Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,946)

Search Parameters:
Keywords = band gaps

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3544 KB  
Article
A New Route to Tune the Electrical Properties of Graphene Oxide: A Simultaneous, One-Step N-Doping and Reduction as a Tool for Its Structural Transformation
by Andjela Stefanović, Muhammad Yasir, Gerard Tobías-Rossell, Stefania Sandoval Rojano, Dušan Sredojević, Dejan Kepić, Duška Kleut, Warda Saeed, Miloš Milović, Danica Bajuk-Bogdanović and Svetlana Jovanović
Molecules 2025, 30(17), 3579; https://doi.org/10.3390/molecules30173579 (registering DOI) - 1 Sep 2025
Abstract
The presence of secondary electromagnetic waves (EMWs) results in EMW pollution and a large need for EMW-shielding materials. Therefore, new, lightweight, flexible, chemically resistant, and durable EMW shielding materials are demanded, while graphene and its derivatives meet the above-mentioned requirements. Among graphene derivatives, [...] Read more.
The presence of secondary electromagnetic waves (EMWs) results in EMW pollution and a large need for EMW-shielding materials. Therefore, new, lightweight, flexible, chemically resistant, and durable EMW shielding materials are demanded, while graphene and its derivatives meet the above-mentioned requirements. Among graphene derivatives, N-doped graphene exhibits promising electrical properties for shielding applications, although achieving sufficient N-incorporation in the graphene sheets remains a challenge. Herein, we produced graphene oxide using the modified Hummers’ method (GO) and the electrochemical exfoliation of highly ordered pyrolytic graphite. These two GO samples were thermally treated at 500 °C and 800 °C under a pure NH3 gas for 1 h. UV-Vis, infrared, and Raman spectroscopies and X-ray diffraction, elemental, and thermogravimetric analyses were used to investigate the structural properties of modified GO. One of the highest levels of N-doping of GO was measured (11.25 ± 0.08 at%). The modification under a NH3 atmosphere leads to simultaneous N-doping and reduction of graphene, resulting in the formation of electrically conductive and EMW shielding materials. Density functional theory (DFT) revealed the effect of heteroatoms on the energy band gap of GO. The cluster corresponding to N-doped rGO had a reduced bandgap of 0.77 eV. Full article
Show Figures

Figure 1

11 pages, 3793 KB  
Communication
Electronic Properties of Parallel-Aligned Arrays of Carbon Nanotubes
by Bartosz Brzostowski and Jacek Wojtkiewicz
Materials 2025, 18(17), 4095; https://doi.org/10.3390/ma18174095 (registering DOI) - 1 Sep 2025
Abstract
We present results of electronic properties’ DFT calculations, i.e., band structure, density of states and energy gap for arrays of parallel-ordered infinitely long small-diameter carbon nanotubes (CNTs). It turns out that if the distance between CNTs is sufficiently large (of the order 7.5 [...] Read more.
We present results of electronic properties’ DFT calculations, i.e., band structure, density of states and energy gap for arrays of parallel-ordered infinitely long small-diameter carbon nanotubes (CNTs). It turns out that if the distance between CNTs is sufficiently large (of the order 7.5 Å or greater), the electronic properties of arrays are very close to isolated CNTs. However, when CNTs in arrays are forced to be at a distance of the order of 5 Å, they undergo radical structural rearrangements, leading to completely different structures: graphite-like or three-dimensional lattice intermediates between graphite and diamond. Electronic properties are also rebuilt in a drastic manner. Full article
(This article belongs to the Special Issue Electronic, Optical, and Structural Properties of Carbon Nanotubes)
Show Figures

