM technology advances toward higher precision, greater efficiency, and increased functionality, it is expected to deliver more exciting developments in the field of polymer crystallization. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

26 pages, 1579 KB  
Article
Thinking the Unthinkable: An Alternative Route to a Unified Theory
by Julian Hart
Philosophies 2025, 10(5), 110; https://doi.org/10.3390/philosophies10050110 - 3 Oct 2025
Abstract
One of the greatest quests in physics in current times is the search for a grand unified theory—to bring all the forces of nature into one coherent explanatory framework. Despite two centuries of progress, both in comprehending the individual forces and formulating mathematical [...] Read more.
One of the greatest quests in physics in current times is the search for a grand unified theory—to bring all the forces of nature into one coherent explanatory framework. Despite two centuries of progress, both in comprehending the individual forces and formulating mathematical constructs to explain the existence and operation of such forces, the final step to unify the localised atomic and subatomic forces with gravity has proven to be elusive. Whilst recognising that there are arguments for and against the unification of all the forces of nature, the pursuit for unity has been driving many physicists and mathematicians to explore increasingly extraordinary ideas, from string theory to various other options requiring multiple dimensions. Can process philosophy ride to the rescue? By changing our perspective, it might be possible to derive a provocative and compelling alternative way to understand basic (and advanced) physics. This process approach would see all matter objects, at whatever scale, as energetic systems (inherently dynamic). Through the use of game theory, there is a way to appreciate the combination of entropy together with all the apparent forces of nature, being gravity and the more localised forces, within a singular, metaphysically consistent, construct. The outcome, however, challenges our whole understanding of the universe and fundamentally changes our relationship with matter. Full article
Show Figures

Figure 1

21 pages, 10742 KB  
Article
Polymer Films of 2-(Azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole: Surface Characterization and Electrochemical Sensing of Heavy Metals
by Cornelia Musina (Borsaru), Mihaela Cristea, Raluca Gavrilă, Oana Brincoveanu, Florin Constantin Comănescu, Veronica Anăstăsoaie, Gabriela Stanciu and Eleonora-Mihaela Ungureanu
Molecules 2025, 30(19), 3959; https://doi.org/10.3390/molecules30193959 - 2 Oct 2025
Abstract
This work introduces 2-(azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole (L) as a functional monomer capable of forming stable, redox-active films with high affinity for lead in aqueous solutions. L was synthesized and characterized using physical chemical methods and electrochemistry. Polymer films of L were prepared through [...] Read more.
This work introduces 2-(azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole (L) as a functional monomer capable of forming stable, redox-active films with high affinity for lead in aqueous solutions. L was synthesized and characterized using physical chemical methods and electrochemistry. Polymer films of L were prepared through oxidative electro polymerization on glassy carbon electrodes in L solutions in 0.1 M TBAP in acetonitrile. They were characterized through electrochemistry. The surface of chemically modified electrodes (CMEs) prepared through controlled potential electrolysis (CPE) at variable concentrations, potentials, and electric charges was characterized through scanning electron spectroscopy, atomic force microscopy, and Raman spectroscopy, which confirmed the films’ formation. Electrochemical sensing of the films deposited on these CMEs was tested with respect to heavy metal (HM) ion analysis in aqueous solutions to obtain sensors for HMs. The obtained CMEs presented the best characteristics for the recognition of Pb among the investigated HMs (Cd, Pb, Cu, and Hg). Calibration curves were obtained for the analysis of Pb(II) in aqueous solutions, which allowed for the estimation of a good detection limit of this cation (<10−8 M) for non-optimized CMEs. The resulting CMEs show promise for deployment in portable environmental monitoring systems, with implications for public health protection and environmental safety. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Applied Chemistry)
Show Figures

