Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (302)

Search Parameters:
Keywords = beam focusing control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5057 KB  
Article
Analysis of the Applicability of Accelerated Conditioning Protocols in Concrete Beams Reinforced with Steel and GFRP: Effects of Chloride Exposure
by Amanda Duarte Escobal Mazzú and Gláucia Maria Dalfré
Polymers 2025, 17(17), 2423; https://doi.org/10.3390/polym17172423 - 7 Sep 2025
Abstract
The durability of Fiber-Reinforced Polymer (FRP) bars is typically evaluated using accelerated conditioning protocols (ACP), which are applied to bar samples, either directly exposed or embedded in small concrete specimens, under aggressive environmental conditions. Thus, this study investigates the applicability of the ACPs [...] Read more.
The durability of Fiber-Reinforced Polymer (FRP) bars is typically evaluated using accelerated conditioning protocols (ACP), which are applied to bar samples, either directly exposed or embedded in small concrete specimens, under aggressive environmental conditions. Thus, this study investigates the applicability of the ACPs recommended by ACI440.9R (2015), from the American Concrete Institute, to assess the potential effects of chloride exposure on reinforced concrete beams. Twelve beams—six reinforced with steel and six with Glass Fiber-Reinforced Polymer (GFRP)—were tested under two scenarios: (1) a reference condition, with beams stored for 1000 h in a controlled laboratory environment, and (2) a conditioned condition, where beams were immersed in a 3.5% NaCl solution at 50 ± 3 °C for 1000 h prior to beam casting. After, the beams were evaluated through three-point bending tests, focusing on load–deflection behavior, failure modes, crack patterns, and strain distribution in concrete and reinforcement. The results indicated that chloride exposure adversely affected both steel and GFRP-reinforced beams. Steel-reinforced concrete beams exhibited a 12% reduction in load-bearing capacity due to steel corrosion, while the GFRP-reinforced concrete beams showed a 10% reduction in load-bearing capacity due to water absorption by the GFRP. Full article
(This article belongs to the Special Issue Sustainable Polymeric Materials in Building and Construction)
Show Figures

Figure 1

16 pages, 3781 KB  
Systematic Review
Augmented Reality in Dental Extractions: Narrative Review and an AR-Guided Impacted Mandibular Third-Molar Case
by Gerardo Pellegrino, Carlo Barausse, Subhi Tayeb, Elisabetta Vignudelli, Martina Casaburi, Stefano Stradiotti, Fabrizio Ferretti, Laura Cercenelli, Emanuela Marcelli and Pietro Felice
Appl. Sci. 2025, 15(17), 9723; https://doi.org/10.3390/app15179723 - 4 Sep 2025
Viewed by 344
Abstract
Background: Augmented-reality (AR) navigation is emerging as a means of turning pre-operative cone-beam CT data into intuitive, in situ guidance for difficult tooth removal, yet the scattered evidence has never been consolidated nor illustrated with a full clinical workflow. Aims: This [...] Read more.
Background: Augmented-reality (AR) navigation is emerging as a means of turning pre-operative cone-beam CT data into intuitive, in situ guidance for difficult tooth removal, yet the scattered evidence has never been consolidated nor illustrated with a full clinical workflow. Aims: This study aims to narratively synthesise AR applications limited to dental extractions and to illustrate a full AR-guided clinical workflow. Methods: We performed a PRISMA-informed narrative search (PubMed + Cochrane, January 2015–June 2025) focused exclusively on AR applications in dental extractions and found nine eligible studies. Results: These pilot reports—covering impacted third molars, supernumerary incisors, canines, and cyst-associated teeth—all used marker-less registration on natural dental surfaces and achieved mean target-registration errors below 1 mm with headset set-up times under three minutes; the only translational series (six molars) recorded a mean surgical duration of 21 ± 6 min and a System Usability Scale score of 79. To translate these findings into practice, we describe a case of AR-guided mandibular third-molar extraction. A QR-referenced 3D-printed splint, intra-oral scan, and CBCT were fused to create a colour-coded hologram rendered on a Magic Leap 2 headset. The procedure took 19 min and required only a conservative osteotomy and accurate odontotomy that ended without neurosensory disturbance (VAS pain 2/10 at one week). Conclusions: Collectively, the literature synthesis and clinical demonstration suggest that current AR platforms deliver sub-millimetre accuracy, minimal workflow overhead, and high user acceptance in high-risk extractions while highlighting the need for larger, controlled trials to prove tangible patient benefit. Full article
Show Figures