Figure 1

20 pages, 3890 KB  
Article
Carbon- and Nitrogen-Doped XTiO3 (X = Ba and Ca) Titanates for Efficient CO2 Photoreduction Under Solar Light
by Giorgia Ferraro, Giulia Forghieri, Somayeh Taghavi, Mohsen Padervand, Alessia Giordana, Giuseppina Cerrato, Alessandro Di Michele, Giuseppe Cruciani, Carla Bittencourt and Michela Signoretto
Catalysts 2025, 15(9), 828; https://doi.org/10.3390/catal15090828 (registering DOI) - 1 Sep 2025
Abstract
In recent decades, photocatalysis has received huge attention as a way to address the main environmental challenges affecting planet Earth. Among these, the control of CO2 emission and its concentration in the atmosphere, as one of the greenhouse gases causing global warming, [...] Read more.
In recent decades, photocatalysis has received huge attention as a way to address the main environmental challenges affecting planet Earth. Among these, the control of CO2 emission and its concentration in the atmosphere, as one of the greenhouse gases causing global warming, is of primary importance. This study focuses on the hydrothermal preparation of doped Ba and Ca-based titanates as efficient photocatalytic materials for CO2 photoreduction under solar light. The materials were characterized by SEM-EDX, XPS, FT-IR ATR, DRS, CHNS, XRD, and N2 physisorption analyses, and tested for gas-phase methane production from the target reaction. According to the results, the visible light harvesting properties were significantly improved with C and N doping, where glucose and a bio-based chitosan acted as the C and C+N sources, respectively. In particular, C-Ba-based titanate (CBaT) indicated the highest CH4 productivity, 2.3 µmol/gcat, against zero activity of the corresponding bare titanate structure, BaT. The larger surface area and pore volume, as well as its narrower band gap, are suggested as the major reasons for the promising performance of CBaT. This work provides new insights for the facile fabrication of efficient photoactive perovskite materials with the aim of CO2-to-CH4 photoreduction under solar light. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in Air Pollution Control)
Show Figures

Figure 1

18 pages, 8631 KB  
Article
Forest Biomass Estimation of Linpan in Western Sichuan Using Multi-Source Remote Sensing
by Jiaming Lai, Yuxuan Lin, Yan Lu, Mingdi Yue and Gang Chen
Sustainability 2025, 17(17), 7855; https://doi.org/10.3390/su17177855 (registering DOI) - 31 Aug 2025
Abstract
Linpan ecosystems, distinct to western Sichuan, China, are integral to regional biodiversity and carbon cycling. However, comprehensive biomass estimation for these systems has not been thoroughly investigated. This study seeks to fill this gap by enhancing the accuracy and precision of biomass estimation [...] Read more.
Linpan ecosystems, distinct to western Sichuan, China, are integral to regional biodiversity and carbon cycling. However, comprehensive biomass estimation for these systems has not been thoroughly investigated. This study seeks to fill this gap by enhancing the accuracy and precision of biomass estimation in these ecologically vital landscapes through the application of multi-source remote sensing techniques, specifically by integrating the strengths of optical and radar remote sensing data. The focus of this research is on the forest biomass of Linpan, encompassing the tree layer, which includes the trunk, branches, leaves, and underground roots. Specifically, the research focused on the Linpan ecosystems in the Wenjiang District of western Sichuan, utilizing an integration of Sentinel-1 SAR, Sentinel-2 multispectral, and GF-2 high-resolution data for multi-source remote sensing-based biomass estimation. Through the preprocessing of these data, Pearson correlation analysis was conducted to identify variables significantly correlated with the forest biomass as determined by field surveys. Ultimately, 19 key modeling factors were selected, including band information, vegetation indices, texture features, and phenological characteristics. Subsequently, three algorithms—multiple stepwise regression (MSR), support vector machine (SVM), and random forest (RF)—were employed to model biomass across mixed-type, deciduous broadleaved, evergreen broadleaved, and bamboo Linpan. The key findings include the following: (1) Sentinel-2 spectral data and Sentinel-1 VH backscatter coefficients during the summer, combined with vegetation indices and texture features, were critical predictors, while phenological indices exhibited unique correlations with biomass. (2) Biomass displayed a marked north–south gradient, characterized by higher values in the south and lower values in the north, with a mean value of 161.97 t ha−1, driven by dominant tree species distribution and management intensity. (3) The RF model demonstrated optimal performance in mixed-type Linpan (R2 = 0.768), whereas the SVM was more suitable for bamboo Linpan (R2 = 0.892). The research suggests that integrating multi-source remote sensing data significantly enhances Linpan biomass estimation accuracy, offering a robust framework to improve estimation precision. Full article
Show Figures

