Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,802)

Search Parameters:
Keywords = background DNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 332 KB  
Article
Rapid Nanopore Sequencing to Identify Bacteria Causing Prosthetic Joint Infections
by Hollie Wilkinson, Karina Wright, Helen S. McCarthy, Jade Perry, Charlotte Hulme, Niall Steele, Benjamin Burston, Rob Townsend and Paul Cool
Antibiotics 2025, 14(9), 879; https://doi.org/10.3390/antibiotics14090879 (registering DOI) - 31 Aug 2025
Abstract
Background/Objectives: The diagnosis of prosthetic joint infection remains difficult. Microbiological cultures frequently have false-positive and false-negative results. This study investigates whether rapid nanopore sequencing can be used to aid the identification of bacteria causing prosthetic joint infection for more timely identification and treatment. [...] Read more.
Background/Objectives: The diagnosis of prosthetic joint infection remains difficult. Microbiological cultures frequently have false-positive and false-negative results. This study investigates whether rapid nanopore sequencing can be used to aid the identification of bacteria causing prosthetic joint infection for more timely identification and treatment. Methods: Nineteen patients who had revision surgery following total joint arthroplasty were included in this study. Of these, 15 patients had an infected joint arthroplasty. All patients had joint fluid aspirated at the time of revision surgery. The DNA was extracted from these fluid aspirates, and rapid nanopore sequencing was performed using the MinION device from Oxford Nanopore Technologies. The sequencing data was trimmed to improve quality and filtered to remove human reads using bioinformatic tools. Genomic sequence classification was performed using the Basic Local Alignment Search Tool. The results were filtered by read length and sequence identity score. The European Bone and Joint Infection Society criteria were used as a standard to identify infected and not infected patients. Confusion tables were used to calculate accuracy and F1 score based on this criteria and the nanopore sequencing results. Results: Microbiological cultures and nanopore sequencing had an accuracy of 68% and 74%, respectively. However, combining both results predicted infection accurately in 94% of cases (F1 score 96%). Conclusions: Nanopore sequencing has the potential to aid identification of bacteria causing prosthetic joint infection and may be useful as a supplementary diagnostic tool. Full article
Show Figures