Figure 1

18 pages, 3872 KB  
Article
Predicting the Bandgap of Graphene Based on Machine Learning
by Qinze Yu, Lingtao Zhan, Xiongbai Cao, Tingting Wang, Haolong Fan, Zhenru Zhou, Huixia Yang, Teng Zhang, Quanzhen Zhang and Yeliang Wang
Physchem 2025, 5(4), 41; https://doi.org/10.3390/physchem5040041 - 1 Oct 2025
Abstract
Over the past decade, two-dimensional materials have become a research hotspot in chemistry, physics, materials science, and electrical and optical engineering due to their excellent properties. Graphene is one of the earliest discovered 2D materials. The absence of a bandgap in pure graphene [...] Read more.
Over the past decade, two-dimensional materials have become a research hotspot in chemistry, physics, materials science, and electrical and optical engineering due to their excellent properties. Graphene is one of the earliest discovered 2D materials. The absence of a bandgap in pure graphene limits its application in digital electronics where switching behavior is essential. In the present study, researchers have proposed a variety of methods for tuning the graphene bandgap. Machine learning methodologies have demonstrated the capability to enhance the efficiency of materials research by automating the recording of characteristic parameters from the discovery and preparation of 2D materials, property calculations, and simulations, as well as by facilitating the extraction and summarization of governing principles. In this work, we use first principle calculations to build a dataset of graphene band gaps under various conditions, including the application of a perpendicular external electric field, nitrogen doping, and hydrogen atom adsorption. Support Vector Machine (SVM), Random Forest (RF), and Multi-Layer Perceptron (MLP) Regression were utilized to successfully predict the graphene bandgap, and the accuracy of the models was verified using first principles. Finally, the advantages and limitations of the three models were compared. Full article
Show Figures

Figure 1

17 pages, 3677 KB  
Article
Improvement of Physical and Electrical Characteristics in 4H-SiC MOS Capacitors Using AlON Thin Films Fabricated via Plasma-Enhanced Atomic Layer Deposition
by Zhaopeng Bai, Chengxi Ding, Yunduo Guo, Man Luo, Zimo Zhou, Lin Gu, Qingchun Zhang and Hongping Ma
Materials 2025, 18(19), 4531; https://doi.org/10.3390/ma18194531 - 29 Sep 2025
Abstract
In this study, we investigate the improvement of physical and electrical characteristics in 4H-silicon carbide (SiC) MOS capacitors using Aluminum Oxynitride (AlON) thin films fabricated via Plasma-Enhanced Atomic Layer Deposition (PEALD). AlON thin films are grown on SiC substrates using a high ratio [...] Read more.
In this study, we investigate the improvement of physical and electrical characteristics in 4H-silicon carbide (SiC) MOS capacitors using Aluminum Oxynitride (AlON) thin films fabricated via Plasma-Enhanced Atomic Layer Deposition (PEALD). AlON thin films are grown on SiC substrates using a high ratio of NH3 and O2 as nitrogen and oxygen sources through PEALD technology, with improved material properties and electrical performance. The AlON films exhibited excellent thickness uniformity, with a minimal error of only 0.14%, a high refractive index of 1.90, and a low surface roughness of 0.912 nm, demonstrating the precision of the PEALD process. Through XPS depth profiling and electrical characterization, it was found that the AlON/SiC interface showed a smooth transition from Al-N and Al-O at the surface to Al-O-Si at the interface, ensuring robust bonding. Electrical measurements indicated that the SiC/AlON MOS capacitors demonstrated Type I band alignment with a valence band offset of 1.68 eV and a conduction band offset of 1.16 eV. Additionally, the device demonstrated a low interface state density (Dit) of 7.6 × 1011 cm−2·eV−1 with a high breakdown field strength of 10.4 MV/cm. The results highlight AlON’s potential for enhancing the performance of high-voltage, high-power SiC devices. Full article
Show Figures