Figure 1

18 pages, 4692 KB  
Article
The Material Growth and Characteristics of Transition Metal Oxide Thin Films Based on Hot Wire Oxidation Sublimation Deposition Technology
by Fengchao Li, Qingguo Kang, Zhenwei Kang, Tengteng Li, Jiangang Yu, Haibing Qiu, Ting Liang and Cheng Lei
Materials 2025, 18(17), 4083; https://doi.org/10.3390/ma18174083 (registering DOI) - 31 Aug 2025
Abstract
Transition-metal oxides (TMOs) possess pronounced optoelectronic properties and are widely exploited in photovoltaics and photocatalysis. Here, we introduce a hot wire oxidation sublimation deposition (HWOSD) that directly converts elemental Mo and W into amorphous MoOx and WOx films on various substrates. [...] Read more.
Transition-metal oxides (TMOs) possess pronounced optoelectronic properties and are widely exploited in photovoltaics and photocatalysis. Here, we introduce a hot wire oxidation sublimation deposition (HWOSD) that directly converts elemental Mo and W into amorphous MoOx and WOx films on various substrates. Scanning electron microscopy and atomic force microscopy reveal uniform thickness and conformal coverage over textured and planar surfaces. X-ray photoelectron spectroscopy indicates high oxygen contents with stoichiometric ratios of 2.94 (MoOx) and 2.91 (WOx). Optical measurements show transmittances > 94% across 400–1200 nm, yielding optical band gaps of 1.86 eV (MoOx) and 2.67 eV (WOx). The conductivities of MoOx and WOx were 2.58 × 10−6 S cm−1 and 5.14 × 10−7 S cm−1 at room temperature, and the TMO/Si surface potential differences are 200 mV and 114 mV, respectively. Minority-carrier-lifetime measurements indicate that MoOx films confer an additional passivation benefit to the i a-Si:H/c-Si/i a-Si:H stack. Annealing of MoOx and WOx realized their phase transition from an amorphous state to a polycrystalline state, with changes in their optical transmittance in the visible light region. Investigation of the photovoltaic performances of MoOx and WOx as HTLs deposited by HWOSD demonstrates their excellent electronic functionality in optoelectronics. These results establish HWOSD as a scalable, low-temperature method to fabricate high-quality TMO films and expand their potential in advanced optoelectronic devices. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

