Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = balloon-borne sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7112 KB  
Article
Azimuth Control of Near-Space Balloon-Borne Gondola Based on Simplified Decoupling Mechanism and Reaction Wheel
by Yijian Li, Jianghua Zhou and Xiaojun Zhang
Aerospace 2025, 12(10), 874; https://doi.org/10.3390/aerospace12100874 - 28 Sep 2025
Abstract
During the suspension flight of high-altitude scientific balloons in near-space, they are highly vulnerable to time-varying wind field disturbances, which tend to excite multiple distinctive torsional modes of the balloons themselves, thereby interfering with the observations of balloon-borne equipment. Focusing on the azimuth [...] Read more.
During the suspension flight of high-altitude scientific balloons in near-space, they are highly vulnerable to time-varying wind field disturbances, which tend to excite multiple distinctive torsional modes of the balloons themselves, thereby interfering with the observations of balloon-borne equipment. Focusing on the azimuth control of the balloon-borne gondola, this paper designs a simplified decoupling mechanism and a reaction wheel as actuators. Specifically, the reaction wheel achieves azimuth tracking through angular momentum exchange, while the simplified decoupling mechanism performs the functions of decoupling and unloading. To fully utilize the control performance of the actuating structure, this paper further proposes a control algorithm based on a nonlinear differential tracker and neural network PID. Simulation results demonstrate that under typical wind disturbances and sensor noise conditions, the proposed system exhibits excellent smoothness and high-precision and stable control performance. This research provides a significant basis for stable observation platforms in precise near-space observation missions. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

31 pages, 7404 KB  
Article
Multi-Stage Coordinated Azimuth Control for High-Precision Balloon-Borne Astronomical Platforms
by Yulang Cui, Jianghua Zhou, Yijian Li, Wanning Huang and Yongqi Liu
Aerospace 2025, 12(9), 821; https://doi.org/10.3390/aerospace12090821 - 11 Sep 2025
Viewed by 322
Abstract
This study investigates multi-level coupled dynamic issues in near-space balloon-borne astronomical observation platforms subjected to multi-source disturbances, proposing an integrated azimuth pointing control scheme combining unified modeling with composite control strategies. A nonlinear dynamic model is established to characterize inertial coupling effects between [...] Read more.
This study investigates multi-level coupled dynamic issues in near-space balloon-borne astronomical observation platforms subjected to multi-source disturbances, proposing an integrated azimuth pointing control scheme combining unified modeling with composite control strategies. A nonlinear dynamic model is established to characterize inertial coupling effects between the gondola system and secondary gimbal platform. The velocity-loop feedback mechanism utilizing fiber-optic gyroscopes achieves base disturbance decoupling, while an adaptive fuzzy PID controller enhances position-loop disturbance rejection capabilities. A gain adaptation strategy coordinates hierarchical control dynamics, complemented by anti-windup constraints safeguarding actuator operational boundaries. Simulation verifications confirm the exceptional high-precision pointing capability and robust stability under representative wind disturbances and sensor noise conditions. The system maintains a superior control performance across parameter perturbation scenarios, demonstrating consistent operational reliability. This study provides an innovative technical paradigm for precision observation missions in near space. Full article
Show Figures