Figure 1

31 pages, 1976 KB  
Article
Transcriptomic-Based Classification Identifies Prognostic Subtypes and Therapeutic Strategies in Soft Tissue Sarcomas
by Miguel Esperança-Martins, Hugo Vasques, Manuel Sokolov Ravasqueira, Maria Manuel Lemos, Filipa Fonseca, Diogo Coutinho, Jorge Antonio López, Richard S. P. Huang, Sérgio Dias, Lina Gallego-Paez, Luís Costa, Nuno Abecasis, Emanuel Gonçalves and Isabel Fernandes
Cancers 2025, 17(17), 2861; https://doi.org/10.3390/cancers17172861 (registering DOI) - 30 Aug 2025
Abstract
Background: Soft tissue sarcomas (STSs) histopathological classification system and the clinical and molecular-based tools that are currently employed to estimate its prognosis have several limitations, impacting prognostication and treatment. Clinically driven molecular profiling studies may cover these gaps and offer alternative tools with [...] Read more.
Background: Soft tissue sarcomas (STSs) histopathological classification system and the clinical and molecular-based tools that are currently employed to estimate its prognosis have several limitations, impacting prognostication and treatment. Clinically driven molecular profiling studies may cover these gaps and offer alternative tools with superior prognostication capability and enhanced precision and personalized treatment approaches identification ability. Materials and Methods: We performed DNA sequencing (DNA-seq) and RNA sequencing (RNA-seq) to portray the molecular profile of 102 samples of high-grade STS, comprising the three most common STS histotypes. Results: The analysis of RNA-seq data using unsupervised machine learning models revealed previously unknown molecular patterns, identifying four transcriptomic subtypes/clusters (TCs). This TC-based classification has a clear prognostic value (in terms of overall survival (OS) and disease-free survival (DFS)), a finding that was externally validated using independent patient cohorts. The prognostic value of this TC-based classification outperforms the prognostic accuracy of clinical-based (SARCULATOR nomograms) and molecular-based (CINSARC) prognostication tools, being one of the first molecular-based classifications capable of predicting OS in STS. The analysis of DNA-seq data from the same cohort revealed numerous and, in some cases, never documented molecular targets for precision treatment across different transcriptomic subtypes. The functional and predictive value of each genomic variant was analyzed using the Molecular Tumor Board Portal. Conclusions: This newly identified TC-based classification offers a superior prognostic value when compared with current gold-standard clinical and molecular-based prognostication tools, and identifies novel molecular targets for precision treatment, representing a cutting-edge tool for predicting prognosis and guiding treatment across different stages of STS. Full article
(This article belongs to the Special Issue News and How Much to Improve in Management of Soft Tissue Sarcomas)
16 pages, 2264 KB  
Article
CK2α Overexpression in Colorectal Cancer: Evidence for Sex- and Age-Linked Differences
by Jana Romy Friedrich, Clara Meier, Guido Plotz, Stefan Zeuzem, Angela Brieger and Sarah J. Overby
Cancers 2025, 17(17), 2857; https://doi.org/10.3390/cancers17172857 (registering DOI) - 30 Aug 2025
Abstract
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer-related deaths, with notable sex-specific differences in its incidence, diagnosis, and outcomes. Our previous work identified casein kinase 2 alpha (CK2α) as being capable of impairing DNA mismatch repair (MMR) via phosphorylation of MLH1, [...] Read more.
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer-related deaths, with notable sex-specific differences in its incidence, diagnosis, and outcomes. Our previous work identified casein kinase 2 alpha (CK2α) as being capable of impairing DNA mismatch repair (MMR) via phosphorylation of MLH1, thereby increasing the tumor mutational burden. This study aimed to investigate sex-specific differences in CK2α protein expression in CRC. Methods: Immunohistochemical (IHC) analysis was performed on 161 CRC tumors and adjacent normal tissues to quantify the CK2α protein levels. A multi-cohort meta-analysis of proteomic and clinical data was conducted to validate our findings and assess the correlations with age, sex, and relevant signaling pathways. Results: Female CRC patients exhibited significantly higher CK2α expression than male patients, which was confirmed in two independent cohorts. Additionally, CK2α expression was positively correlated with age in female but not male patients. Cross-cohort correlation analyses linked CK2α levels with key proteins involved in estrogen receptor signaling and aging, including DEAD-box helicase 5 (DDX5), histone deacetylase 1 (HDAC1), proliferating cell nuclear antigen (PCNA), prohibitin-2 (PHB2), H/ACA ribonucleoprotein complex subunit 2 (NHP2), and dual-specificity mitogen-activated protein kinase kinase 3 (MAP2K3). Conclusions: CK2α is significantly overexpressed in the tumor tissue of female CRC patients and shows a strong age-related correlation. These findings suggest a sex- and age-specific regulatory mechanism potentially influenced by estrogen signaling or menopause. Such dimorphisms underscore the need for sex-specific strategies in CRC biomarker development and therapy. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
15 pages, 1891 KB  
Article
Investigating PRDM8 DNA Methylation in Peripheral Tissues in Borderline Personality Disorder: Association with Symptom Severity but Not Adverse Childhood Experiences
by Annika Bender, Laila Bertele, Mirac Nur Musaoglu, Sarah Pasche, Susanne Edelmann and Vanessa Nieratschker
Brain Sci. 2025, 15(9), 950; https://doi.org/10.3390/brainsci15090950 (registering DOI) - 30 Aug 2025
Abstract
Background: Borderline Personality Disorder (BPD) is a complex psychiatric condition with multifactorial origins, with a high proportion of patients reporting early trauma. Stressors such as adverse childhood experiences (ACEs) can shape the epigenetic landscape including DNA methylation (DNAm) and act on gene expression. [...] Read more.
Background: Borderline Personality Disorder (BPD) is a complex psychiatric condition with multifactorial origins, with a high proportion of patients reporting early trauma. Stressors such as adverse childhood experiences (ACEs) can shape the epigenetic landscape including DNA methylation (DNAm) and act on gene expression. DNAm is increasingly being investigated as a molecular link between environmental exposures such as ACE and psychiatric outcomes. Differential DNAm of the gene PR domain zinc finger protein 8 (PRDM8), a histone methyltransferase, has recently been reported to be sensitive to early life trauma. Its role in BPD, especially in the context of ACE, remains to be elucidated. Methods: This study investigated DNAm patterns of PRDM8 in peripheral blood and saliva obtained from BPD patients undergoing Dialectic Behavioral Therapy (DBT) compared to healthy control (HC) participants. Associations with ACE and BPD symptom severity were assessed, and therapy-related changes in DNAm were examined. Results: At baseline, BPD patients demonstrated significant hypomethylation of PRDM8 in blood relative to the HC group. Following DBT, a nominally significant increase in DNAm was observed, aligning with inversely correlated symptom severity. No significant differences in saliva were detected. ACE was not associated with PRDM8 DNAm. Conclusions: Our findings suggest that PRDM8 DNAm might be associated with BPD and therapeutic intervention but not with ACE. Together with prior research, the results underscore the importance of future investigation of gene–environment interactions and the functional significance of PRDM8 regulation in the pathophysiology of BPD. Full article
(This article belongs to the Section Neuropsychiatry)
Show Figures