14 pages, 2753 KB  
Article
Effects of Mn and Co Doping on the Electronic Structure and Optical Properties of Cu2ZnSnS4
by Xiufan Yang, Xinmao Qin, Wanjun Yan, Chunhong Zhang and Dianxi Zhang
Crystals 2025, 15(9), 781; https://doi.org/10.3390/cryst15090781 (registering DOI) - 30 Aug 2025
Abstract
The electronic structures and optical properties of Mn-doped, Co-doped, and (Mn,Co)-co-doped Cu2ZnSnS4 were calculated and analyzed using the first-principles pseudopotential plane-wave approach. The results indicate that doping with Mn or Co increases the bond population and decreases the bond length [...] Read more.
The electronic structures and optical properties of Mn-doped, Co-doped, and (Mn,Co)-co-doped Cu2ZnSnS4 were calculated and analyzed using the first-principles pseudopotential plane-wave approach. The results indicate that doping with Mn or Co increases the bond population and decreases the bond length of the S-Mn and S-Co bonds, respectively, enhancing their covalent character. The undoped Cu2ZnSnS4 exhibits a bandgap of 0.16 eV, whereas doping with Mn or Co introduces impurity levels near the Fermi level, resulting in bandgap narrowing. Within the visible light spectrum, the static dielectric constant ε1(0) reaches its maximum value of 67.7 under co-doping conditions, and the absorption coefficient also attains its maximum value of 6.7 × 104 cm−1 under co-doping. Doping with Mn and Co induces a redshift (shift towards lower energy) in both the absorption peaks and dielectric function peaks, concomitantly increasing the probability of photon-induced electronic transitions. Conversely, doping shifts the reflectivity peaks towards higher energies (blue-shift), with the most pronounced blue-shift occurring under co-doping; the strongest reflectivity peaks remain below 43%. A prominent conductivity peak is observed at 1.7 eV. Doping shifts this peak position towards lower energies, with the maximum peak intensity reaching 1.6. These findings collectively suggest that Mn and Co doping effectively modulate key optical properties of Cu2ZnSnS4, such as its band gap and absorption coefficient, constituting an effective strategy for enhancing its optoelectronic transport characteristics. Full article
13 pages, 1434 KB  
Article
Tuning of the Electronic and Magnetic Properties of GaN Monolayers via Doping with Lanthanide Atoms and by Applying Biaxial Strain
by Xue Wen, Bocheng Lei, Lili Zhang and Haiming Lu
Nanomaterials 2025, 15(17), 1331; https://doi.org/10.3390/nano15171331 - 29 Aug 2025
Viewed by 103
Abstract
The electronic and magnetic properties of lanthanide-doped GaN monolayers (Ln = La, Pr, Nd, Pm, Eu, and Gd) have been systematically investigated using density functional theory within the GGA-PBE approximation. Our results demonstrate that all Ln dopants except La introduce spin polarization and [...] Read more.
The electronic and magnetic properties of lanthanide-doped GaN monolayers (Ln = La, Pr, Nd, Pm, Eu, and Gd) have been systematically investigated using density functional theory within the GGA-PBE approximation. Our results demonstrate that all Ln dopants except La introduce spin polarization and half-semiconductor behavior into the GaN monolayer. The observed magnetism primarily arises from unpaired 4f electrons, yielding magnetic moments of 2.0, 3.0, 4.0, 6.0, and 7.0 μB for Pr, Nd, Pm, Eu, and Gd, respectively. While La-, Pr-, and Gd-doped systems retain the indirect band gap characteristic of pristine GaN, an indirect-to-direct band gap transition occurs under biaxial tensile strains exceeding 2%. In contrast, Nd, Pm, and Eu doping directly induce a direct band gap without applied strain. Notably, under 6% tensile strain, the Pm- and Eu-GaN systems exhibit half-metallic and metallic properties, respectively. These tunable electronic and magnetic properties suggest that Ln doping offers a promising strategy for designing functional two-dimensional GaN-based electronic and spintronic devices. Full article
(This article belongs to the Special Issue First Principles Study of Two-Dimensional Materials)
Show Figures

Figure 1

24 pages, 5992 KB  
Article
Mathematical Modelling of Throughput in Peer-Assisted Symbiotic 6G with SIC and Relays
by Muhammed Yusuf Onay
Appl. Sci. 2025, 15(17), 9504; https://doi.org/10.3390/app15179504 (registering DOI) - 29 Aug 2025
Viewed by 96
Abstract
Sixth-generation (6G) communication systems, with ultra-wide bands, energy-autonomous end nodes, and dense connectivity, challenge existing network designs. Optimizing time resources with energy harvesting, backscatter communication, and relays is essential to maximize the total bit rate in multi-user symbiotic radio networks (SRNs) with blocked [...] Read more.
Sixth-generation (6G) communication systems, with ultra-wide bands, energy-autonomous end nodes, and dense connectivity, challenge existing network designs. Optimizing time resources with energy harvesting, backscatter communication, and relays is essential to maximize the total bit rate in multi-user symbiotic radio networks (SRNs) with blocked direct paths. The literature lacks a unified optimization treatment that explicitly accounts for imperfect successive interference cancellation (SIC). This study addresses this gap by proposing the first optimization framework to maximize total bit rate for energy-harvesting TDMA/PD–NOMA-based multi-cluster and relay-assisted peer-assisted SR networks. The two-phase architecture defines a tractable constrained optimization problem that jointly adjusts cluster-specific time slots (τ and λ). Incorporating QoS, signal power, and reflection coefficient constraints, it provides a compact formulation and numerical solutions for both perfect and imperfect SIC. Detailed simulations performed under typical 6G power levels, bandwidths, and energy-harvesting efficiencies demonstrate graphically that imperfect SIC significantly limits total throughput due to residual interference, while perfect SIC completely eliminates this ceiling under the same conditions, providing a significant capacity advantage. Furthermore, the gap between the two scenarios rapidly closes with increasing relay time margin. The findings demonstrate that network capacity is primarily determined by the triad of base station output power, channel noise, and SIC accuracy, and that the proposed framework achieves strong performance across the explored parameter space. Full article
Show Figures

Figure 1

28 pages, 2056 KB  
Review
From Aberrant Brainwaves to Altered Plasticity: A Review of QEEG Biomarkers and Neurofeedback in the Neurobiological Landscape of ADHD
by Marta Kopańska and Julia Trojniak
Cells 2025, 14(17), 1339; https://doi.org/10.3390/cells14171339 - 29 Aug 2025
Viewed by 191
Abstract
This critical review synthesizes findings from quantitative electroencephalography (QEEG) to bridge the gap between systems-level neurophysiology and the underlying cellular pathology of Attention-Deficit/Hyperactivity Disorder (ADHD). As a prevalent neurodevelopmental disorder, ADHD diagnosis is challenged by symptomatic heterogeneity, creating an urgent need for objective [...] Read more.
This critical review synthesizes findings from quantitative electroencephalography (QEEG) to bridge the gap between systems-level neurophysiology and the underlying cellular pathology of Attention-Deficit/Hyperactivity Disorder (ADHD). As a prevalent neurodevelopmental disorder, ADHD diagnosis is challenged by symptomatic heterogeneity, creating an urgent need for objective biological indicators. Analysis of QEEG data reveals consistent neurophysiological patterns in ADHD, primarily an excess of Theta-band activity and a deficit in Beta-band activity. These findings have led to the proposal of specific biomarkers, such as the Theta/Beta Ratio (TBR), and serve as the basis for neurofeedback interventions aimed at modulating brainwave activity. While not a standalone diagnostic tool, this review posits that QEEG-based biomarkers and Neurofeedback responses are systems-level manifestations of putative cellular and synaptic dysfunctions. By outlining these robust macro-scale patterns, this work provides a conceptual framework intended to guide future molecular and cellular research into the fundamental biology of ADHD. Full article
Show Figures

Figure 1

9 pages, 3049 KB  
Communication
High-Efficiency Deployable V-Band Reflectarray Antenna Design, Tolerance Analysis and Measurement
by Guang Liu, Xiaolong Dong, Di Zhu and Hongjian Wang
Photonics 2025, 12(9), 866; https://doi.org/10.3390/photonics12090866 - 28 Aug 2025
Viewed by 156
Abstract
A deployable reflectarray antenna (RA) using a three-times expansion structure working at the V-band for 12U CubeSat is presented in this paper. Double-circle ring unit cells with excellent dispersion characteristics are used to constitute the layout of the RA. The impact of the [...] Read more.
A deployable reflectarray antenna (RA) using a three-times expansion structure working at the V-band for 12U CubeSat is presented in this paper. Double-circle ring unit cells with excellent dispersion characteristics are used to constitute the layout of the RA. The impact of the tolerance of the gap between boards on the RA’s radiation patterns are shown and discussed. A high expansion compression ratio of 26:1 is achieved by using the three-times expansion structure design. The measured results of the prototype show that the deployable RA achieves performance with high efficiency, a low side lobe level, a low cross-polarization level and a wide band. Full article
Show Figures