Figure 1

19 pages, 10991 KB  
Review
Use of Silicon Photomultipliers in the Detectors of the JEM-EUSO Program
by Francesca Bisconti
Instruments 2023, 7(4), 55; https://doi.org/10.3390/instruments7040055 - 14 Dec 2023
Cited by 2 | Viewed by 2281
Abstract
The JEM-EUSO program aims to study ultra-high energy cosmic rays from space. To achieve this goal, it has realized a series of experiments installed on the ground (EUSO-TA), various on stratospheric balloons (with the most recent one EUSO-SPB2), and inside the International Space [...] Read more.
The JEM-EUSO program aims to study ultra-high energy cosmic rays from space. To achieve this goal, it has realized a series of experiments installed on the ground (EUSO-TA), various on stratospheric balloons (with the most recent one EUSO-SPB2), and inside the International Space Station (Mini-EUSO), in light of future missions such as K-EUSO and POEMMA. At nighttime, these instruments aim to monitor the Earth’s atmosphere measuring fluorescence and Cherenkov light produced by extensive air showers generated both by very high-energy cosmic rays from outside the atmosphere and by neutrino decays. As the two light components differ in duration (order of microseconds for fluorescence light and a few nanoseconds for Cherenkov light) they each require specialized sensors and acquisition electronics. So far, the sensors used for the fluorescence camera are the Multi-Anode Photomultiplier Tubes (MAPMTs), while for the Cherenkov one, new systems based on Silicon PhotoMultipliers (SiPMs) have been developed. In this contribution, a brief review of the experiments is followed by a discussion of the tests performed on the optical sensors. Particular attention is paid to the development, test, and calibration conducted on SiPMs, also in view to optimize the geometry, mass, and weight in light of the installation of mass-critical applications such as balloon- and space-borne instrumentation. Full article
Show Figures

Figure 1

17 pages, 6118 KB  
Article
UAV Atmosphere Sounding for Rocket Launch Support
by Karol Piotr Bęben, Tomasz Noga, Dawid Cieśliński, Dawid Kulpa and Marcin Ryszard Spiralski
Sensors 2023, 23(24), 9639; https://doi.org/10.3390/s23249639 - 5 Dec 2023
Cited by 1 | Viewed by 2597
Abstract
One of the crucial branches of activity at the Łukasiewicz Research Network—Institute of Aviation is developing a suborbital rocket vehicle capable of launching small payloads beyond the Earth’s atmosphere, reaching over 100 km in altitude. Ensuring safety is a primary concern, particularly given [...] Read more.
One of the crucial branches of activity at the Łukasiewicz Research Network—Institute of Aviation is developing a suborbital rocket vehicle capable of launching small payloads beyond the Earth’s atmosphere, reaching over 100 km in altitude. Ensuring safety is a primary concern, particularly given the finite flight zone and impact area. Crucial to safety analysis is the wind profile, especially in the very first seconds of a flight, when rocket velocity is of the same order as the wind speed. Traditional near-ground wind data sources, ranging from wind towers to numerical models of the atmosphere, have limitations. Wind towers are costly and unfeasible at many test ranges used for launches, while numerical modeling may not reflect the specific ground profile near the launcher due to their large cell size (2 to +10 km). Meteorological balloons are not favorable for such measurements as they aim to provide the launch operator with a wind profile at high altitudes, and are launched only 1–2 times per flight attempt. Our study sought to prototype a wind measurement system designed to acquire near-ground wind profile data. It focuses on measuring wind direction and speed at near-ground altitudes with higher flight frequency, offering data on demand shortly before launch to help ensure safety. This atmosphere sounding system consists of an Unmanned Aerial Vehicle (UAV) equipped with an onboard ultrasonic wind sensor. Some reports in the literature have discussed the possibility of using UAV-borne anemometers, but the topic of measurement errors introduced by placing the anemometer onboard an UAV remains under studied. Limited research in this area underlines the need for experimental validation of design choices–for specific types of UAVs, anemometers, and mounting. This paper presents a literature review, a detailed overview of the prototyped system, and flight test results in both natural (outdoor) and controlled (indoor, no wind) conditions. Data from the UAV system’s anemometer was benchmarked against a stationary reference weather station, in order to examine the influence of the UAV’s rotor on the anemometer readings. Our findings show a wind speed Root Mean Square Error (RMSE) of 5 m/s and a directional RMSE of below 5.3° (both averaged for 1 min). The results were also compared with similar UAV-based wind measurements. The prototyped system was successfully used in a suborbital rocket launch campaign, thus demonstrating the feasibility of integrating UAVs with dedicated sensors for performing regular meteorological measurements in automatic mode. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