Graphical abstract

13 pages, 3426 KB  
Article
Loss Separation Modeling and Optimization of Permalloy Sheets for Low-Noise Magnetic Shielding Devices
by Yuzheng Ma, Minxia Shi, Yachao Zhang, Teng Li, Yusen Li, Leran Zhang and Shuai Yuan
Materials 2025, 18(19), 4527; https://doi.org/10.3390/ma18194527 - 29 Sep 2025
Abstract
With the breakthroughs in quantum theory and the rapid advancement of quantum precision measurement sensor technologies, atomic magnetometers based on the spin-exchange relaxation-free (SERF) mechanism have played an increasingly important role in ultra-weak biomagnetic field detection, inertial navigation, and fundamental physics research. To [...] Read more.
With the breakthroughs in quantum theory and the rapid advancement of quantum precision measurement sensor technologies, atomic magnetometers based on the spin-exchange relaxation-free (SERF) mechanism have played an increasingly important role in ultra-weak biomagnetic field detection, inertial navigation, and fundamental physics research. To achieve high-precision measurements, SERF magnetometers must operate in an extremely weak magnetic field environment, while the detection of ultra-weak magnetic signals relies on a low-noise background. Therefore, accurate measurement, modeling, and analysis of magnetic noise in shielding materials are of critical importance. In this study, the magnetic noise of permalloy sheets was modeled, separated, and analyzed based on their measured magnetic properties, providing essential theoretical and experimental support for magnetic noise evaluation in shielding devices. First, a single-sheet tester (SST) was modeled via finite element analysis to investigate magnetization uniformity, and its structure was optimized by adding a supporting connection plate. Second, an experimental platform was established to verify magnetization uniformity and to perform accurate low-frequency measurements of hysteresis loops under different frequencies and field amplitudes while ensuring measurement precision. Finally, the Bertotti loss separation method combined with a PSO optimization algorithm was employed to accurately fit and analyze the three types of losses, thereby enabling precise separation and calculation of hysteresis loss. This provides essential theoretical foundations and primary data for magnetic noise evaluation in shielding devices. Full article
Show Figures

Figure 1

20 pages, 5255 KB  
Article
Development and Characterization of Chitosan Microparticles via Ionic Gelation for Drug Delivery
by Zahra Rajabimashhadi, Annalia Masi, Sonia Bagheri, Claudio Mele, Gianpiero Colangelo, Federica Paladini and Mauro Pollini
Polymers 2025, 17(19), 2603; https://doi.org/10.3390/polym17192603 - 26 Sep 2025
Abstract
This study explores the formulation of chitosan microparticles through ionic gelation and presents detailed physicochemical characterization, release studies, and the utility and potential uses for drug delivery. Three formulations were prepared under rate-controlled conditions (stirring at 800 rpm and pH maintained at 4.6) [...] Read more.
This study explores the formulation of chitosan microparticles through ionic gelation and presents detailed physicochemical characterization, release studies, and the utility and potential uses for drug delivery. Three formulations were prepared under rate-controlled conditions (stirring at 800 rpm and pH maintained at 4.6) with and without stabilizers to examine the effects of formulation parameters on particle morphology and structural stability. To determine different structural and chemical characteristics, Attenuated Total Reflectance Fourier-Transform Infrared spectroscopy (ATR–FTIR), Scanning Electron Microscopy (SEM), and dynamic light scattering (DLS) were utilized, which confirmed that the particles formed and assessed size distribution and structural integrity. Atomic force microscopy (AFM) was used to quantify surface roughness and potential nanomechanical differences that may derive from the use of different modifiers. Coformulation of bovine serum albumin (BSA) permitted assessment of encapsulation efficiency and drug release capacity. Based on in vitro release evidence, the protein released at a different rate, and the dispersion of formulations under physiological conditions (PBS, pH 7.4, 37 °C) confirmed the differences in stability between formulations. The tunable physical characteristics, mild fabrication conditions, and controlled drug release demonstrated that the chitosan particles could have useful relevance as a substrate for localized drug delivery and as a bioactive scaffold for tissue regenerative purposes. Full article
(This article belongs to the Special Issue Advanced Polymeric Biomaterials for Drug Delivery Applications)
Show Figures