Figure 1

15 pages, 817 KB  
Article
Stable Gold@Polydopamine@ssDNA Bioconjugates for Highly Efficient Detection of Tumor-Related mRNA in Living Cells
by Senhao Hu, Wenjing Wang, Yu Zou, Chunmei Li, Hongyan Zou, Chengzhi Huang and Lei Zhan
Molecules 2025, 30(17), 3551; https://doi.org/10.3390/molecules30173551 - 29 Aug 2025
Abstract
The development of low-background, facile, and robust fluorescent nanoprobes for imaging and monitoring of intracellular mRNA changes remains a great challenge. Taking advantage of the high fluorescence quenching efficiency of core-shell gold@polydopamine (Au@PDA) nanocomposites and Ca2+-promoting DNA adsorption stability, a simple [...] Read more.
The development of low-background, facile, and robust fluorescent nanoprobes for imaging and monitoring of intracellular mRNA changes remains a great challenge. Taking advantage of the high fluorescence quenching efficiency of core-shell gold@polydopamine (Au@PDA) nanocomposites and Ca2+-promoting DNA adsorption stability, a simple and universal bioconjugate strategy was designed to a construct fluorescent nanoprobe for highly efficient tumor-related mRNA imaging. The fluorescence of Cy5-labeled DNA was quenched up to 92.38% by the AuNP and PDA via nanometal surface energy transfer (NSET) and photoinduced electron transfer (PET), respectively. TK1 mRNA, a biomarker of tumor growth, initiates hybridization and results in fluorescence recovery, which built the foundation for identifying the expression level changes in living cells. More importantly, three kinds of tumor-related mRNA (TK1 mRNA, GalNAc-T mRNA, and C-myc mRNA) can be detected simultaneously with different fluorophore-modified recognition sequences, which can avoid false positive signals and improve the reliability of cancer diagnostic, holding great promise for cancer diagnosis, prognosis, and therapy. Full article
25 pages, 1805 KB  
Systematic Review
An Epigenomic Meta-Analysis of Differentially Methylated Sites in Pre- and Post-Metabolic/Bariatric Surgery Adult Female Patients
by Agnieszka Lovett, Graham A. Hitman, Georgios K. Dimitriadis, Alice M. Murphy, Gyanendra Tripathi and Aparna Duggirala
Epigenomes 2025, 9(3), 32; https://doi.org/10.3390/epigenomes9030032 - 29 Aug 2025
Abstract
Background/Objectives: Metabolic/bariatric surgery is currently the most successful treatment for patients with obesity; however, a fifth of patients undergoing surgery may not lose enough weight to be considered successful. Recent studies have shown that bariatric/metabolic surgery alters the epigenome and may explain postoperative [...] Read more.
Background/Objectives: Metabolic/bariatric surgery is currently the most successful treatment for patients with obesity; however, a fifth of patients undergoing surgery may not lose enough weight to be considered successful. Recent studies have shown that bariatric/metabolic surgery alters the epigenome and may explain postoperative improvements in metabolic health. The primary objective is to consolidate published differentially methylated CpG sites in pre- and post-metabolic/bariatric surgery female patients and associate them with the respective genes and pathways. Methods: This systematic review adhered to the PRISMA-P guidelines and was registered with the PROSPERO (CRD42023421852). Following an initial screening of 541 studies using COVIDENCE, six studies were selected, comprising three epigenome-wide association studies (EWAS) and three candidate gene methylation studies. The published studies collected DNA samples from female patients with obesity before and after surgery (3 months, 6 months, 9–31 months, and 2 years). KEGG pathway analysis was performed on genes where the extracted CpG sites were located. Results: The meta-analysis showed that 11,456 CpG sites are differentially methylated after a successful weight loss surgery, with 109 sites mapped to genes involved in key metabolic pathways, including FoxO, mTOR, insulin, cAMP, adipocytokine, Toll-like receptor, and PI3K-Akt. Conclusion: The highlighted differentially methylated CpG sites can be further used to predict the molecular signature associated with successful metabolic/bariatric surgery. Full article
17 pages, 613 KB  
Article
Assessment of Antioxidant Activity and Dose-Dependent Effect on Genotoxicity/Antigenotoxicity of Pulmonaria officinalis Ethanolic Extract
by Ana Ignjatijević, Tamara Anđić, Marija Lješević, Biljana Nikolić, Tea Ganić, Stefana Spasović and Stefana Vuletić