6 pages, 3978 KB  
Proceeding Paper
Novel Measurements of Desert Dust Electrical Properties: A Multi-Instrument Approach during the ASKOS 2022 Campaign
by Sotirios Mallios, Vassiliki Daskalopoulou, Vasileios Spanakis-Misirlis, George Hloupis and Vassilis Amiridis
Environ. Sci. Proc. 2023, 26(1), 22; https://doi.org/10.3390/environsciproc2023026022 - 23 Aug 2023
Viewed by 787
Abstract
Synergetic measurements of the vertical atmospheric field and the total charge density in the presence of dust events are presented through the launches of balloon-borne instrumentation, including a MiniMill electrometer and a space charge sensor, under dust events during the AEOLUS Cal/Val campaign [...] Read more.
Synergetic measurements of the vertical atmospheric field and the total charge density in the presence of dust events are presented through the launches of balloon-borne instrumentation, including a MiniMill electrometer and a space charge sensor, under dust events during the AEOLUS Cal/Val campaign of ASKOS in Cabo Verde, in June/September 2022. The electric field profiling measurements obtained by different instrumentations are compared, and the near-ground observations are evaluated with a reference ground-based fieldmill electrometer. Moreover, their performance is assessed by utilizing measurements of the co-located Polly XT lidar and its extracted products above the launching site. Full article
Show Figures

Figure 1

23 pages, 6362 KB  
Article
In Situ VTOL Drone-Borne Observations of Temperature and Relative Humidity over Dome C, Antarctica
by Philippe Ricaud, Patrice Medina, Pierre Durand, Jean-Luc Attié, Eric Bazile, Paolo Grigioni, Massimo Del Guasta and Benji Pauly
Drones 2023, 7(8), 532; https://doi.org/10.3390/drones7080532 - 15 Aug 2023
Cited by 4 | Viewed by 2981
Abstract
The Antarctic atmosphere is rapidly changing, but there are few observations available in the interior of the continent to quantify this change due to few ground stations and satellite measurements. The Concordia station is located on the East Antarctic Plateau (75° S, 123° [...] Read more.
The Antarctic atmosphere is rapidly changing, but there are few observations available in the interior of the continent to quantify this change due to few ground stations and satellite measurements. The Concordia station is located on the East Antarctic Plateau (75° S, 123° E, 3233 m above mean sea level), one of the driest and coldest places on Earth. Several remote sensing instruments are available at the station to probe the atmosphere, together with operational meteorological sensors. In order to observe in situ clouds, temperature, relative humidity and supercooled liquid water (SLW) at a high vertical resolution, a new project based on the use of an unmanned aerial vehicle (drone) vertical take-off and landing from the DeltaQuad Company has been set up at Concordia. A standard Vaisala pressure, temperature and relative humidity sensor was installed aboard the drone coupled to an Anasphere SLW sensor. A total of thirteen flights were conducted from 24 December 2022 to 17 January 2023: nine technology flights and four science flights (on 2, 10, 11 and 13 January 2023). Drone-based temperature and relative humidity profiles were compared to (1) the balloon-borne meteorological observations at 12:00 UTC, (2) the ground-based microwave radiometer HAMSTRAD and (3) the outputs from the numerical weather prediction models ARPEGE and AROME. No SLW clouds were present during the period of observations. Despite technical issues with drone operation due to the harsh environments encountered (altitude, temperature and geomagnetic field), the drone-based observations were consistent with the balloon-borne observations of temperature and relative humidity. The radiometer showed a systematic negative bias in temperature of 2 °C, and the two models were, in the lowermost troposphere, systematically warmer (by 2–4 °C) and moister (by 10–30%) than the drone-based observations. Our study shows the great potential of a drone to probe the Antarctic atmosphere in situ at very high vertical resolution (a few meters). Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicles in Atmospheric Research)
Show Figures

