Direct High-Power Microwave Interaction with a Zinc Wire: A Novel Route to Crystalline ZnO Nanopowders Synthesis
Abstract
1. Introduction
2. Results
2.1. Optical Diagnostics of the Microwave Plasma
2.2. Plasma Electron Temperature
2.3. Plasma Electron Density
- me—mass of an electron, k—Boltzmann constant, h—Planck’s constant,
- T—plasma temperature, Imn—intensity of the line transition from m-level to n-level,
- Amn—Einstein coefficient of the transition probability for spontaneous transition,
- —degeneracy of the upper level, —energy of the upper energy level of an atomic line, Eion—1st ionization energy, Iij, Aij, and are the corresponding parameters of an ionic line.
2.4. Optical Characterization of the ZnO Nanoparticles
2.5. Structural Analysis of ZnO Nanoparticles
3. Discussions
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci. 2010, 2, 282–289. [Google Scholar] [CrossRef]
- Ahmadi, A.; Ahmadi, P.; Ehsani, A. Development of an active packaging system containing zinc oxide nanoparticles for the extension of chicken fillet shelf life. Food Sci. Nutr. 2020, 8, 5461–5473. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-Q.; Hayat, Z.; Zhang, D.-D.; Li, M.-Y.; Hu, S.; Wu, Q.; Cao, Y.-F.; Yuan, Y. Zinc Oxide Nanoparticles: Synthesis, Characterization, Modification, and Applications in Food and Agriculture. Processes 2023, 11, 1193. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide—From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed]
- Bakranova, D.; Nagel, D. ZnO for Photoelectrochemical Hydrogen Generation. Clean. Technol. 2023, 5, 1248–1268. [Google Scholar] [CrossRef]
- Kania, H.; Saternus, M. Evaluation and Current State of Primary and Secondary Zinc Production—A Review. Appl. Sci. 2023, 13, 2003. [Google Scholar] [CrossRef]
- Lakshmipriya, T.; Gopinath, S.C. Gopinath, Volume 1, Introduction to nanoparticles and analytical devices. Nanoparticles Anal. Med. Devices 2021, 1, 1–29. [Google Scholar] [CrossRef]
- Mekuye, B.; Abera, B. Nanomaterials: An overview of synthesis, classification, characterization, and applications. Nano Sel. 2023, 4, 463–524. [Google Scholar] [CrossRef]
- Vinukonda, A.; Bolledla, N.; Jadi, R.K.; Chinthala, R.; Devadasu, V.R. Synthesis of nanoparticles using advanced techniques. Next Nanotechnol. 2025, 8, 100169. [Google Scholar] [CrossRef]
- Arora, N.; Sharma, N. Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diam. Relat. Mater. 2014, 50, 135–150. [Google Scholar] [CrossRef]
- Duque, J.S.; Madrigal, B.M.; Riascos, H.; Avila, Y.P. Colloidal Metal Oxide Nanoparticles Prepared by Laser Ablation Technique and Their Antibacterial Test. Colloids Interfaces 2019, 3, 25. [Google Scholar] [CrossRef]
- Nagime, P.V.; Chandak, V.S. A comprehensive review of nanomaterials synthesis: Physical, chemical, and biological approaches and emerging challenges. Biocatal. Agric. Biotechnol. 2024, 62, 103458. [Google Scholar] [CrossRef]
- Lee, H.-C. Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics. Appl. Phys. Rev. 2018, 5, 011108. [Google Scholar] [CrossRef]
- Chau, J.L.H.; Yang, C.-C.; Shih, H.-H. Microwave Plasma Production of Metal Nanopowders. Inorganics 2014, 2, 278–290. [Google Scholar] [CrossRef]