Pharmaceutics 2025, 17(9), 1134; https://doi.org/10.3390/pharmaceutics17091134 (registering DOI) - 29 Aug 2025
Abstract
Background/Objectives: Pulmonaria officinalis L., commonly known as lungwort, is a medicinal plant traditionally used for respiratory ailments, but its biological activities have not yet been sufficiently researched. The aim of this study was to investigate the antioxidant and dose-dependent genotoxic/antigenotoxic properties of [...] Read more.
Background/Objectives: Pulmonaria officinalis L., commonly known as lungwort, is a medicinal plant traditionally used for respiratory ailments, but its biological activities have not yet been sufficiently researched. The aim of this study was to investigate the antioxidant and dose-dependent genotoxic/antigenotoxic properties of a 70% ethanolic extract. Methods: Quantification of polyphenols and GC–MS analysis were performed in order to chemically characterize the extract. Antioxidant activity was evaluated through DPPH, PFRAP, total antioxidant capacity (TAC), and ferrous ion chelating assay (FIC). MTT and alkaline comet assay were used for investigation of cytotoxicity and geno/antigenotoxicity on normal fetal fibroblast cells (MRC-5). Results: The chemical analysis of the extract showed that the extract is rich in polyphenolics and that phytol is the most abundant compound, accompanied by terpenoids, fatty acids, alcohols, polyketides, and alkaloids. In addition, notable antioxidant capacity was detected in all tests applied. The extract reduced cell viability only at the highest concentration tested (33.7%). Furthermore, a dual dose-dependent effect was recorded since the genotoxic effect of the tested extract was observed at higher concentrations, while non-genotoxic concentrations showed protective effects against oxidative damage of DNA. Namely, pretreatment with lungwort extract reduced the DNA damage induced by H2O2, with the highest protective effect at the lowest tested concentration, indicating a hormetic mode of action. Conclusions: These results provide a solid foundation for future research into this medicinal plant, with the aim of its potential therapeutic use in the prevention of diseases associated with oxidative stress. Full article
(This article belongs to the Section Biopharmaceutics)
14 pages, 1689 KB  
Article
Crossing Barriers: PEGylated Gold Nanoparticles as Promising Delivery Vehicles for siRNA Delivery in Alzheimer’s Disease
by Elżbieta Okła, Marcin Hołota, Sylwia Michlewska, Serafin Zawadzki, Katarzyna Miłowska, Javier Sánchez-Nieves, Rafael Gómez, Francisco Javier De la Mata, Maria Bryszewska and Maksim Ionov
Biomedicines 2025, 13(9), 2108; https://doi.org/10.3390/biomedicines13092108 - 29 Aug 2025
Abstract
Background: The proportion of people suffering from neurodegenerative conditions, such as Alzheimer’s disease (AD), is increasing in the population year on year. Despite the constant effort of researchers, these conditions remain incurable and can only be managed by alleviation or delaying of [...] Read more.
Background: The proportion of people suffering from neurodegenerative conditions, such as Alzheimer’s disease (AD), is increasing in the population year on year. Despite the constant effort of researchers, these conditions remain incurable and can only be managed by alleviation or delaying of symptoms. The lack of suitable treatment is caused by constricted access to the brain, limited by the brain-blood barrier. The aim of this work was to investigate two pegylated gold nanoparticles as potential carriers of therapeutic siRNA and their impact on the cellular functions of Human Brain Endothelial Cells. Methods and Results: Nanoparticles AuNP14a and AuNP14b complexed with siRNA were internalized by HBEC-5i cells and located in the cytoplasm. The genotoxicity assay proved that the nucleus was not affected and complexed nanoparticles did not cause DNA damage. The reactive oxygen species formation and mitochondrial membrane potential changes were measured and showed an adaptive response of cells after compound administration. Results obtained in a cytotoxicity assay conducted on astrocytes and pericytes, which are components of the blood–brain barrier, confirmed the biosafety of tested nanoparticles. Conclusions: In summary, it was shown that AuNP14a and AuNP14b are promising candidates as nanocarriers for therapeutic nucleic acids through biological barriers. Full article
(This article belongs to the Special Issue Recent Advances in Targeted Drug Delivery Systems)
Show Figures