Figure 1

14 pages, 3923 KB  
Article
Low-Frequency Band Gap Expansion of Acoustic Metamaterials Based on Multi-Mode Coupling Effect
by Yudong Wu, Zhiyuan Wu, Wang Yan, Shiqi Deng, Fangjun Zuo, Mingliang Yang and Weiping Ding
Crystals 2025, 15(9), 764; https://doi.org/10.3390/cryst15090764 - 27 Aug 2025
Viewed by 234
Abstract
To address the problem of low-frequency broadband vibration and noise encountered in engineering, a method for expanding the low-frequency band gap of locally resonant acoustic metamaterials is proposed based on the multi-mode coupling effect. A computational method for the band gap characteristics of [...] Read more.
To address the problem of low-frequency broadband vibration and noise encountered in engineering, a method for expanding the low-frequency band gap of locally resonant acoustic metamaterials is proposed based on the multi-mode coupling effect. A computational method for the band gap characteristics of second-order multi-mode acoustic metamaterials has been derived. By incorporating the vibrational modes obtained from band structure calculations, a systematic investigation of the formation mechanisms of multiple band gaps was conducted, revealing that the emergence of these multiple band gaps stems from the coupled resonance between elastic waves and distinct vibrational modes of the local resonator units. Furthermore, the influence of design parameter variations on the bandgap was investigated, and the strategy of realizing low-frequency multi-order bandgaps by increasing the order of local resonance units was examined. Finally, vibration tests were conducted on the second-, third-, and fourth-order multi-mode coupled acoustic metamaterials. The results demonstrated that these materials exhibit an expanded vibration band gap within the low-frequency range, and the measured frequency response aligns closely with the theoretical calculations. This type of acoustic metamaterial offers viable applicability for controlling low-frequency broadband vibrations. Full article
(This article belongs to the Special Issue Functional Acoustic Metamaterials)
Show Figures

Figure 1

11 pages, 3331 KB  
Article
Material Removal on Hydrogen-Terminated Diamond Surface via AFM Tip-Based Local Anodic Oxidation
by Jinyan Tang, Zhong-Hao Cao, Zhongwei Li and Yuan-Liu Chen
Micromachines 2025, 16(9), 981; https://doi.org/10.3390/mi16090981 - 26 Aug 2025
Viewed by 273
Abstract
Diamond is a promising next-generation semiconductor material, offering a wider band gap, higher electron mobility, and superior thermal conductivity compared with silicon. However, its exceptional hardness makes it challenging to fabricate. In this study, we demonstrate a novel approach to realize material removal [...] Read more.
Diamond is a promising next-generation semiconductor material, offering a wider band gap, higher electron mobility, and superior thermal conductivity compared with silicon. However, its exceptional hardness makes it challenging to fabricate. In this study, we demonstrate a novel approach to realize material removal on hydrogen-terminated diamond surfaces by atomic force microscope (AFM) tip-based local anodic oxidation. By adjusting both the applied voltage and hydrogen plasma etching parameters, the material is removed over an area larger than the AFM tip size. Notably, the hardness of the material surrounding the removal zone is significantly reduced, enabling it to be scratched with a silicon tip. These findings open a promising pathway for improving the machinability of diamonds in future device applications. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

17 pages, 4347 KB  
Article
Carbon Quantum Dot-Embedded SiO2: PMMA Hybrid as a Blue-Emitting Plastic Scintillator for Cosmic Ray Detection
by Lorena Cruz León, Martin Rodolfo Palomino Merino, José Eduardo Espinosa Rosales, Samuel Tehuacanero Cuapa, Benito de Celis Alonso, Oscar Mario Martínez Bravo, Oliver Isac Ruiz-Hernandez, José Gerardo Suárez García, Miller Toledo-Solano and Jesús Eduardo Lugo Arce
Photonics 2025, 12(9), 854; https://doi.org/10.3390/photonics12090854 - 26 Aug 2025
Viewed by 295
Abstract
This work reports the synthesis and characterization of Carbon Quantum Dots (CQDs) embedded in an organic–inorganic hybrid SiO2: PMMA matrix, designed as a novel plastic scintillator material. The CQDs were synthesized through a solvo-hydrothermal method and incorporated using a sol–gel polymerization [...] Read more.
This work reports the synthesis and characterization of Carbon Quantum Dots (CQDs) embedded in an organic–inorganic hybrid SiO2: PMMA matrix, designed as a novel plastic scintillator material. The CQDs were synthesized through a solvo-hydrothermal method and incorporated using a sol–gel polymerization process, resulting in a mechanically durable and optically active hybrid. Structural analysis with X-ray diffraction and TEM confirmed crystalline quantum dots approximately 10 nm in size. Extensive optical characterization, including band gap measurement, photoluminescence under 325 nm UV excitation, lifetime evaluations, and quantum yield measurement, revealed a blue emission centered at 426 nm with a decay time of 3–3.6 ns. The hybrid scintillator was integrated into a compact cosmic ray detector using a photomultiplier tube optimized for 420 nm detection. The system effectively detected secondary atmospheric muons produced by low-energy cosmic rays, validated through the vertical equivalent muon (VEM) technique. These findings highlight the potential of CQD-based hybrid materials for advanced optical sensing and scintillation applications in complex environments, supporting the development of compact and sensitive detection systems. Full article
Show Figures