Figure 1

13 pages, 4472 KB  
Article
Design and Optimization of a Broadband Stripline Kicker for Low Beam Emittance Ring Accelerators
by Sakdinan Naeosuphap, Sarunyu Chaichuay, Siriwan Jummunt and Porntip Sudmuang
Particles 2025, 8(3), 78; https://doi.org/10.3390/particles8030078 - 29 Aug 2025
Viewed by 198
Abstract
The performance and beam quality of the new fourth-generation synchrotron light source with ultra-low emittance are highly susceptible to coupled-bunch instabilities. These instabilities arise from the interaction between the bunched electron beam and the surrounding vacuum chamber installations. To mitigate these effects, the [...] Read more.
The performance and beam quality of the new fourth-generation synchrotron light source with ultra-low emittance are highly susceptible to coupled-bunch instabilities. These instabilities arise from the interaction between the bunched electron beam and the surrounding vacuum chamber installations. To mitigate these effects, the installation of a transverse bunch-by-bunch feedback system is planned. This system will comprise a button-type beam position monitor (BPM) for beam signal detection, a digital feedback controller, a broadband power amplifier, and a broadband stripline kicker as the primary actuator. One of the critical challenges lies in the development of the stripline kicker, which must be optimized for high shunt impedance and wide bandwidth while minimizing beam-coupling impedance. This work focuses on the comprehensive design of the stripline kicker intended for transverse (horizontal and vertical) bunch-by-bunch feedback in the Siam Photon Source II (SPS-II) storage ring. The stripline kicker design also incorporates features to enable its use for beam excitation in the SPS-II tune measurement system. The optimization process involves analytical approximations and detailed numerical electromagnetic field analysis of the stripline’s 3D geometry, focusing on impedance matching, field homogeneity, power transmission, and beam-coupling impedance. The details of engineering design are discussed to ensure that it meets the fabrication possibilities and stringent requirements of the SPS-II accelerator. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

19 pages, 654 KB  
Review
Targeted Radiotherapy in Primary Cutaneous Lymphomas: Precision, Efficacy, and Evolving Strategies
by Piotr Sobolewski, Mateusz Koper, Piotr Ciechanowicz and Irena Walecka
Cancers 2025, 17(17), 2722; https://doi.org/10.3390/cancers17172722 - 22 Aug 2025
Viewed by 533
Abstract
Primary cutaneous lymphomas (PCLs), including cutaneous T-cell lymphomas (CTCL) and primary cutaneous B-cell lymphomas (PCBCL), are a diverse group of non-Hodgkin lymphomas that primarily affect the skin. Radiotherapy (RT) plays a pivotal role in the treatment of these lymphomas, particularly for localized disease, [...] Read more.
Primary cutaneous lymphomas (PCLs), including cutaneous T-cell lymphomas (CTCL) and primary cutaneous B-cell lymphomas (PCBCL), are a diverse group of non-Hodgkin lymphomas that primarily affect the skin. Radiotherapy (RT) plays a pivotal role in the treatment of these lymphomas, particularly for localized disease, due to its ability to deliver precise, skin-directed treatment. Mycosis fungoides (MF) and Sézary syndrome (SS), the most common subtypes of CTCL, often require skin-directed therapies such as electron beam therapy and superficial brachytherapy to manage localized lesions. Electron beam therapy, including total skin electron beam therapy (TSEBT), has been utilized for decades, offering high response rates but with the risk of cumulative skin toxicity. Recently, low-dose radiotherapy (LDRT) has gained attention as an effective alternative that reduces toxicity while maintaining durable responses. Superficial brachytherapy is another modality that delivers radiation through custom molds, allowing for homogeneous dosing over complex anatomical areas like the face. Both teleradiotherapy and brachytherapy have demonstrated high complete response rates, with low recurrence rates observed when higher doses are used. In the context of primary cutaneous B-cell lymphomas, such as primary cutaneous marginal zone lymphoma (PCMZL) and primary cutaneous follicle center lymphoma (PCFCL), radiotherapy also offers excellent local control, particularly for indolent subtypes. However, more aggressive subtypes, such as diffuse large B-cell lymphoma, leg type (PCDLBCL-LT), may require systemic therapies in addition to radiation. Overall, teleradiotherapy and brachytherapy are essential components of the therapeutic arsenal for primary cutaneous lymphomas, offering effective disease control with manageable toxicity, while ongoing research focuses on optimizing treatment strategies and exploring novel combinations with systemic therapies. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

17 pages, 2028 KB  
Review
CMOS-Compatible Ultrasonic 3D Beamforming Sensor System for Automotive Applications
by Khurshid Hussain, Wanhae Jeon, Yongmin Lee, In-Hyouk Song and Inn-Yeal Oh
Appl. Sci. 2025, 15(16), 9201; https://doi.org/10.3390/app15169201 - 21 Aug 2025
Viewed by 560
Abstract
This paper presents a fully electronic, CMOS-compatible ultrasonic sensing system integrated into a 3D beamforming architecture for advanced automotive applications. The proposed system eliminates mechanical scanning by implementing a dual-path beamforming structure comprising programmable transmit (TX) and receive (RX) paths. The TX beamformer [...] Read more.
This paper presents a fully electronic, CMOS-compatible ultrasonic sensing system integrated into a 3D beamforming architecture for advanced automotive applications. The proposed system eliminates mechanical scanning by implementing a dual-path beamforming structure comprising programmable transmit (TX) and receive (RX) paths. The TX beamformer introduces per-element time delays derived from steering angles to control the direction of ultrasonic wave propagation, while the RX beamformer aligns echo signals for spatial focusing. Electrostatic actuation governs the CMOS-compatible ultrasonic transmission mechanism, whereas dynamic modulation under acoustic pressure forms the reception mechanism. The system architecture supports full horizontal and vertical angular coverage, leveraging delay-and-sum processing to achieve electronically steerable beams. The system enables low-power, compact, and high-resolution sensing modules by integrating signal generation, beam control, and delay logic within a CMOS framework. Theoretical modeling demonstrates its capability to support fine spatial resolution and fast response, making it suitable for integration into autonomous vehicle platforms and driver-assistance systems. Full article
(This article belongs to the Special Issue Ultrasonic Transducers in Next-Generation Application)
Show Figures

Figure 1

26 pages, 3020 KB  
Review
Fabrication of Cellulose-Based Hydrogels Through Ionizing Radiation for Environmental and Agricultural Applications
by Muhammad Asim Raza
Gels 2025, 11(8), 604; https://doi.org/10.3390/gels11080604 - 2 Aug 2025
Viewed by 487
Abstract
Hydrogels exhibit remarkable physicochemical properties, including high water absorption and retention capacities, as well as controlled release behavior. Their inherent biodegradability, biocompatibility, and non-toxicity make them suitable for a wide range of applications. Cellulose, a biodegradable, renewable, and abundantly available polysaccharide, is a [...] Read more.
Hydrogels exhibit remarkable physicochemical properties, including high water absorption and retention capacities, as well as controlled release behavior. Their inherent biodegradability, biocompatibility, and non-toxicity make them suitable for a wide range of applications. Cellulose, a biodegradable, renewable, and abundantly available polysaccharide, is a viable source for hydrogel preparation. Ionizing radiation, using electron-beam (EB) or gamma (γ) irradiation, provides a promising approach for synthesizing hydrogels. This study reviews recent advancements in cellulose-based hydrogels, focusing on cellulose and its derivatives, brief information regarding ionizing radiation, comparison between EB and γ-irradiation, synthesis and modification through ionizing radiation technology, and their environmental and agricultural applications. For environmental remediation, these hydrogels have demonstrated significant potential in water purification, particularly in the removal of heavy metals, dyes, and organic contaminants. In agricultural applications, cellulose-based hydrogels function as soil conditioners by enhancing water retention and serving as carriers for agrochemicals. Full article
Show Figures

Graphical abstract

20 pages, 1890 KB  
Review
Laser Surface Hardening of Carburized Steels: A Review of Process Parameters and Application in Gear Manufacturing
by Janusz Kluczyński, Katarzyna Jasik, Jakub Łuszczek and Jakub Pokropek
Materials 2025, 18(15), 3623; https://doi.org/10.3390/ma18153623 - 1 Aug 2025
Viewed by 443
Abstract
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion [...] Read more.
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion speed, spot size, and focusing distance—on surface microhardness, hardening depth, and microstructure development. The findings indicate that the energy density is the dominant factor that affects the outcomes of LHT. Optimal results, in the form of a high surface microhardness and a sufficient depth of hardening, were achieved within the energy density range of 80–130 J/mm2, allowing for martensitic transformation while avoiding defects such as melting or cracking. At densities below 50 J/mm2, incomplete hardening occurred with minimal microhardness improvement. On the contrary, densities exceeding 150–180 J/mm2 caused surface overheating and degradation. For carburized 21NiCrMo2 steel, the most effective parameters included 450–1050 W laser power, 1.7–2.5 mm/s scanning speed, and 2.0–2.3 mm beam diameter. The review confirms that process control through energy-based parameters allows for reliable prediction and optimization of LHT for industrial applications, particularly in components exposed to cyclic loads. Full article
(This article belongs to the Special Issue Advanced Machining and Technologies in Materials Science)
Show Figures

Figure 1

21 pages, 2585 KB  
Review
Advances of Articulated Tug–Barge Transport in Enhancing Shipping Efficiency
by Plamen Yanakiev, Yordan Garbatov and Petar Georgiev
J. Mar. Sci. Eng. 2025, 13(8), 1451; https://doi.org/10.3390/jmse13081451 - 29 Jul 2025
Viewed by 512
Abstract
Articulated Tugs and Barges (ATBs) are increasingly recognised for their effectiveness in transporting chemicals, petroleum, bulk goods, and containers, primarily due to their exceptional flexibility and fuel efficiency. Recent projections indicate that the ATB market is on track for significant growth, which is [...] Read more.
Articulated Tugs and Barges (ATBs) are increasingly recognised for their effectiveness in transporting chemicals, petroleum, bulk goods, and containers, primarily due to their exceptional flexibility and fuel efficiency. Recent projections indicate that the ATB market is on track for significant growth, which is expected to lead to an increase in the annual growth rate from 2025 to 2032. This study aims to analyse the current advancements in ATB technology and provide insights into the ATB fleet and the systems that connect tugboats and barges. Furthermore, it highlights the advantages of this transportation system, especially regarding its role in enhancing energy efficiency within the maritime transport sector. Currently, there is limited information available in the public domain about ATBs compared to other commercial vessels. The analysis reveals that much of the required information for modern ATB design is not accessible outside specialised design companies. The study also focuses on conceptual design aspects, which include the main dimensions, articulated connections, propulsion systems, and machinery, concluding with an evaluation of economic viability. Special emphasis is placed on defining the main dimensions, which is a critical part of the complex design process. In this context, the ratios of length to beam (L/B), beam to draft (B/D), beam to depth (B/T), draft to depth (T/D), and power to the number of tugs cubed (Pw/N3) are established as design control parameters in the conceptual design phase. This aspect underscores the novelty of the present study. Additionally, the economic viability is analysed in terms of both CAPEX (capital expenditures) and OPEX (operational expenditures). While CAPEX does not significantly differ between the methods used in different types of commercial ships, OPEX should account for the unique characteristics of ATB vessels. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 2875 KB  
Article
Sustainable THz SWIPT via RIS-Enabled Sensing and Adaptive Power Focusing: Toward Green 6G IoT
by Sunday Enahoro, Sunday Cookey Ekpo, Mfonobong Uko, Fanuel Elias, Rahul Unnikrishnan, Stephen Alabi and Nurudeen Kolawole Olasunkanmi
Sensors 2025, 25(15), 4549; https://doi.org/10.3390/s25154549 - 23 Jul 2025
Viewed by 570
Abstract
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz [...] Read more.
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz beams pose safety concerns by potentially exceeding specific absorption rate (SAR) limits. We propose a sensing-adaptive power-focusing (APF) framework in which a reconfigurable intelligent surface (RIS) embeds low-rate THz sensors. Real-time backscatter measurements construct a spatial map used for the joint optimisation of (i) RIS phase configurations, (ii) multi-tone SWIPT waveforms, and (iii) nonlinear power-splitting ratios. A weighted MMSE inner loop maximizes the data rate, while an outer alternating optimisation applies semidefinite relaxation to enforce passive-element constraints and SAR compliance. Full-stack simulations at 0.3 THz with 20 GHz bandwidth and up to 256 RIS elements show that APF (i) improves the rate–energy Pareto frontier by 30–75% over recent adaptive baselines; (ii) achieves a 150% gain in harvested energy and a 440 Mbps peak per-user rate; (iii) reduces energy-efficiency variance by half while maintaining a Jain fairness index of 0.999;; and (iv) caps SAR at 1.6 W/kg, which is 20% below the IEEE C95.1 safety threshold. The algorithm converges in seven iterations and executes within <3 ms on a Cortex-A78 processor, ensuring compliance with real-time 6G control budgets. The proposed architecture supports sustainable THz-powered networks for smart factories, digital-twin logistics, wire-free extended reality (XR), and low-maintenance structural health monitors, combining high-capacity communication, safe wireless power transfer, and carbon-aware operation for future 6G cyber–physical systems. Full article
Show Figures

Figure 1

34 pages, 3579 KB  
Review
A Comprehensive Review of Mathematical Error Characterization and Mitigation Strategies in Terrestrial Laser Scanning
by Mansoor Sabzali and Lloyd Pilgrim
Remote Sens. 2025, 17(14), 2528; https://doi.org/10.3390/rs17142528 - 20 Jul 2025
Viewed by 795
Abstract
In recent years, there has been an increasing transition from 1D point-based to 3D point-cloud-based data acquisition for monitoring applications and deformation analysis tasks. Previously, many studies relied on point-to-point measurements using total stations to assess structural deformation. However, the introduction of terrestrial [...] Read more.
In recent years, there has been an increasing transition from 1D point-based to 3D point-cloud-based data acquisition for monitoring applications and deformation analysis tasks. Previously, many studies relied on point-to-point measurements using total stations to assess structural deformation. However, the introduction of terrestrial laser scanning (TLS) has commenced a new era in data capture with a high level of efficiency and flexibility for data collection and post processing. Thus, a robust understanding of both data acquisition and processing techniques is required to guarantee high-quality deliverables to geometrically separate the measurement uncertainty and movements. TLS is highly demanding in capturing detailed 3D point coordinates of a scene within either short- or long-range scanning. Although various studies have examined scanner misalignments under controlled conditions within the short range of observation (scanner calibration), there remains a knowledge gap in understanding and characterizing errors related to long-range scanning (scanning calibration). Furthermore, limited information on manufacturer-oriented calibration tests highlights the motivation for designing a user-oriented calibration test. This research focused on investigating four primary sources of error in the generic error model of TLS. These were categorized into four geometries: instrumental imperfections related to the scanner itself, atmospheric effects that impact the laser beam, scanning geometry concerning the setup and varying incidence angles during scanning, and object and surface characteristics affecting the overall data accuracy. This study presents previous findings of TLS calibration relevant to the four error sources and mitigation strategies and identified current challenges that can be implemented as potential research directions. Full article
Show Figures

Figure 1

16 pages, 6475 KB  
Review
Fully Digital Workflow in Full-Arch Implant Rehabilitation: A Descriptive Methodological Review
by Chantal Auduc, Thomas Douillard, Emmanuel Nicolas and Nada El Osta
Prosthesis 2025, 7(4), 85; https://doi.org/10.3390/prosthesis7040085 - 16 Jul 2025
Viewed by 1410
Abstract
Background. Digital dentistry continues to evolve, offering improved accuracy, efficiency, and patient experience across various prosthodontic procedures. Many previous reviews have focused on digital applications in prosthodontics. But the use of a fully digital workflow for full-arch implant-supported prostheses in edentulous patients remains [...] Read more.
Background. Digital dentistry continues to evolve, offering improved accuracy, efficiency, and patient experience across various prosthodontic procedures. Many previous reviews have focused on digital applications in prosthodontics. But the use of a fully digital workflow for full-arch implant-supported prostheses in edentulous patients remains an emerging and underexplored area in the literature. Objective. This article presents a comprehensive methodological review of the digital workflow in full-arch implant-supported rehabilitation. It follows a structured literature exploration and synthesizes relevant technological processes from patient assessment to prosthetic delivery. Methods. The relevant literature was retrieved from the PubMed database on 20 June 2024, to identify the most recent and relevant studies. A total of 22 articles met the eligibility criteria and were included in the review. The majority included case and technical reports. Results. The review illustrates the integration and application of digital tools in implant dentistry, including cone-beam computed tomography (CBCT) exposure, intraoral scanning, digital smile design, virtual patients, guided surgery, and digital scanning. The key findings demonstrate multiple advantages of a fully digital workflow, such as reduced treatment time and cost, increased patient satisfaction, and improved interdisciplinary communication. Conclusions. Despite these benefits, limitations persist due to the low level of evidence, technological challenges, and the lack of standardized protocols. Further randomized controlled trials and long-term clinical evaluations are essential to validate the effectiveness and feasibility of a fully digital workflow for full-arch implant-supported rehabilitation. Full article
Show Figures

Figure 1

14 pages, 2770 KB  
Article
High-Energy Electron Emission Controlled by Initial Phase in Linearly Polarized Ultra-Intense Laser Fields
by Xinru Zhong, Yiwei Zhou and Youwei Tian
Appl. Sci. 2025, 15(13), 7453; https://doi.org/10.3390/app15137453 - 2 Jul 2025
Viewed by 381
Abstract
Extensive numerical simulations were performed in MATLAB R2020b based on the classical nonlinear Thomson scattering theory and single-electron model, to systematically examine the influence of initial phase in tightly focused linearly polarized laser pulses on the radiation characteristics of multi-energy-level electrons. Through our [...] Read more.
Extensive numerical simulations were performed in MATLAB R2020b based on the classical nonlinear Thomson scattering theory and single-electron model, to systematically examine the influence of initial phase in tightly focused linearly polarized laser pulses on the radiation characteristics of multi-energy-level electrons. Through our research, we have found that phase variation from 0 to 2π induces an angular bifurcation of peak radiation intensity, generating polarization-aligned symmetric lobes with azimuthal invariance. Furthermore, the bimodal polar angle decreases with the increase of the initial energy. This phase-controllable bimodal distribution provides a new solution for far-field beam shaping. Significantly, high-harmonic intensity demonstrates π-periodic phase-dependent modulation. Meanwhile, the time-domain pulse width also exhibits 2π-cycle modulation, which is synchronized with the laser electric field period. Notably, electron energy increase enhances laser pulse peak intensity while compressing its duration. The above findings demonstrate that the precise control of the driving laser’s initial phase enables effective manipulation of the radiation’s spatial characteristics. Full article
Show Figures

Figure 1

28 pages, 7736 KB  
Article
Structural Analysis and Redrawing of a Sailing Catamaran with a Numerical and Experimental Approach
by Giovanni Maria Grasso, Marco Bonfanti, Fabio Lo Savio, Damiano Alizzio and Ferdinando Chiacchio
J. Mar. Sci. Eng. 2025, 13(7), 1270; https://doi.org/10.3390/jmse13071270 - 29 Jun 2025
Viewed by 459
Abstract
This study investigates the structural behavior of a sailing catamaran subjected to wind, wave, and self-weight loads, with the ultimate goal of improving the structural design through redrawing techniques. A digital model was developed using Creo software 6 and analyzed through Finite Element [...] Read more.
This study investigates the structural behavior of a sailing catamaran subjected to wind, wave, and self-weight loads, with the ultimate goal of improving the structural design through redrawing techniques. A digital model was developed using Creo software 6 and analyzed through Finite Element Analysis (FEA), complemented by experimental deformation tests conducted under dry conditions and controlled loading. These tests provided a reliable dataset for calibrating and validating the numerical model. The analysis focused on the structural responses of key components—such as bulkheads, hulls, and beam-to-hull connections—under both isolated as well as combined load scenarios. Most structural elements demonstrated low deformation, confirming the robustness of the design; however, stress concentrations were observed at the connecting plates, highlighting areas for improvement. The vessel’s overall stiffness, though advantageous for structural integrity, was identified as a constraint in weight redrawing efforts. Consequently, targeted structural modifications were proposed and implemented, resulting in reduced material usage, construction time, and overall costs. The study concludes by proposing the integration of advanced composite materials to further enhance performance and efficiency, thereby laying the groundwork for future integration with digital and structural health monitoring systems. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

20 pages, 12338 KB  
Article
Study on the Evolution Characteristics of Surrounding Rock and Differentiated Support Design of Dynamic Pressure Roadway with Double-Roadway Arrangement
by Linjun Peng, Shixuan Wang, Wei Zhang, Weidong Liu and Dazhi Hui
Appl. Sci. 2025, 15(13), 7315; https://doi.org/10.3390/app15137315 - 29 Jun 2025
Viewed by 402
Abstract
To elucidate evolutionary characteristics of the surrounding rock failure mechanism in a double-roadway layout, this work is grounded on in the research context of the Jinjitan Coal Mine, focusing on the deformation and failure mechanisms of double roadways. This paper addresses the issue [...] Read more.
To elucidate evolutionary characteristics of the surrounding rock failure mechanism in a double-roadway layout, this work is grounded on in the research context of the Jinjitan Coal Mine, focusing on the deformation and failure mechanisms of double roadways. This paper addresses the issue of resource wastage resulting from the excessive dimensions of coal pillars in prior periods by employing a research methodology that integrates theoretical analysis, numerical simulation, and field monitoring to systematically examine the movement characteristics of overlying rock in the working face. On that basis, the size of coal pillar is optimized. The advance’s stress transfer law and deformation distribution characteristics of the return air roadway and transport roadway are studied. The cause of the asymmetric deformation of roadway retention is explained. A differentiated design is conducted on the support parameters of double-roadway bolts and cables under strong dynamic pressure conditions. The study indicates that a 16 m coal pillar results in an 8 m elastic zone at its center, balancing stability with optimal resource extraction. In the basic top-sloping double-block conjugate masonry beam structure, the differing stress levels between the top working face’s transport roadway and the lower working face’s return air roadway are primarily due to the varied placements of key blocks. In the return air roadway, floor heave deformation is managed using locking anchor rods, while roof subsidence is controlled with a constant group of large deformation anchor cables. The displacement of surrounding rock increases under the influence of both leading and lagging pressures from the previous working face, although the change is minimal. There is a significant correlation between roadway deformation and support parameters and coal pillar size. With a 16 m coal pillar, differential support of the double roadway lowers the return air roadway deformation by 30%, which improves the mining rate and effectively controls the deformation of the roadway. Full article
Show Figures

Figure 1

49 pages, 9659 KB  
Article
Machine Learning Approach to Nonlinear Fluid-Induced Vibration of Pronged Nanotubes in a Thermal–Magnetic Environment
by Ahmed Yinusa, Ridwan Amokun, John Eke, Gbeminiyi Sobamowo, George Oguntala, Adegboyega Ehinmowo, Faruq Salami, Oluwatosin Osigwe, Adekunle Adelaja, Sunday Ojolo and Mohammed Usman
Vibration 2025, 8(3), 35; https://doi.org/10.3390/vibration8030035 - 27 Jun 2025
Viewed by 667
Abstract
Exploring the dynamics of nonlinear nanofluidic flow-induced vibrations, this work focuses on single-walled branched carbon nanotubes (SWCNTs) operating in a thermal–magnetic environment. Carbon nanotubes (CNTs), renowned for their exceptional strength, conductivity, and flexibility, are modeled using Euler–Bernoulli beam theory alongside Eringen’s nonlocal elasticity [...] Read more.
Exploring the dynamics of nonlinear nanofluidic flow-induced vibrations, this work focuses on single-walled branched carbon nanotubes (SWCNTs) operating in a thermal–magnetic environment. Carbon nanotubes (CNTs), renowned for their exceptional strength, conductivity, and flexibility, are modeled using Euler–Bernoulli beam theory alongside Eringen’s nonlocal elasticity to capture nanoscale effects for varying downstream angles. The intricate interactions between nanofluids and SWCNTs are analyzed using the Differential Transform Method (DTM) and validated through ANSYS simulations, where modal analysis reveals the vibrational characteristics of various geometries. To enhance predictive accuracy and system stability, machine learning algorithms, including XGBoost, CATBoost, Random Forest, and Artificial Neural Networks, are employed, offering a robust comparison for optimizing vibrational and thermo-magnetic performance. Key parameters such as nanotube geometry, magnetic flux density, and fluid flow dynamics are identified as critical to minimizing vibrational noise and improving structural stability. These insights advance applications in energy harvesting, biomedical devices like artificial muscles and nanosensors, and nanoscale fluid control systems. Overall, the study demonstrates the significant advantages of integrating machine learning with physics-based simulations for next-generation nanotechnology solutions. Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
Show Figures

Figure 1

Back to TopTop