Figure 1

35 pages, 938 KB  
Review
Dynamics and Malleability of Plant DNA Methylation During Abiotic Stresses
by Niraj Lodhi and Rakesh Srivastava
Epigenomes 2025, 9(3), 31; https://doi.org/10.3390/epigenomes9030031 - 29 Aug 2025
Viewed by 29
Abstract
Epigenetic regulation, particularly DNA methylation, plays a crucial role in plant adaptation to environmental stresses by modulating gene expression without altering the underlying DNA sequence. In response to major abiotic stresses such as salinity, drought, heat, cold, and heavy metal toxicity, plants undergo [...] Read more.
Epigenetic regulation, particularly DNA methylation, plays a crucial role in plant adaptation to environmental stresses by modulating gene expression without altering the underlying DNA sequence. In response to major abiotic stresses such as salinity, drought, heat, cold, and heavy metal toxicity, plants undergo dynamic changes in DNA methylation patterns. These modifications are orchestrated by DNA methyltransferases and demethylases with variations depending on plant species, genetic background, and ontogenic phase. DNA methylation affects the expression of key genes involved in cellular, physiological, and metabolic processes essential for stress tolerance. Furthermore, it contributes to the establishment of stress memory, which can be transmitted across generations, thereby enhancing long-term plant resilience. The interaction of DNA methylation with other epigenetic mechanisms, including histone modifications, small RNAs, and chromatin remodeling, adds layers of regulatory complexity. Recent discoveries concerning N6-methyladenine have opened new avenues for understanding the epigenetic landscape in plant responses to abiotic stress. Overall, this review addresses the central role of DNA methylation in regulating plant stress responses and emphasizes its potential for application in crop improvement through epigenetic and advanced biotechnological approaches. Full article
(This article belongs to the Collection Epigenetic Control in Plants)
Show Figures

Figure 1

17 pages, 767 KB  
Systematic Review
Prognostic Value of Circulating Tumor DNA in HR+/HER2− Stage I–III Breast Cancer: A Systematic Review
by Ismail Ajjawi, Mariya Rozenblit, Alejandro Rios-Hoyo and Maryam B. Lustberg
Cancers 2025, 17(17), 2831; https://doi.org/10.3390/cancers17172831 - 29 Aug 2025
Viewed by 25
Abstract
Background: Hormone receptor-positive (HR+), HER2-negative breast cancer accounts for the majority of breast cancer diagnoses. While outcomes have improved with neoadjuvant and adjuvant therapies, the risk of late recurrence persists, and there remains a critical need for reliable biomarkers to guide prognosis [...] Read more.
Background: Hormone receptor-positive (HR+), HER2-negative breast cancer accounts for the majority of breast cancer diagnoses. While outcomes have improved with neoadjuvant and adjuvant therapies, the risk of late recurrence persists, and there remains a critical need for reliable biomarkers to guide prognosis and post-treatment surveillance. Circulating tumor DNA (ctDNA), detectable via liquid biopsy, has emerged as a promising tool for monitoring minimal residual disease and predicting survival outcomes. This systematic review evaluates the association between ctDNA detection during neoadjuvant or adjuvant treatment and survival outcomes in early-stage HR+/HER2− breast cancer. Methods: This systematic review was conducted in accordance with PRISMA guidelines. A comprehensive literature search of Ovid MEDLINE and Embase was conducted to identify studies published through 3 May 2024 that evaluated ctDNA as a prognostic biomarker in stage I–III HR+/HER2− breast cancer. We included studies reporting recurrence-free survival, invasive disease-free survival, or overall survival and excluded non-original studies, conference abstracts, and non-English articles. Data extraction and qualitative synthesis were performed, and the risk of bias was qualitatively assessed across studies. No review protocol was registered. Results: Eleven studies comprising 1644 patients met the inclusion criteria. In the neoadjuvant setting, ctDNA positivity prior to treatment initiation was associated with inferior survival outcomes. In the adjuvant setting, detection of ctDNA during or after treatment was consistently linked to poorer recurrence-free and invasive disease-free survival. Across studies, ctDNA detection was a significant negative prognostic marker. Conclusions: This systematic review supports the prognostic value of ctDNA in HR+/HER2− early-stage breast cancer. Limitations include small sample sizes, observational study designs, and heterogeneity in ctDNA assays. Standardization of ctDNA testing methods and further prospective trials are needed to validate its clinical utility and explore its potential role in guiding therapeutic interventions. Full article
(This article belongs to the Special Issue Liquid Biopsy in Breast Cancer (2nd Edition))
Show Figures