Figure 1

19 pages, 6533 KB  
Article
Isolating the Source Region of Infrasound Travel Time Variability Using Acoustic Sensors on High-Altitude Balloons
by Elizabeth A. Silber and Daniel C. Bowman
Remote Sens. 2023, 15(14), 3661; https://doi.org/10.3390/rs15143661 - 22 Jul 2023
Cited by 2 | Viewed by 1794
Abstract
High-altitude balloons carrying infrasound sensor payloads can be leveraged toward monitoring efforts to provide some advantages over other sensing modalities. On 10 July 2020, three sets of controlled surface explosions generated infrasound waves detected by a high-altitude floating sensor. One of the signal [...] Read more.
High-altitude balloons carrying infrasound sensor payloads can be leveraged toward monitoring efforts to provide some advantages over other sensing modalities. On 10 July 2020, three sets of controlled surface explosions generated infrasound waves detected by a high-altitude floating sensor. One of the signal arrivals, detected when the balloon was in the acoustic shadow zone, could not be predicted via propagation modeling using a model atmosphere. Considering that the balloon’s horizontal motion showed direct evidence of gravity waves, we examined their role in infrasound propagation. Implementation of gravity wave perturbations to the wind field explained the signal detection and aided in correctly predicting infrasound travel times. Our results show that the impact of gravity waves is negligible below 20 km altitude; however, their effect is important above that height. The results presented here demonstrate the utility of balloon-borne acoustic sensing toward constraining the source region of variability, as well as the relevance of complexities surrounding infrasound wave propagation at short ranges for elevated sensing platforms. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

18 pages, 3670 KB  
Article
Detection of the Large Surface Explosion Coupling Experiment by a Sparse Network of Balloon-Borne Infrasound Sensors
by Elizabeth A. Silber, Daniel C. Bowman and Miro Ronac Giannone
Remote Sens. 2023, 15(2), 542; https://doi.org/10.3390/rs15020542 - 16 Jan 2023
Cited by 13 | Viewed by 4403
Abstract
In recent years, high-altitude infrasound sensing has become more prolific, demonstrating an enormous value especially when utilized over regions inaccessible to traditional ground-based sensing. Similar to ground-based infrasound detectors, airborne sensors take advantage of the fact that impulsive atmospheric events such as explosions [...] Read more.
In recent years, high-altitude infrasound sensing has become more prolific, demonstrating an enormous value especially when utilized over regions inaccessible to traditional ground-based sensing. Similar to ground-based infrasound detectors, airborne sensors take advantage of the fact that impulsive atmospheric events such as explosions can generate low frequency acoustic waves, also known as infrasound. Due to negligible attenuation, infrasonic waves can travel over long distances, and provide important clues about their source. Here, we report infrasound detections of the Apollo detonation that was carried on 29 October 2020 as part of the Large Surface Explosion Coupling Experiment in Nevada, USA. Infrasound sensors attached to solar hot air balloons floating in the stratosphere detected the signals generated by the explosion at distances 170–210 km. Three distinct arrival phases seen in the signals are indicative of multipathing caused by the small-scale perturbations in the atmosphere. We also found that the local acoustic environment at these altitudes is more complex than previously thought. Full article
(This article belongs to the Special Issue Infrasound, Acoustic-Gravity Waves, and Atmospheric Dynamics)
Show Figures

Figure 1

21 pages, 4405 KB  
Article
A Concept for a Mars Boundary Layer Sounding Balloon: Science Case, Technical Concept and Deployment Risk Analysis
by Lars Witte, Gabriele Arnold, Jan Bertram, Matthias Grott, Caroline Krämer, Andreas Lorek and Torben Wippermann
Aerospace 2022, 9(3), 136; https://doi.org/10.3390/aerospace9030136 - 4 Mar 2022
Cited by 4 | Viewed by 4058
Abstract
The Mars Exploration Program Analysis Group has identified measurements of the state and the variability of the Martian atmosphere as high priority investigations for the upcoming years. Balloon-borne instruments could bridge the gap in both temporal and spatial resolution in mesoscale distances between [...] Read more.
The Mars Exploration Program Analysis Group has identified measurements of the state and the variability of the Martian atmosphere as high priority investigations for the upcoming years. Balloon-borne instruments could bridge the gap in both temporal and spatial resolution in mesoscale distances between local, stationary landers and global orbiter observations. The idea to use a balloon system for such a purpose is not new in essence and has been proposed already in past decades. While those concepts considered an aerial deployment during entry and descent, the concept outlined in this study revisits a launch off the payload deck of a lander from the Martian surface. This deployment option profits today mainly from the technological advance in micro-electronics and sensor miniaturization, which enables the design of a balloon-probe significantly smaller than earlier proposed systems. This paper presents the feasibility assessment for this instrument and gives further details on the scientific and operational concept, a strawman sensor suite, its system components and the associated size and budget estimates. It is complemented by the analysis scheme proposed to assess, manage and mitigate the deployment risk involved in automatically launching such a balloon-system off a planetary surface. Full article
(This article belongs to the Special Issue Innovative Space Mission Analysis and Design (Volume II))
Show Figures