Figure 1

23 pages, 2297 KB  
Article
Nanofibrous Polymer Filters for Removal of Metal Oxide Nanoparticles from Industrial Processes
by Andrzej Krupa, Arkadiusz Tomasz Sobczyk and Anatol Jaworek
Membranes 2025, 15(10), 291; https://doi.org/10.3390/membranes15100291 - 25 Sep 2025
Abstract
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning [...] Read more.
Filtration of submicron particles and nanoparticles is an important problem in nano-industry and in air conditioning and ventilation systems. The presence of submicron particles comprising fungal spores, bacteria, viruses, microplastic, and tobacco-smoke tar in ambient air is a severe problem in air conditioning systems. Many nanotechnology material processes used for catalyst, solar cells, gas sensors, energy storage devices, anti-corrosion and hydrophobic surface coating, optical glasses, ceramics, nanocomposite membranes, textiles, and cosmetics production also generate various types of nanoparticles, which can retain in a conveying gas released into the atmosphere. Particles in this size range are particularly difficult to remove from the air by conventional methods, e.g., electrostatic precipitators, conventional filters, or cyclones. For these reasons, nanofibrous filters produced by electrospinning were developed to remove fine particles from the post-processing gases. The physical basis of electrospinning used for nanofilters production is an employment of electrical forces to create a tangential stress on the surface of a viscous liquid jet, usually a polymer solution, flowing out from a capillary nozzle. The paper presents results for investigation of the filtration process of metal oxide nanoparticles: TiO2, MgO, and Al2O3 by electrospun nanofibrous filter. The filter was produced from polyvinylidene fluoride (PVDF). The concentration of polymer dissolved in dimethylacetamide (DMAC) and acetone mixture was 15 wt.%. The flow rate of polymer solution was 1 mL/h. The nanoparticle aerosol was produced by the atomization of a suspension of these nanoparticles in a solvent (methanol) using an aerosol generator. The experimental results presented in this paper show that nanofilters made of PVDF with surface density of 13 g/m2 have a high filtration efficiency for nano- and microparticles, larger than 90%. The gas flow rate through the channel was set to 960 and 670 l/min. The novelty of this paper was the investigation of air filtration from various types of nanoparticles produced by different nanotechnology processes by nanofibrous filters and studies of the morphology of nanoparticle deposited onto the nanofibers. Full article
20 pages, 3591 KB  
Article
Adapted Correlation Methods for Laser Speckle Imaging of Microbial Activity: Evaluation and Rationale
by Ilya Balmages, Katrina Smite, Dmitrijs Bļizņuks, Aigars Reinis, Alexey Lihachev and Ilze Lihacova
Sensors 2025, 25(18), 5772; https://doi.org/10.3390/s25185772 - 16 Sep 2025
Viewed by 267
Abstract
The laser speckle technique provides a non-invasive remote sensing method for monitoring biological dynamics. In this study, we focus on assessing microbial growth through systematic comparison of correlation-based speckle image analysis methods. We compare conventional techniques, NCC, ZNCC, the Lewis method, and Phase [...] Read more.
The laser speckle technique provides a non-invasive remote sensing method for monitoring biological dynamics. In this study, we focus on assessing microbial growth through systematic comparison of correlation-based speckle image analysis methods. We compare conventional techniques, NCC, ZNCC, the Lewis method, and Phase correlation, with two newly proposed variants: frequency-domain correlation of normalized images and ZNCC with limited shifts around the peak. We analyze these methods in terms of precision and computational efficiency. Our results demonstrate that the proposed techniques offer optimal trade-offs for tracking subtle microbial activity, particularly in early-stage growth. This paper aims not only to identify the most effective tools for laser speckle analysis, but also to justify the use of laser speckle imaging for microbial activity assessment. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

17 pages, 3596 KB  
Article
Direct High-Power Microwave Interaction with a Zinc Wire: A Novel Route to Crystalline ZnO Nanopowders Synthesis
by George Mogildea, Marian Mogildea, Sorin I. Zgura, Natalia Mihailescu, Doina Craciun, Valentin Craciun, Oana Brincoveanu, Alexandra Mocanu, Vasilica Tucureanu, Cosmin Romanitan, Alexandru Paraschiv, Bogdan S. Vasile and Catalin-Daniel Constantinescu
Int. J. Mol. Sci. 2025, 26(18), 8981; https://doi.org/10.3390/ijms26188981 - 15 Sep 2025
Viewed by 250
Abstract
We present a novel approach for the synthesis of crystalline zinc oxide (ZnO) nanopowders based on the direct interaction of high-power microwave radiation with a zinc wire in atmospheric air. The process utilizes a localized microwave-induced plasma to rapidly vaporize the metal, followed [...] Read more.
We present a novel approach for the synthesis of crystalline zinc oxide (ZnO) nanopowders based on the direct interaction of high-power microwave radiation with a zinc wire in atmospheric air. The process utilizes a localized microwave-induced plasma to rapidly vaporize the metal, followed by oxidation and condensation, resulting in the deposition of ZnO nanostructures on glass substrates. Plasma diagnostics confirmed the generation of a plasma in local thermodynamic equilibrium (LTE), characterized by high electron temperatures. Optical emission spectroscopy highlighted atomic species such as ZnI, ZnII, OI, OII, and NI, as well as molecular species including OH, N2 and O2. The spectral fingerprint of N2 molecules reveals the presence of high energy electrons, while the persistent occurrence of OI and OII emission lines throughout the plasma spectrum reveals that ZnO formation is mainly driven by the continuous dissociation of molecular oxygen. High crystallinity and chemical purity of the synthesized ZnO nanoparticles were confirmed through SEM, TEM, XRD, FTIR, and EDX characterization. The resulting nanorods exhibit a rod-like morphology, with diameters ranging from 12 nm to 63 nm and lengths between 58 nm and 354 nm. This low-cost, high-yield method offers a scalable and efficient route for metal oxide nanomaterial fabrication via direct metal–microwave coupling, providing a promising alternative to conventional physical and chemical synthesis techniques. Full article
Show Figures