Figure 1

14 pages, 3168 KB  
Article
Development of SNP-LAMP Combined with Lateral Flow Dipstick to Detect the S531L rpoB Gene Mutation in Rifampicin-Resistant Mycobacterium tuberculosis
by Jutturong Ckumdee, Monpat Chamnanphom, Supaporn Wiwattanakul, Somchai Santiwatanakul, Kwanchai Onruang and Thongchai Kaewphinit
Diagnostics 2025, 15(17), 2183; https://doi.org/10.3390/diagnostics15172183 - 28 Aug 2025
Viewed by 98
Abstract
Background: Tuberculosis (TB) remains a primary global health concern, despite the widespread availability of effective chemotherapeutic interventions. The emergence and dissemination of drug-resistant strains of Mycobacterium tuberculosis, particularly those exhibiting resistance to rifampicin, present significant obstacles to the success of TB control [...] Read more.
Background: Tuberculosis (TB) remains a primary global health concern, despite the widespread availability of effective chemotherapeutic interventions. The emergence and dissemination of drug-resistant strains of Mycobacterium tuberculosis, particularly those exhibiting resistance to rifampicin, present significant obstacles to the success of TB control programs. Consequently, there is an urgent need for rapid, sensitive, and specific molecular diagnostic tools to inform timely clinical decision-making and reduce the transmission of disease. Loop-mediated isothermal amplification (LAMP) has gained attention as a promising alternative to conventional polymerase chain reaction (PCR) techniques. This method, which facilitates DNA amplification under constant temperature conditions, offers advantages including high specificity, rapid turnaround time, and operational simplicity—features that render it especially suitable for implementation in resource-limited settings. Methods: In this study, a LAMP assay targeting the rpoB gene was developed, with particular focus on detecting the codon 531 C→T mutation associated with rifampicin resistance. A set of four to six primers was designed to recognize six distinct regions of the target sequence. Allele-specific amplification was achieved by incorporating a deliberate single nucleotide mismatch at the 3′ terminus of the B2 primer to enable precise discrimination between wild-type and mutant alleles. The assay was conducted at an optimized temperature of 61 °C for 60 min, followed by visual detection using a lateral flow dipstick (LFD) within five minutes. Results: The LAMP-LFD assay demonstrated 100% concordance with drug susceptibility testing (DST) and DNA sequencing. No cross-reactivity with wild-type strains was observed, underscoring the assay’s high specificity. Conclusions: This platform offers a robust, field-deployable solution for detecting the codon 531 C→T mutation associated with rifampicin resistance in low-resource settings. Full article
Show Figures

Figure 1

13 pages, 1164 KB  
Article
The Association of Human Parvovirus B19 Infection on the Course of Vietnamese Patients with Rheumatoid Arthritis
by Trieu Van Manh, Mai Ly Thi Nguyen, Ngo Thu Hang, Ngo Truong Giang, Can Van Mao, Luu Thi Binh, Nguy Thi Diep, Bui Tien Sy, Tran Thi Thanh Huyen, Vu Nhi Ha, Le Duy Cuong, Khac Cuong Bui, Hoang Van Tong and Nguyen Linh Toan
Medicina 2025, 61(9), 1546; https://doi.org/10.3390/medicina61091546 - 28 Aug 2025
Viewed by 234
Abstract
Background and Objectives: Rheumatoid arthritis (RA) is a systemic autoimmune inflammatory disease, and progressive arthritis is its primary clinical manifestation. The role of human parvovirus B19 (B19V) infection in the progression of RA remains unclear. This study aims to investigate the association [...] Read more.
Background and Objectives: Rheumatoid arthritis (RA) is a systemic autoimmune inflammatory disease, and progressive arthritis is its primary clinical manifestation. The role of human parvovirus B19 (B19V) infection in the progression of RA remains unclear. This study aims to investigate the association between B19V infection and viral genetic distribution in Vietnamese RA patients. Materials and Methods: 115 Vietnamese RA patients and 86 healthy controls (HCs) were enrolled in this observational study at the Thai Nguyen National Hospital from January 2019 to December 2021. B19V DNA was examined in serum and synovial fluid samples from RA patients using nested PCR and real-time PCR. B19V antibodies were detected in serum samples using ELISA. Results: B19V DNA was detected in the serum of 2 out of 115 (1.74%) RA patients but not in any HCs. Interestingly, B19V DNA was present in 12 out of 68 (17.65%) RA patients with knee effusion in their synovial fluid. Anti-B19V-IgG and anti-B19V-IgM were detected in the serum of 42.61% and 2.61% of RA patients, respectively, and in 24.42% and 12.79% of HCs, respectively. Anti-B19V-IgG levels were significantly higher in the serum of RA patients than in the serum of HCs (p = 0.007). However, anti-B19V-IgM was more commonly detected in HC serum than in RA patient serum (p = 0.006). Phylogenetic analysis showed that all B19V strains belonged to genotype 1 and subgenotype 1A. Conclusions: B19V infection is frequent in RA patients and suggests a contribution of B19V to the progression of RA, particularly in a B19V genotype-1- and subgenotype-1A-dependent manner and emphasises the need for early detection and management of B19V infection in RA patients. Full article
(This article belongs to the Section Hematology and Immunology)
Show Figures