Figure 1

12 pages, 11657 KB  
Technical Note
Impact of Using a New High-Resolution Solar Reference Spectrum on OMI Ozone Profile Retrievals
by Juseon Bak, Odele Coddington, Xiong Liu, Kelly Chance, Hyo-Jung Lee, Wonbae Jeon, Jae-Hwan Kim and Cheol-Hee Kim
Remote Sens. 2022, 14(1), 37; https://doi.org/10.3390/rs14010037 - 23 Dec 2021
Cited by 3 | Viewed by 4276
Abstract
We evaluated a new high-resolution solar reference spectrum for characterizing space-borne Ozone Monitoring Instrument (OMI) measurements as well as for retrieving ozone profile retrievals over the ultraviolet (UV) wavelength range from 270 to 330 nm. The SAO2010 solar reference has been a standard [...] Read more.
We evaluated a new high-resolution solar reference spectrum for characterizing space-borne Ozone Monitoring Instrument (OMI) measurements as well as for retrieving ozone profile retrievals over the ultraviolet (UV) wavelength range from 270 to 330 nm. The SAO2010 solar reference has been a standard for use in atmospheric trace gas retrievals, which is a composite of ground-based and balloon-based solar measurements from the Kitt Peak National Observatory (KPNO) and Air Force Geophysics Laboratory (AFGL), respectively. The new reference spectrum, called the TSIS-1 Hybrid Solar Reference Spectrum (HSRS), spans 202–2730 nm at a 0.01 to ~0.001 nm spectral resolution. The TSIS-1 HSRS in the UV region of interest in this study is a composite of AFGL and ground-based solar measurements from the Quality Assurance of Spectral Ultraviolet Measurements In Europe (QASUME) campaign, with a radiometric calibration that used the lower resolution Spectral Irradiance Monitor (SIM) instrument on the space-based Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) mission. The TSIS-1 HSRS radiometric uncertainties were below 1% whereas those of SAO2010 ranged from 5% in the longer UV part to 15% in the shorter UV part. In deriving slit functions and wavelength shifts from OMI solar irradiances, the resulting fitting residuals showed significant improvements of 0.5–0.7% (relatively, 20–50%) due to switching from the SAO2010 to the TSIS-1 HSRS. Correspondingly, in performing ozone profile retrievals from OMI radiances, the fitting residuals showed relative improvements of up to ~5% in 312–330 nm with relative differences of 5–7% in the tropospheric layer column ozone; the impact on stratospheric ozone retrievals was negligible. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