- Yonezawa, T.; Čempel, D.; Nguyen, M.T. Microwave-Induced Plasma-In-Liquid Process for Nanoparticle. Bull. Chem. Soc. Jpn. 2018, 91, 1781–1798. [Google Scholar] [CrossRef]
- Hong, Y.C.; Uhm, H.S. Synthesis of MgO nanopowder in atmospheric microwave plasma torch. Chem. Phys. Lett. 2006, 422, 174–178. [Google Scholar] [CrossRef]
- Qu, B.; Xiao, Z.; Luo, Y. Sustainable nanotechnology for food preservation: Synthesis, mechanisms, and applications of zinc oxide nanoparticles. J. Agric. Food Res. 2025, 19, 101743. [Google Scholar] [CrossRef]
- Kustov, L.; Vikanova, K. Synthesis of Metal Nanoparticles Under Microwave Irradiation: Get Much with Less Energy. Metals 2023, 13, 1714. [Google Scholar] [CrossRef]
- Tănase, M.A.; Soare, A.C.; Oancea, P.; Răducan, A.; Mihăescu, C.I.; Alexandrescu, E.; Petcu, C.; Diţu, L.M.; Ferbinteanu, M.; Cojocaru, B.; et al. Facile In Situ Synthesis of ZnO Flower-like Hierarchical Nanostructures by the Microwave Irradiation Method for Multifunctional Textile Coatings. Nanomaterials 2021, 11, 2574. [Google Scholar] [CrossRef]
- Mogildea, M.; Mogildea, G.; Zgura, S.I.; Chiritoi, G.; Ionescu, C.; Craciun, V.; Prepelita, P.; Mihailescu, N.; Paraschiv, A.; Vasile, B.S.; et al. Synthesis of the Titanium Oxides Using a New Microwave Discharge Method. Int. J. Mol. Sci. 2025, 26, 2173. [Google Scholar] [CrossRef]
- Craciun, D.; Garoi, P.; Mogildea, M.; Mogildea, G.; Zgura, S.I.; Vasile, B.S.; Craciun, V. Crystalline In2O3 nanoparticles synthesis using microwaves vaporization of metallic wires. Appl. Surf. Sci. 2022, 575, 151788. [Google Scholar] [CrossRef]
- Mogildea, M.; Mogildea, G.; Zgura, S.I.; Craciun, D.; Mihăilescu, N.; Prepelita, P.; Mihai, L.; Bazavan, M.C.; Bercu, V.; Gebac, L.C.; et al. A New Method for Tungsten Oxide Nanopowder Deposition on Carbon-Fiber-Reinforced Polymer Composites for X-ray Attenuation. Nanomaterials 2023, 13, 3071. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Chou, T.-W. Microwave processing: Fundamentals and applications. Compos. Part A 1999, 30, 1055–1071. [Google Scholar] [CrossRef]
- Sun, J.; Wang, W.; Yue, Q.; Ma, C.; Zhang, J.; Zhao, X.; Song, Z. Review on microwave–metal discharges and their applications in energy and industrial processes. Appl. Energy 2016, 175, 141–157. [Google Scholar] [CrossRef]
- Whittaker, A.G.; Mingos, D.M.P. Arcing and other microwave characteristics of metal powders in liquid systems. J. Chem. Soc. Dalton Trans. 2000, 1521–1526. [Google Scholar] [CrossRef]
- Cheng, J.; Roy, R.; Agrawal, D. Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites. J. Mater. Sci. Lett. 2001, 20, 1561–1563. [Google Scholar] [CrossRef]
- Mondal, A.; Agrawal, D.; Upadhyaya, A. Microwave heating of pure copper powder with varying particle size and porosity. J. Microw. Power Electromagn. Energy 2009, 43, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Brodie, I.; Schwoebel, P. Field Electron Emission from Metals. In Field Emission in Vacuum Microelectronics; Microdevices; Springer: Boston, MA, USA, 2005; Available online: https://link.springer.com/chapter/10.1007/0-387-27419-7_1 (accessed on 4 September 2025).