Figure 1

14 pages, 3164 KB  
Article
Chloroplast Genome Evolution and Codon Usage In the Medicinal Plant Pothos chinensis (Araceae)
by Hua Chen and Jisi Zhang
Genes 2025, 16(9), 1017; https://doi.org/10.3390/genes16091017 - 28 Aug 2025
Viewed by 193
Abstract
Background/Objectives: Pothos chinensis is commonly used as traditional medicine in China and India. Codon usage analysis is a good way to understand plants’ evolution. However, there is no report about the codon usage bias of chloroplast genomes in P. chinensis. Methods: In [...] Read more.
Background/Objectives: Pothos chinensis is commonly used as traditional medicine in China and India. Codon usage analysis is a good way to understand plants’ evolution. However, there is no report about the codon usage bias of chloroplast genomes in P. chinensis. Methods: In this study, the chloroplast genome of the medicinal plant P. chinensis was newly obtained. Comparative analyses, DNA barcoding investigation, codon usage bias, and phylogenetic reconstruction were conducted to reveal the chloroplast genome characteristics of P. chinensis. Results: The length of the chloroplast genome of P. chinensis was 165,165 bp. A total of 134 genes were annotated, i.e., 90 protein-coding genes, 36 transfer RNA genes, and eight ribosomal RNA genes. Compared to its sister group Anthurium andraeanum, the length of the large single-copy region (LSC) had been expanded, while the small single-copy region (SSC) had been contracted. Within P. chinensis and P. scandens there were no obvious differences in the length of LSC, SSC, and two inverted repeat regions. Based on Pi values, seven hypervariable regions of whole plastomes were identified. The analysis of codons showed that an average frequency of the 50 candidate genes was 35.30%, and these genes preferred A/U-ending codons. The average effective number of codon (ENC) value was 45.49, which indicated weak codon usage bias. ENCs had a highly significant positive correlation with GC3. Fourteen optimal codons had been identified, 11 of which ended with A/U. The results of the neutrality plot, ENC-plot, and PR2-plot analysis indicated that natural selection might have a significant impact on codon usage patterns. Conclusions: Taken together, our study unraveled the codon usage patterns in P. chinensis and provided valuable genetic information for the genus Pothos. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