Figure 1

15 pages, 6388 KB  
Article
Properties of ZnO Prepared by Polymeric Citrate Amorphous Precursor Method: Influence of Cobalt Concentration
by Jailes J. Beltrán, Luis A. Flórez and Luis C. Sánchez
Materials 2025, 18(17), 3991; https://doi.org/10.3390/ma18173991 - 26 Aug 2025
Viewed by 373
Abstract
This study aims to investigate the vibrational, structural, morphological, optical, and magnetic properties of Zn1−xCoxO with 0.00 ≤ x ≤ 0.05 prepared by the sol–gel method via an amorphous citrate precursor. FTIR spectroscopy was used to follow the thermal [...] Read more.
This study aims to investigate the vibrational, structural, morphological, optical, and magnetic properties of Zn1−xCoxO with 0.00 ≤ x ≤ 0.05 prepared by the sol–gel method via an amorphous citrate precursor. FTIR spectroscopy was used to follow the thermal decomposition process of the ZnO precursor, identifying acetate zinc as the intermediate main component. XRD and FTIR-ATR techniques showed only the single wurtzite crystalline phase with the presence of oxygen deficiency and/or vacancies, and secondary phases were not detected. SEM micrographs showed agglomerated particles of irregular shape and size with a high distribution and evidenced particles of nanometric size with a morphology change for x = 0.05. We detected high–spin Co2+ ions located in the tetrahedral core and pseudo–octahedral surface sites, substituting Zn2+ ions. The energy band gap of the ZnO semiconductor decreased gradually when the Co doping concentration was increased. M vs. H for undoped ZnO nanoparticles exhibited a diamagnetic signal overlapped with a weak ferromagnetic signal at room temperature. Interestingly, temperature-dependent magnetization showed superparamagnetic behavior with a blocked state in the low temperature range. The Co–doped ZnO samples evidenced a weak ferromagnetic signal and a paramagnetic component, which increased with x. The saturation magnetization increased until x = 0.03 and then decreased for x = 0.05, while the coercive field gradually decreased. Full article
Show Figures

Graphical abstract

12 pages, 3494 KB  
Proceeding Paper
A Numerical Study on Ag/CZTS/n-Si/Al Heterojunction Solar Cells Fabricated via Laser Ablation
by Serap Yigit Gezgin, Yasemin Gundogdu Kabakci and Hamdi Sukur Kilic
Eng. Proc. 2025, 104(1), 36; https://doi.org/10.3390/engproc2025104036 - 25 Aug 2025
Viewed by 88
Abstract
CZTS (C-I/C-II) ultrathin films in 61 nm and 313 nm thicknesses were grown on microscopic glass and n-Si wafer substrates via laser ablation, respectively. C-II ultrathin film with higher thickness has a more developed crystal structure and consists of larger particles compared to [...] Read more.
CZTS (C-I/C-II) ultrathin films in 61 nm and 313 nm thicknesses were grown on microscopic glass and n-Si wafer substrates via laser ablation, respectively. C-II ultrathin film with higher thickness has a more developed crystal structure and consists of larger particles compared to C-I ultrathin film with reduced thickness. C-II ultrathin film absorbs more photons and has a lower band gap. The photovoltaic performance of the produced Ag/CZTS (C-II)/n-Si/Al solar cell is higher compared to the other solar cell-based C-I ultrathin film. The more improved crystal structure of C-II ultrathin film has increased the efficiency of the solar cell. The calculated photovoltaic parameters of the solar cells modeled with the SCAPS-1D simulation program were found to be compatible with the experimental parameters. This situation has proven that the operating performance of solar cells is reliable. Full article
Show Figures

Figure 1

Back to TopTop