36 pages, 17798 KB  
Review
The Unmanned Systems Research Laboratory (USRL): A New Facility for UAV-Based Atmospheric Observations
by Maria Kezoudi, Christos Keleshis, Panayiota Antoniou, George Biskos, Murat Bronz, Christos Constantinides, Maximillien Desservettaz, Ru-Shan Gao, Joe Girdwood, Jonathan Harnetiaux, Konrad Kandler, Andreas Leonidou, Yunsong Liu, Jos Lelieveld, Franco Marenco, Nikos Mihalopoulos, Griša Močnik, Kimmo Neitola, Jean-Daniel Paris, Michael Pikridas, Roland Sarda-Esteve, Chris Stopford, Florin Unga, Mihalis Vrekoussis and Jean Sciareadd Show full author list remove Hide full author list
Atmosphere 2021, 12(8), 1042; https://doi.org/10.3390/atmos12081042 - 13 Aug 2021
Cited by 30 | Viewed by 9567
Abstract
The Unmanned Systems Research Laboratory (USRL) of the Cyprus Institute is a new mobile exploratory platform of the EU Research Infrastructure Aerosol, Clouds and Trace Gases Research InfraStructure (ACTRIS). USRL offers exclusive Unmanned Aerial Vehicle (UAV)-sensor solutions that can be deployed anywhere in [...] Read more.
The Unmanned Systems Research Laboratory (USRL) of the Cyprus Institute is a new mobile exploratory platform of the EU Research Infrastructure Aerosol, Clouds and Trace Gases Research InfraStructure (ACTRIS). USRL offers exclusive Unmanned Aerial Vehicle (UAV)-sensor solutions that can be deployed anywhere in Europe and beyond, e.g., during intensive field campaigns through a transnational access scheme in compliance with the drone regulation set by the European Union Aviation Safety Agency (EASA) for the research, innovation, and training. UAV sensor systems play a growing role in the portfolio of Earth observation systems. They can provide cost-effective, spatial in-situ atmospheric observations which are complementary to stationary observation networks. They also have strong potential for calibrating and validating remote-sensing sensors and retrieval algorithms, mapping close-to-the-ground emission point sources and dispersion plumes, and evaluating the performance of atmospheric models. They can provide unique information relevant to the short- and long-range transport of gas and aerosol pollutants, radiative forcing, cloud properties, emission factors and a variety of atmospheric parameters. Since its establishment in 2015, USRL is participating in major international research projects dedicated to (1) the better understanding of aerosol-cloud interactions, (2) the profiling of aerosol optical properties in different atmospheric environments, (3) the vertical distribution of air pollutants in and above the planetary boundary layer, (4) the validation of Aeolus satellite dust products by utilizing novel UAV-balloon-sensor systems, and (5) the chemical characterization of ship and stack emissions. A comprehensive overview of the new UAV-sensor systems developed by USRL and their field deployments is presented here. This paper aims to illustrate the strong scientific potential of UAV-borne measurements in the atmospheric sciences and the need for their integration in Earth observation networks. Full article
(This article belongs to the Special Issue Airborne Measurements of Atmospheric Aerosol)
Show Figures

Figure 1

16 pages, 50849 KB  
Article
Development and Deployment of Air-Launched Drifters from Small UAS
by Sara Swenson, Brian Argrow, Eric Frew, Steve Borenstein and Jason Keeler
Sensors 2019, 19(9), 2149; https://doi.org/10.3390/s19092149 - 9 May 2019
Cited by 7 | Viewed by 4461
Abstract
Supercell thunderstorms can form extremely dangerous and destructive tornadoes. While high fidelity supercell simulations have increased the understanding of supercell mechanics to help determine how and when tornadoes form, there is a lack of targeted, in situ measurements taken aboveground in supercells to [...] Read more.
Supercell thunderstorms can form extremely dangerous and destructive tornadoes. While high fidelity supercell simulations have increased the understanding of supercell mechanics to help determine how and when tornadoes form, there is a lack of targeted, in situ measurements taken aboveground in supercells to validate these simulations. Pseudo-Lagrangian drifters (PLDs) are atmospheric probes that can be used to attain thermodynamic measurements in areas that are difficult or dangerous to access, such as from within supercells. Of particular interest in understanding tornadogenesis is the rear-flank downdraft (RFD). However, strong outflow winds behind the rear-flank gust front (RFGF) make the RFD particularly difficult to access with balloon-borne sensors launched from the ground. A specific type of PLD, an air-launched drifter (ALD) that is released from unmanned aircraft systems (UAS), can be used to access RFD inflows, present at higher altitudes. Results from initial tests of ALDs are shown, along with results from a ground-released PLD test during a supercell intercept in the Oklahoma Panhandle on 12 June 2018. In characterization tests performed at the 2018 International Society for Atmospheric Research using Remotely piloted Aircraft (ISARRA) flight week, it was found that the ALD sensor system performs reasonably well against industry standards. However, improvements will be made to increase the aspiration of the sensor. Full article
(This article belongs to the Special Issue Application of Unmanned Aircraft Systems for Atmospheric Science)
Show Figures