13 pages, 810 KB  
Article
Optimization of 16S RNA Sequencing and Evaluation of Metagenomic Analysis with Kraken 2 and KrakenUniq
by Nasserdine Papa Mze, Cécile Fernand-Laurent, Sonnentrucker Maxence, Olfa Zanzouri, Solen Daugabel and Stéphanie Marque Juillet
Diagnostics 2025, 15(17), 2175; https://doi.org/10.3390/diagnostics15172175 - 27 Aug 2025
Viewed by 568
Abstract
Background/Objectives: 16S ribosomal RNA sequencing has, for several years, been the main means of identifying bacterial and archaeal species. Low-throughput Sanger sequencing is often used for the detection and identification of microbial species, but this technique has several limitations. The use of [...] Read more.
Background/Objectives: 16S ribosomal RNA sequencing has, for several years, been the main means of identifying bacterial and archaeal species. Low-throughput Sanger sequencing is often used for the detection and identification of microbial species, but this technique has several limitations. The use of high-throughput sequencers may be a good alternative to improve patient identification, especially for polyclonal infections and management. Kraken 2 and KrakenUniq are free, high-throughput tools providing a very rapid and accurate classification for metagenomic analyses. However, Kraken 2 can present false-positive results relative to KrakenUniq, which can be limiting in hospital settings requiring high levels of accuracy. The aim of this study was to establish an alternative next-generation sequencing technique to replace Sanger sequencing and to confirm that KrakenUniq is an excellent analysis tool that does not present false results relative to Kraken 2. Methods: DNA was extracted from reference bacterial samples for Laboratory Quality Controls (QCMDs) and the V2-V3 and V3-V4 regions of the 16S ribosomal gene were amplified. Amplified products were sequenced with the Illumina 16S Metagenomic Sequencing protocol with minor modifications to adapt and sequence an Illumina 16S library with a small 500-cycle nano-flow cell. The raw files (Fastq) were analyzed on a commercial Smartgene platform for comparison with Kraken 2 and KrakenUniq results. KrakenUniq was used with a standard bacterial database and with the 16S-specific Silva138, RDP11.5, and Greengenes 13.5 databases. Results: Seven of the eight (87.5%) QCMDs were correctly sequenced and identified by Sanger sequencing. The remaining QCMD, QCMD6, could not be identified through Sanger sequencing. All QCMDs were correctly sequenced and identified by MiSeq with the commercial Smartgene analysis platform. QCMD6 contained two bacteria, Acinetobacter and Klebsiella. KrakenUniq identification results were identical to those of Smartgene, whereas Kraken 2 yielded 25% false-positive results. Conclusions: If Sanger identification fails, MiSeq with a small nano-flow cell is a very good alternative for the identification of bacterial species. KrakenUniq is a free, fast, and easy-to-use tool for identifying and classifying bacterial infections. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

11 pages, 838 KB  
Article
Evaluating Clinical Factors Including HPV Clearance on Survival Outcomes in HPV+ Oropharyngeal Carcinoma
by Amanda Reyes, Sean Maroongroge, Michelle Afkhami, Victoria Villaflor, Arya Amini, Sagus Sampath, Ellie Maghami, Thomas Gernon, Krupal Patel, Xiaochen Li and Aditya Shreenivas
Cancers 2025, 17(17), 2802; https://doi.org/10.3390/cancers17172802 - 27 Aug 2025
Viewed by 277
Abstract
Background: The relationship between detectable circulating tumor DNA levels and clinical outcome following definitive therapy in patients with human papillomavirus (HPV)-mediated oropharyngeal squamous cell carcinoma has not been well established. Methods: In this retrospective analysis of patients with HPV-positive oropharyngeal squamous cell carcinoma [...] Read more.
Background: The relationship between detectable circulating tumor DNA levels and clinical outcome following definitive therapy in patients with human papillomavirus (HPV)-mediated oropharyngeal squamous cell carcinoma has not been well established. Methods: In this retrospective analysis of patients with HPV-positive oropharyngeal squamous cell carcinoma seen from 2016 to 2024 at a single institution, 88 patients met inclusion criteria with baseline-positive tumor tissue-modified viral HPV DNA (TTMV-HPV DNA) testing and post-treatment testing performed. Results: Of the 88 patients included in the survival analysis, 77 had undetectable tumor tissue-modified viral human papillomavirus DNA after treatment, while 11 had positive (detectable) tumor tissue-modified viral human papillomavirus DNA. TTMV-HPV DNA positivity after treatment was associated with worse 1-year and 2-year overall survival outcomes, at 63.5% (37.7–100, p = 0.022) and 50.8% (25.7–100, p = 0.017) compared to 100% and 96.4% (91.6–100, p = 0.017) in patients with undetectable TTMV-HPV DNA. Inability to clear TTMV-HPV DNA after treatment was associated with worse progression-free survival, at 45.0% (95% CI 21.8–92.7, p = 0.009) at 1 year and 11.3% (95% CI 1.8–71.2, p = <0.001) at 2 years compared to 93% (95% CI 87.3–99.1) and 84.7% (95% CI, 76.3–94.0) in patients with cleared TTMV-HPV DNA after treatment. Conclusion: Tumor tissue-modified viral human papillomavirus DNA positivity after definitive treatment was associated with worse survival and disease recurrence outcomes compared to that in patients with undetectable post-treatment TTMV-HPV DNA. Prospective studies are warranted to further establish the clinical utility of TTMV-HPV DNA testing and its use in surveillance, treatment intensification, or de-intensification. Full article
(This article belongs to the Section Cancer Survivorship and Quality of Life)
Show Figures

Figure 1

Back to TopTop