Figure 1

15 pages, 1432 KB  
Article
Elastic Anisotropy in BCC Ti-X Alloys (X = V, Nb, Ta) Determined from First Principles
by Cyprian Sobczak, Piotr Kwasniak, Pawel Strak, Marek Muzyk and Stanislaw Krukowski
Materials 2025, 18(18), 4294; https://doi.org/10.3390/ma18184294 - 12 Sep 2025
Viewed by 377
Abstract
Elastic isotropy is a phenomenon in which a material responds uniformly to stress, regardless of its direction. In the case of cubic crystals, which possess distinct crystallographic directions, this represents a remarkable manifestation of quantum mechanics in macroscopic objects. Such behavior of a [...] Read more.
Elastic isotropy is a phenomenon in which a material responds uniformly to stress, regardless of its direction. In the case of cubic crystals, which possess distinct crystallographic directions, this represents a remarkable manifestation of quantum mechanics in macroscopic objects. Such behavior of a crystal cannot be explained within the framework of classical physics. The phenomenon is closely related to the balancing of internal forces resulting from Coulomb interactions, Pauli repulsion, and the overlap in the bands when stress is applied to the crystal. On the macroscopic level, this corresponds to the relationship between elastic constants given by 2 C44/(C11 − C12) = 1. The subject of the present work is to demonstrate the influence of the number of valence electrons per atom in binary titanium alloys with vanadium, niobium, and tantalum on the shape of the anisotropy curve. The result of the work is the identification of a new Ti-53Nb alloy exhibiting elastic isotropy, and the demonstration that this phenomenon cannot occur for TiTa alloys, in the range of mechanical stability of these alloys. This study includes a summary of the main trends exhibited by the elastic constants, Young’s modulus, and bulk modulus of the discussed Ti-based alloys, based on ab initio methods. Additionally, the work addresses the well-known difficulty in determining the elastic constants of vanadium and niobium, along with a proposed solution that offers significant improvement in reproducing experimental results compared to the conventional use of the PBE (Perdew–Burke–Ernzerhof) functional. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Figure 1

11 pages, 351 KB  
Article
Short–Range Hard–Sphere Potential and Coulomb Interaction: Deser–Trueman Formula for Rydberg States of Exotic Atomic Systems
by Gregory S. Adkins and Ulrich D. Jentschura
Atoms 2025, 13(9), 81; https://doi.org/10.3390/atoms13090081 - 11 Sep 2025
Viewed by 215
Abstract
In exotic atomic systems with hadronic constituent particles, it is notoriously difficult to estimate the strong-interaction correction to energy levels. It is well known that, due to the strength of the nuclear interaction, the problem cannot be solved using Wigner–Brillouin perturbation theory alone. [...] Read more.
In exotic atomic systems with hadronic constituent particles, it is notoriously difficult to estimate the strong-interaction correction to energy levels. It is well known that, due to the strength of the nuclear interaction, the problem cannot be solved using Wigner–Brillouin perturbation theory alone. Recently, high-angular-momentum Rydberg states of exotic atomic systems with hadronic constituents have been identified as promising candidates in the search for new physics in the low-energy sector of the Standard Model. We thus derive a generalized Deser–Trueman formula for the induced energy shift for a general hydrogenic bound state with principal quantum number n and orbital angular momentum quantum number , and we find that the energy shift is given by the formula δE=2αn,β(ah/a0)2+1Eh/n3, where αn,0=1, αn,=s=1(s2n2), β=(2+1)/[(2+1)!!]2, Eh is the Hartree energy, ah is the hadronic radius and a0 is the generalized Bohr radius. The square of the double factorial, [(2+1)!!]2, in the denominator implies a drastic suppression of the effect for higher angular momenta. Full article
(This article belongs to the Section Nuclear Theory and Experiments)
Show Figures

Figure 1

18 pages, 18416 KB  
Article
Radiation-Induced Degradation Mechanisms in Silicon MEMS Under Coupled Thermal and Mechanical Fields
by Xian Guo, Deshou Yang, Jibiao Qiao, Hui Zhang, Tong Ye and Ning Wei
Processes 2025, 13(9), 2902; https://doi.org/10.3390/pr13092902 - 11 Sep 2025
Viewed by 277
Abstract
Silicon-based MEMS devices are essential in extreme radiation environments but suffer progressive reliability degradation from irradiation-induced defects. Here, the generation, aggregation, and clustering of defects in single-crystal silicon were systematically investigated through molecular dynamics (MD) simulations via employing a hybrid Tersoff–ZBL potential that [...] Read more.
Silicon-based MEMS devices are essential in extreme radiation environments but suffer progressive reliability degradation from irradiation-induced defects. Here, the generation, aggregation, and clustering of defects in single-crystal silicon were systematically investigated through molecular dynamics (MD) simulations via employing a hybrid Tersoff–ZBL potential that was validated by nanoindentation and transmission electron microscopy. The influences of the primary knock-on atom energy, temperature, and pre-strain state on defect evolution were quantified in detail. Frenkel defects were found to cause a linear reduction in the Young’s modulus and a nonlinear decline in thermal conductivity via enhanced phonon scattering. To link atomic-scale damage with device-level performance, MD-predicted modulus degradation was incorporated into finite element (FE) models of a sensing diaphragm. The FE analysis revealed that modulus reductions result in nonlinear increases in deflection and stress concentration, potentially impairing sensing accuracy. This integrated MD–FE framework establishes a robust, physics-based approach for predicting and mitigating irradiation damage in silicon-based MEMS operating in extreme environments. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

21 pages, 3429 KB  
Article
Novel Isoindigo-Based Organic Semiconductors End Capped with 1,1-Dicyanomethylene-3-Indanone: Effect of the Bromination and Position of Bromine Substituents on the Chemical–Physical and Electrical Properties
by Fabio Mocerino, Mario Barra, Fabio Borbone, Antonio Carella, Roberto Centore, Fabio Chiarella, Alessandro Landi and Andrea Peluso
Molecules 2025, 30(18), 3672; https://doi.org/10.3390/molecules30183672 - 9 Sep 2025
Viewed by 474
Abstract
We report here on the synthesis and characterization of three novel isoindigo (II)-based organic semiconductors. The three dyes are based on an electron acceptor II core, symmetrically linked to two 3-octylthiophene donor rings; this common fragment, easily synthesizable, is end-capped with three different [...] Read more.
We report here on the synthesis and characterization of three novel isoindigo (II)-based organic semiconductors. The three dyes are based on an electron acceptor II core, symmetrically linked to two 3-octylthiophene donor rings; this common fragment, easily synthesizable, is end-capped with three different auxiliary electron acceptor groups, 1,1-Dicyanomethylene-3-Indanone (IDM) and two derivatives of it, bearing a bromine atom in position 5 or 6 of the IDM ring. The effect of the bromination and of the position of the bromine atom on the chemical–physical and electrical properties of the compounds were examined by means of thermal, optical, and electrochemical analysis; the electronic properties were investigated in more details at the DFT level. The novel compounds were used as active layers in organic field effect transistors: all the II derivatives were n-type unipolar semiconductors with electron mobilities ranging between 10−3 and 10−4 cm2/V∙s. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

Back to TopTop