- Mogildea, G.; Mogildea, M. Experimental investigation of the metals vaporization and ionization with microwave used as propellant for ionic propulsion. Optoelectron. Adv. Mater. R. C. 2010, 4, 352–356. [Google Scholar]
- Mogildea, G.; Mogildea, M.; Popa, C.; Chiritoi, G. The Assessment of Carbon Dioxide Dissociation Using a Single-Mode Microwave Plasma Generator. Molecules 2020, 25, 1558. [Google Scholar] [CrossRef]
- Mogîldea, G.; Mogîldea, M.; Zgura, S.I.; Craciun, D.; Popa, C.; Prepelita, P.; Bazavan, M.C.; Craciun, V. The assessment of the atmospheric air breakdown voltage generated by the interaction between microwaves and metallic wires. Phys. Scr. 2023, 98, 045508. [Google Scholar] [CrossRef]
- Mogildea, M.; Mogildea, G.; Craciun, V.; Zgura, S.I. The Effects Induced by Microwave Field upon Tungsten Wires of Different Diameters. Materials 2021, 14, 1036. [Google Scholar] [CrossRef]
- USB2000+ Data Sheet. Available online: https://ph208.edu.physics.uoc.gr/pdfs/OEM-Data-Sheet-USB2000-.pdf (accessed on 10 September 2025).
- Navrátil, Z.; Trunec, D.; Šmíd, R.; Lazar, L. A software for optical emission spectroscopy-problem formulation and application to plasma diagnostics. Czechoslov. J. Phys. 2006, 56 (Suppl. S2), B944–B951. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology (NIST). Atomic Spectra Database. Available online: https://physics.nist.gov/PhysRefData/ASD/lines_form.html (accessed on 10 September 2025).
- Shaikh, N.M.; Rashid, B.; Hafeez, S.; Jamil, Y.; Baig, M.A. Measurement of electron density and temperature of a laser-induced zinc plasma. J. Phys. D Appl. Phys. 2006, 39, 1384–1391. [Google Scholar] [CrossRef]
- Bousquet, B.; Gardette, V.; Ros, V.M.; Gaudiuso, R.; Dell’AGlio, M.; De Giacomo, A. Plasma excitation temperature obtained with Boltzmann plot method: Significance, precision, trueness and accuracy. Spectrochim. Acta Part B At. Spectrosc. 2023, 204, 106686. [Google Scholar] [CrossRef]
- Gornushkin, I.B.; Shabanov, S.V.; Merk, S.; Tognoni, E.; Panne, U. Effects of non-uniformity of laser induced plasma on plasma temperature and concentrations determined by the Boltzmann plot method: Implications from plasma modeling. J. Anal. At. Spectrom. 2010, 25, 1643–1653. [Google Scholar] [CrossRef]
- Kirchschlager, F.; Wolf, S.; Greiner, F.; Groth, S.; Labdon, A. In-situ analysis of optically thick nanoparticle clouds. Appl. Phys. Lett. 2017, 110, 173106. [Google Scholar] [CrossRef]
- Li, T.; Hou, Z.; Fu, Y.; Yu, J.; Gu, W.; Wang, Z. Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy (CF-LIBS) with blackbody radiation reference. Anal. Chim. Acta 2019, 1058, 39–47. [Google Scholar] [CrossRef]
- El Filali, B.; Gomez, J.J.; Torchynska, T.; Espinola, J.C.; Shcherbyna, L. Band-edge emission, defects, morphology and structure of in-doped ZnO nanocrystal films. Opt. Mater. 2019, 89, 322–328. [Google Scholar] [CrossRef]
- Liu, Z.; Jin, Z.; Li, W.; Qiu, J.; Zhao, J.; Liu, X. Synthesis of PS colloidal crystal templates and ordered ZnO porous thin films by dip-drawing method. Appl. Surf. Sci. 2006, 252, 5002–5009. [Google Scholar] [CrossRef]
- Niu, L.; Hong, S.; Wang, M. Properties of ZnO with Oxygen Vacancies and Its Application in Humidity Sensor. J. Elec Mater. 2021, 50, 4480–4487. [Google Scholar] [CrossRef]
- Langford, J.I.; Wilson, A.J.C. Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. J. Appl. Cryst. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Smilgies, D.-M. Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors. J. Appl. Cryst. 2009, 42, 1030–1034, Correction in J. Appl. Cryst. 2013, 46, 286. [Google Scholar] [CrossRef] [PubMed]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; Wiley: Chichester, UK, 2004; ISBN 978-0-470-09307-8. [Google Scholar]
- Leins, M.; Walker, M.; Schulz, A.; Schumacher, U.; Stroth, U. Spectroscopic Investigation of a Microwave-Generated Atmospheric Pressure Plasma Torch. Contrib. Plasma Phys. 2012, 52, 615–628. [Google Scholar] [CrossRef]
- Wangensteen, T.; Dhakal, T.; Merlak, M.; Mukherjee, P.; Phan, M.; Chandra, S.; Srikanth, H.; Witanachchi, S. Growth of uniform ZnO nanoparticles by a microwave plasma process. J. Alloys Compd. 2011, 509, 6859–6863. [Google Scholar] [CrossRef]
- Irzh, A.; Genish, I.; Klein, L.; Solovyov, L.A.; Gedanken, A. Solovyov, Aharon Gedanken, Synthesis of ZnO and Zn Nanoparticles in Microwave Plasma and Their Deposition on Glass Slides. Langmuir 2010, 26, 5976–5984. [Google Scholar] [CrossRef]
- Lee, B.-J.; Jo, S.-I.; Jeong, G.-H. Synthesis of ZnO Nanomaterials Using Low-Cost Compressed Air as Microwave Plasma Gas at Atmospheric Pressure. Nanomaterials 2019, 9, 942. [Google Scholar] [CrossRef]
- Tanaka, Y. Synthesis of Nano-size Particles in Thermal Plasmas. In Handbook of Thermal Science and Engineering; Kulacki, F., Ed.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Balachandran, A.; Sreenilayam, S.P.; Madanan, K.; Thomas, S.; Brabazon, D. Nanoparticle production via laser ablation synthesis in solution method and printed electronic application—A brief review. Results Eng. 2022, 16, 100646. [Google Scholar] [CrossRef]
- Hocke, K. Oxygen in the Earth System. Oxygen 2023, 3, 287–299. [Google Scholar] [CrossRef]
- Fursey, G. Field Emission in Vacuum Microelectronics; Springer: Boston, MA, USA, 2007; ISBN 978-0-306-47450-7. [Google Scholar] [CrossRef]
- Murphy, E.L.; Good, R.H. Thermionic Emission, Field Emission, and the Transition Region. Phys. Rev. 1956, 102, 1464. [Google Scholar] [CrossRef]
- Al Andari, J.; Diamy, A.M.; Legrand, J.C.; Ben-Aim, R.I. Air Microwave-Induced Plasma: Relation Between Ion Density and Atomic Oxygen Density. Plasma Chem. Plasma Process. 1993, 13, 103–116. [Google Scholar] [CrossRef]
- Popov, N.A. Investigation of the mechanism for rapid heating of nitrogen and air in gas discharges. Plasma Phys. Rep. 2001, 44, 886–896. [Google Scholar] [CrossRef]
- Danilov, A.D. Oxygen Dissociation. In Chemistry of the Ionosphere. Monographs in Geoscience; Springer: Boston, MA, USA, 1970. [Google Scholar] [CrossRef]
- Itikawa, Y. Cross Sections for Electron Collisions with Nitrogen Molecules. J. Phys. Chem. 2006, 35, 31–53. [Google Scholar] [CrossRef]
- Flitti, A.; Pancheshnyi, S. Gas heating in fast pulsed discharges in N2–O2 mixtures. Eur. Phys. J. Appl. Phys. 2009, 45, 21001. [Google Scholar] [CrossRef]
- Popov, N.A. Fast gas heating in a nitrogen-oxygen discharge plasma: I. Kinetic mechanism. J. Phys. D Appl. Phys. 2011, 44, 285201. [Google Scholar] [CrossRef]
- Gordillo, G.; Pena, J. Development of system to grow ZnO films by plasma assisted reactive evaporation with improved thickness homogeneity for using in solar cells. J. Mater. Res. Technol. 2022, 19, 1191–1202. [Google Scholar] [CrossRef]
- Tu, Y.; Chen, S.; Li, X.; Gorbaciova, J.; Gillin, W.P.; Krause, S.; Briscoe, J. Control of oxygen vacancies in ZnO nanorods by annealing and their influence on ZnO/PEDOT:PSS diode behaviour. J. Mater. Chem. C 2018, 6, 1815–1821. [Google Scholar] [CrossRef]
ZnI | λ (m) | gKi AKi | Ek | ZnII | λ (m) | gKi AKi | Ek |
3.30 × 10−7 | 6.00 × 108 | 7.782738 | 6.02 × 10−7 | 3.00 × 108 | 14.62633 | ||
6.36 × 10−7 | 2.40 × 108 | 7.743871 | 6.10 × 10−7 | 3.73 × 108 | 14.62934 | ||
2.78 × 10−7 | 1.38 × 108 | 8.502841 | 2.78 × 10−7 | 8.74 × 106 | 12.56777 | ||
4.81 × 10−7 | 3.50 × 108 | 6.65451 | 2.76 × 10−7 | 7.64 × 106 | 12.59821 | ||
2.80 × 10−7 | 3.02 × 108 | 8.503142 | 7.61 × 10−7 | 6.44 × 107 | 14.19595 | ||
3.28 × 10−7 | 2.70 × 108 | 7.782333 | 7.76 × 10−7 | 1.30 × 108 | 14.19595 |
Sample | dmin–dmax (nm) | FWHM (nm) | ||
---|---|---|---|---|
ZnO | NPs | 12–63 | 15–32 | |
NRDs | 58–354 | 96–218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mogildea, G.; Mogildea, M.; Zgura, S.I.; Mihailescu, N.; Craciun, D.; Craciun, V.; Brincoveanu, O.; Mocanu, A.; Tucureanu, V.; Romanitan, C.; et al. Direct High-Power Microwave Interaction with a Zinc Wire: A Novel Route to Crystalline ZnO Nanopowders Synthesis. Int. J. Mol. Sci. 2025, 26, 8981. https://doi.org/10.3390/ijms26188981
Mogildea G, Mogildea M, Zgura SI, Mihailescu N, Craciun D, Craciun V, Brincoveanu O, Mocanu A, Tucureanu V, Romanitan C, et al. Direct High-Power Microwave Interaction with a Zinc Wire: A Novel Route to Crystalline ZnO Nanopowders Synthesis. International Journal of Molecular Sciences. 2025; 26(18):8981. https://doi.org/10.3390/ijms26188981
Chicago/Turabian StyleMogildea, George, Marian Mogildea, Sorin I. Zgura, Natalia Mihailescu, Doina Craciun, Valentin Craciun, Oana Brincoveanu, Alexandra Mocanu, Vasilica Tucureanu, Cosmin Romanitan, and et al. 2025. "Direct High-Power Microwave Interaction with a Zinc Wire: A Novel Route to Crystalline ZnO Nanopowders Synthesis" International Journal of Molecular Sciences 26, no. 18: 8981. https://doi.org/10.3390/ijms26188981
APA StyleMogildea, G., Mogildea, M., Zgura, S. I., Mihailescu, N., Craciun, D., Craciun, V., Brincoveanu, O., Mocanu, A., Tucureanu, V., Romanitan, C., Paraschiv, A., Vasile, B. S., & Constantinescu, C.-D. (2025). Direct High-Power Microwave Interaction with a Zinc Wire: A Novel Route to Crystalline ZnO Nanopowders Synthesis. International Journal of Molecular Sciences, 26(18), 8981. https://doi.org/10.3390/ijms26188981