Figure 1

15 pages, 4184 KB  
Article
Observations of Turbulence in Free Atmosphere by Balloon-Borne Sensors
by Lesong Zhou, Zheng Sheng and Qixiang Liao
Sensors 2018, 18(10), 3273; https://doi.org/10.3390/s18103273 - 28 Sep 2018
Cited by 8 | Viewed by 2745
Abstract
In recent years, Thorpe analysis has been used to retrieve the characteristics of turbulence in free atmosphere from balloon-borne sensor data. However, previous studies have mainly focused on the mid-high latitude region, and this method is still rarely applied at heights above 30 [...] Read more.
In recent years, Thorpe analysis has been used to retrieve the characteristics of turbulence in free atmosphere from balloon-borne sensor data. However, previous studies have mainly focused on the mid-high latitude region, and this method is still rarely applied at heights above 30 km, especially above 35 km. Therefore, seven sets of upper air (>35 km) sounding data from the Changsha Sounding Station (28°12′ N, 113°05′ E), China are analyzed with Thorpe analysis in this article. It is noted that, in the troposphere, Thorpe analysis can better retrieve the turbulence distribution and the corresponding turbulence parameters. Also, because of the thicker troposphere at low latitudes, the values of the Thorpe scale L T and turbulent energy dissipation rate ε remain greater in a larger height range. In the stratosphere below the height of 35 km, the obtained ε is higher, and Thorpe analysis can only be used to analyze the characteristics of large-scale turbulence. In the stratosphere at a height of 35–40 km, because of the interference of sensor noise, Thorpe analysis can only help to retrieve the rough distribution position of large-scale turbulence, while it can hardly help with the calculation of the turbulence parameters. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

31 pages, 1107 KB  
Article
Performance Assessment of Balloon-Borne Trace Gas Sounding with the Terahertz Channel of TELIS
by Jian Xu, Franz Schreier, Gerald Wetzel, Arno De Lange, Manfred Birk, Thomas Trautmann, Adrian Doicu and Georg Wagner
Remote Sens. 2018, 10(2), 315; https://doi.org/10.3390/rs10020315 - 19 Feb 2018
Cited by 7 | Viewed by 5592
Abstract
Short-term variations in the atmospheric environment over polar regions are attracting increasing attention with respect to the reliable analysis of ozone loss. Balloon-borne remote sensing instruments with good vertical resolution and flexible sampling density can act as a prototype to overcome the potential [...] Read more.
Short-term variations in the atmospheric environment over polar regions are attracting increasing attention with respect to the reliable analysis of ozone loss. Balloon-borne remote sensing instruments with good vertical resolution and flexible sampling density can act as a prototype to overcome the potential technical challenges in the design of new spaceborne atmospheric sensors and represent a valuable tool for validating spaceborne observations. A multi-channel cryogenic heterodyne spectrometer known as the TErahertz and submillimeter LImb Sounder (TELIS) has been developed. It allows limb sounding of the upper troposphere and stratosphere (10–40 km) within the far infrared (FIR) and submillimeter spectral regimes. This paper describes and assesses the performance of the profile retrieval scheme for TELIS with a focus on the ozone (O3), hydrogen chloride (HCl), carbon monoxide (CO), and hydroxyl radical (OH) measured during three northern polar campaigns in 2009, 2010, and 2011, respectively. The corresponding inversion diagnostics reveal that some forward/instrument model parameters play important roles in the total retrieval error. The accuracy of the radiometric calibration and the spectroscopic knowledge has a significant impact on retrieval at higher altitudes, whereas the pointing accuracy dominates the total error at lower altitudes. The TELIS retrievals achieve a vertical resolution of ∼2–3 km through most of the stratosphere below the balloon height. Dominant water vapor (H2O) contamination and low abundances of the target species reduce the retrieval sensitivity at the lowermost altitudes measured by TELIS. An extensive comparison shows that the TELIS profiles are consistent with profiles obtained by other limb sounders. The comparison appears to be very promising, except for discrepancies in the upper troposphere due to numerical regularization. This study not only consolidates the validity of balloon-borne TELIS FIR measurements, but also demonstrates the scientific relevance and technical feasibility of terahertz limb sounding of the stratosphere. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop